Skip to main content
Figure 1 | Genome Biology

Figure 1

From: Alu elements: know the SINEs

Figure 1

The structure of an Alu element. (a) The top portion shows a genomic Alu element between two direct repeats formed at the site of insertion (red arrowheads). The Alu ends with a long A-run, often referred to as the A-tail, and it also has a smaller A-rich region (indicated by AA) separating the two halves of a diverged dimer structure. Alu elements have the internal components of a RNA polymerase III promoter (boxes A and B), but they do not encode a terminator for RNA polymerase III. They utilize whatever stretch of T nucleotides is found at various distances downstream of the Alu element to terminate transcription. A typical Alu transcript is shown below the genomic Alu, showing that it encompasses the entire Alu, including the A-tail, and has a 3' region that is unique for each locus. (b) The Alu RNA is thought to fold into separate structures for each monomer unit. The RNA has been shown to bind the 7SL RNA SRP9 and 14 heterodimer, as well as polyA-binding protein (PABP). It is thought that at least one other protein binds the duplex portion of the RNA structure. (c) In the target-primed reverse transcription mechanism, the Alu RNA (blue) brings the ORF2p to the genome where its endonuclease activity cleaves at a T-rich consensus sequence. The T-rich region primes reverse transcription by ORF2p on the 3' A-tail region of the Alu element. This creates a cDNA copy of the body of the Alu element. A nick occurs by an unknown mechanism on the second strand and second-strand synthesis is primed. The new Alu element is then flanked by short direct repeats that are duplicates of the DNA sequence between the first and second nicks.

Back to article page