Skip to content


Open Access

Reconstructing sex chromosome evolution

  • David C Page1,
  • Jennifer F Hughes1,
  • Daniel W Bellott1,
  • Jacob L Mueller1,
  • Mark E Gill1,
  • Amanda Larracuente1,
  • Tina Graves2,
  • Donna Muzny3,
  • Wesley C Warren2,
  • Richard A Gibbs3,
  • Richard K Wilson2 and
  • Helen Skaletsky1
Genome Biology201011(Suppl 1):I21

Published: 11 October 2010


Cell SpecializationGerm CellCell DevelopmentOngoing EffortChromosome Evolution

The mammalian X and Y chromosomes evolved from an ordinary pair of autosomes that existed in a reptilian ancestor that probably relied on temperature-dependent sex determination, as in crocodiles today. Independently and concurrently, the avian Z and W chromosomes (ZZ males, ZW females) evolved from a different pair of autosomes that was present in the same ancestor. Both the mammalian XY pair and the avian ZW pair have emerged with specialized and disproportionate roles in germ cell development. These germ cell specializations are best understood in the mammalian Y chromosomes and are only now being appreciated in the mammalian X chromosomes and the avian ZW pair.

To reconstruct and better understand nature's sex chromosome experiment, we have set out to comprehensively sequence and compare the sex chromosomes of four primates, two rodents, an ungulate, a marsupial and a bird. I will describe insights that have emerged from this ongoing effort.

Authors’ Affiliations

Howard Hughes Medical Institute, Whitehead Institute, and Dept. of Biology, Massachusetts Institute of Technology, Cambridge, USA
Genome Center, Washington University School of Medicine, St. Louis, USA
Human Genome Sequencing Center, Baylor College of Medicine, Houston, USA


  1. Reijo , et al: . Nature Genetics. 1995, 10: 383-10.1038/ng0895-383.PubMedView ArticleGoogle Scholar
  2. Saxena , et al: . Nature Genetics. 1996, 14: 292-10.1038/ng1196-292.PubMedView ArticleGoogle Scholar
  3. Lahn & Page: . Science. 1997, 278: 675-10.1126/science.278.5338.675.PubMedView ArticleGoogle Scholar
  4. Lahn & Page: . Science. 1999, 286: 964-10.1126/science.286.5441.964.PubMedView ArticleGoogle Scholar
  5. KurodaKawaguchi , et al: . Nature Genetics. 2001, 29: 279-10.1038/ng757.View ArticleGoogle Scholar
  6. Wang , et al: . Nature Genetics. 2001, 27: 422-10.1038/86927.PubMedView ArticleGoogle Scholar
  7. Skaletsky , et al: . Nature. 2003, 423: 825-10.1038/nature01722.PubMedView ArticleGoogle Scholar
  8. Rozen , et al: . Nature. 2003, 423: 873-10.1038/nature01723.PubMedView ArticleGoogle Scholar
  9. Mueller , et al: . Nature Geneticss. 2008, 40: 794-10.1038/ng.126.View ArticleGoogle Scholar
  10. Lange , et al: . Cell. 2009, 138: 855-10.1016/j.cell.2009.07.042.PubMedPubMed CentralView ArticleGoogle Scholar
  11. Hughes , et al: . Nature. 2010, 463: 536-10.1038/nature08700.PubMedPubMed CentralView ArticleGoogle Scholar
  12. Bellott , et al: . Nature. 2010, 466: 612-10.1038/nature09172.PubMedPubMed CentralView ArticleGoogle Scholar


© Page et al; licensee BioMed Central Ltd. 2010

This article is published under license to BioMed Central Ltd.