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Abstract 

We present a non-parametric statistical method called TDEseq that takes full advan-
tage of smoothing splines basis functions to account for the dependence of multiple 
time points in scRNA-seq studies, and uses hierarchical structure linear additive mixed 
models to model the correlated cells within an individual. As a result, TDEseq dem-
onstrates powerful performance in identifying four potential temporal expression 
patterns within a specific cell type. Extensive simulation studies and the analysis of four 
published scRNA-seq datasets show that TDEseq can produce well-calibrated p-values 
and up to 20% power gain over the existing methods for detecting temporal gene 
expression patterns.

Keywords:  Time-course scRNA-seq data, Temporal expression patterns, Non-
parametric models

Introduction
The advances in single-cell RNA sequencing (scRNA-seq) technologies make it possible 
to record the temporal dynamics of gene expression over multiple time points or stages 
either in the same cell population [1, 2] or even in an individual cell without destruc-
tion [3]. Unlike the single time point (e.g., snapshot) profiling of transcriptome that 
allocates cells on pseudotime or lineages using purely computational strategies [4–6], 
in particular, the time-course scRNA-seq profiling of whole transcriptome with respect 
to real, physical time, is capable of providing additional insights into dynamic biologi-
cal processes [2, 7]. For example, how the cells naturally differentiate into other types or 
states during the development processes and how the cellular response to specific drug 
treatments [8], viral infections [9], etc. Therefore, accurately characterizing the temporal 
dynamics of gene expression over time points is crucial for developmental biology [10, 
11], tumor biology [12–14], and biogerontology [15–17], which allows us to decipher the 
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dynamic cellular heterogeneity during cell differentiation [18], identifying cancer driver 
genes during the status transformation [14], and investigating the mechanisms of cell 
senescence during aging [15]. Although the time-course scRNA-seq studies are initially 
designed for different purposes, they essentially require the same data analysis tools for 
detecting the temporal dynamics of gene expression [19]. As we know, the statistical 
modeling for this type of scRNA-seq data to identify temporal gene expression patterns 
meets significant challenges, i.e., modeling unwanted variables, accounting for tempo-
ral dependencies, and even characterizing non-stationary cell populations of scRNA-seq 
data. However, existing methods are unable to fully consider these limitations, resulting 
it remains an urgent need to develop effective tools for detecting temporal dynamics of 
gene expression in time-course scRNA-seq studies.

Particularly, time-course scRNA-seq data commonly share a fundamental tempo-
ral dynamics nature, i.e., the gene expression levels measured at each time point may 
be influenced by previous time points. Accounting for these temporal dependencies 
requires specialized statistical and computational tools [20], and failure to do so can 
lead to inaccurate gene detections [21, 22]. As a result, current temporal gene detec-
tion methods for time-course scRNA-seq data can be divided into two categories: the 
methods that treat time points independently and methods that model the tempo-
ral dependencies explicitly. Specifically, the methods that utilize the former approach 
mostly treated time as a categorical variable, performing the differential expression 
analysis with pair-wise comparison tools, such as a two-sided Wilcoxon rank-sum test 
[23, 24]. However, neglecting the temporal dependencies among multiple time points 
will reduce the statistical power and may lead to false-positive results [22]. On the other 
hand, the methods that utilize the latter approach are commonly used for addressing the 
time-course bulk RNA-seq data, such as ImpulseDE2 [25], DESeq2 [26], and edgeR [27]. 
However, the scRNA-seq data is often sparse along with technical and biological vari-
ability, making it difficult to accurately identify true biological gene expression changes 
over multiple time points [28, 29].

Furthermore, time-course scRNA-seq data are often collected from multi-sample 
multi-stage designs. As a result, there may be unwanted variables that arise due to tech-
nical variability, batch effects, or the genetic background of individuals [30]. These vari-
ables can obscure the identification of temporal expression changes that are of interest, 
making it challenging to detect temporal expression genes accurately. Alternatively, the 
trajectory-based differential expression analysis methods, such as Monocle2 [5], trade-
Seq [31], and PseudotimeDE [32] could detect the temporal dynamics of gene expres-
sions along with pseudotime or a continuous trajectory of cellular states. However, since 
the gene expression profiles of cells from the same sample/individual are known to be 
dependent, these methods may not adequately account for technical or biological vari-
ability that may present in multi-sample multi-stage designs. In addition, these meth-
ods may not fully capture the underlying biological process at specific tipping points or 
intervals, which could be particularly relevant in understanding the mechanisms of cell 
fate or differentiation [33, 34], and tumor progression [14].

Here, to properly address the above challenges, we develop an efficient and flexible non-
parametric method for detecting temporal expression patterns over multiple time points. 
We refer to our method as TDEseq, temporal differentially expressed genes of time-course 
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scRNA-seq data. Specifically, TDEseq primarily builds upon a linear additive mixed model 
(LAMM) framework, with a random effect term to account for correlated cells within 
an individual. In this model, we typically introduce the quadratic I-splines [35] and cubic 
C-splines [36] as basis functions, which facilitate the detection of four potential temporal 
gene expression patterns, i.e., growth, recession, peak, or trough. As a result, with exten-
sive simulation studies, we find TDEseq can properly control for type I error rate at the 
transcriptome-wide level and display powerful performance in detecting temporal expres-
sion genes under the power simulations. Finally, we apply the TDEseq to one scRNA-seq 
dataset which was generated by Well-TEMP-seq [23], one scRNA-seq dataset generated 
by Smart-seq2 [37], and two scRNA-seq datasets generated by 10X Genomics, to bench-
mark TDEseq against current state-of-the-art methods, regarding human colorectal cancer 
development [23], mouse hepatocyte differentiation [38], human metastatic lung adenocar-
cinoma [14], and human COVID-19 progression [9]. These results highlight that TDEseq 
is an appropriate tool for detecting temporal gene expression patterns over multiple time 
points, which leads to an improved understanding of developmental biology, tumor biol-
ogy, and biogerontology.

Results
Overview of TDEseq

Statistical modeling

TDEseq is a temporal gene expression analysis approach that is primarily built upon the 
linear additive mixed models (LAMM) [39] framework to characterize the temporal gene 
expression changes for time-course (or longitudinal) scRNA-seq datasets (the “Materials 
and methods” section; Supplementary Text). Typically, we aim to detect one of four pos-
sible temporal gene expression patterns (i.e., growth, recession, peak, or trough) over mul-
tiple time points using both I-splines [35] and C-splines [36] basis functions (Fig. 1A) and 
examine one gene at a time. Briefly, in LAMM, we assume the log-normalized gene expres-
sion level of raw counts (the “Materials and methods” section), i.e., ygji(t) for gene g , indi-
vidual j and cell i at time point t is,

Where wgji is the cell-level or time-level covariate (e.g., cell size, or sequencing read 
depth), αg is its corresponding coefficient; ug is a random vector to account for the varia-
tions from heterogeneous samples, i.e.,

where �N×N is a block diagonal matrix with a total of M block matrices, in which all 
elements of �nj×nj are ones; nj is the number of cells for the individual or replicate j , and 

M
j=1 nj = N  ; egji is a random effect, which is an independent and identically distributed 

variable that follows a normal distribution with mean zero and variance σ 2
g  to account 

for independent noise, i.e.,

ygji(t) = w
′
gjiαg +

∑K

k=1
sk (t)βgk+ugji+egji , i = 1, 2, · · · , nj; g = 1, 2, · · · ,G; t = 1, 2, · · · ,T , j = 1, . . . ,M.

ug ∼ MVN
(
0, σ 2

gu�N×N

)
.
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Fig. 1  Schematic overview of TDEseq and the methods comparison in simulations. A TDEseq is designed 
to perform temporal expression gene analysis of time-course scRNA-seq data. With a given gene, TDEseq 
determines one of four temporal expression patterns, i.e., growth, recession, peak, and trough. TDEseq 
combines the four p-values using the Cauchy combination rule as a final p-value, facilitating the detection 
of temporal gene expression patterns. B The quantile–quantile (QQ) plot shows the type I error control 
under the baseline parameter settings. The well-calibrated p-values will be expected laid on the diagonal 
line. The p-values generated from Mixed TDEseq (plum) and DESeq2 (brown) are reasonably well-calibrated, 
while Linear TDEseq (orange), tradeSeq (green), ImpulseDE2 (blue), Wilcoxon test (yellow) and edgeR (dark 
green) produced the p-values that are not well-calibrated. C The average power of 10 simulation replicates 
for temporal expression gene detection across a range of FDR cutoffs under the baseline parameter settings. 
Both versions of TDEseq exhibit high detection power of temporal expression genes, followed by DESeq2, 
edgeR, tradeSeq, and ImpulseDE2. Wilcoxon test does not fare well, presumably due to bias towards highly 
expressed genes. The TDEseq methods were highlighted using solid lines, while other methods were 
represented by dashed lines in the plots. D The comparison of Linear TDEseq, Mixed TDEseq, and ImpuseDE2 
in terms of the accuracy of temporal expression pattern detection under the baseline parameter settings, 
at an FDR of 5%. The temporal expression genes detected by TDEseq demonstrated a higher accuracy than 
those detected by ImpluseDE2. E The quantile–quantile (QQ) plot shows the type I error control under the 
large batch effect parameter settings. The p-values generated from Mixed TDEseq coupled with scMerge 
(purple) and DESeq2 (brown) are reasonably well-calibrated, while Linear TDEseq (orange), Mixed TDEseq 
(plum), tradeSeq (green), ImpulseDE2 (blue), Wilcoxon test (yellow), and edgeR (dark green) generated the 
inflated p-values. F The average power of 10 simulation replicates the comparison of temporal expression 
gene detection across a range of FDR cutoffs under the large batch effect parameter settings. G The 
comparison of Linear TDEseq, Mixed TDEseq, and Mixed TDEseq coupled with scMerge and ImpuseDE2 
in terms of the accuracy of temporal expression pattern detection under the large batch effect parameter 
settings, at an FDR of 5%. Since DESeq2, edgeR, tradeSeq, and Wilcoxon tests were not originally designed for 
pattern-specific detection we excluded them in the comparison. FDR denotes the false discovery rate
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Particularly, the variable sk(t) is a smoothing spline basis function, which involves either 
I-splines or C-splines to model monotone patterns (i.e., growth and recession) and quad-
ratic patterns (i.e., peak and trough), respectively [40] (Fig. 1A). The I-splines are defined 
as Ikl (x) =

∫ x
ξ1
Mk

t1(v)dv [35], while C-splines are defined as Ck
l (x) =

∫ x
ξ1
Ikt1(v)d(v)  [36] 

based on I-splines, and βgk is its corresponding coefficient that is restricted to βgk ≥ 0 , 
and l(l = 1, 2, · · · , L) is the number of grid points. We set L to be a total number of grid 
points, which is equal to the number of time points in scRNA-seq studies; k denotes the 
order of the spline function; MVN  denotes the multivariate normal distribution.

Hypothesis testing

In the LAMM model mentioned above, we are interested in examining whether a gene 
shows one of four temporal expression patterns, i.e., growth, recession, peak, or trough 
(Fig. 1A). Testing whether a gene expression displays temporal gene expression patterns 
can be translated into testing the null hypothesis H0 : βg = 0 . Parameter estimates and 
hypothesis testing in LAMM are notoriously difficult, as the LAMM likelihood involves 
M-splines [35] (non-linear) subject to nonnegative constraints that cannot be solved 
analytically. To make the LAMM model scalable estimation and inference, we developed 
an approximate inference algorithm based on a cone programming projection algorithm 
[41, 42]. With parameter estimates, we computed a p-value for each of the four patterns 
using the test statistics [43], which follow a mixture of beta distributions [44]. After-
ward, we combined these four p-values through the Cauchy combination rule [45]. The 
Cauchy combination rule allows us to combine multiple potentially correlated p-values 
into a single p-value to determine whether a gene exhibits the temporal expression pat-
tern or not (the “Materials and methods” section; Additional file 1: Supplementary Text).

We refer to the above method as the mixed version of TDEseq (we denoted as Mixed 
TDEseq). Besides the mixed version, we have also developed a linear version of TDEseq 
(to distinguish Mixed TDEseq, we denoted this as Linear TDEseq) for modeling the small 
or no sample heterogeneity inherited in time-course scRNA-seq data (Additional file 1: 
Supplementary Text). Both versions of TDEseq were implemented in the same R pack-
age with multiple threads computing capability. The software TDEseq, together with the 
reproducibility analysis code, is freely available at https://​sqsun.​github.​io/​softw​are.​html.

TDEseq generates well‑calibrated p‑values and exhibits powerful gene detection 

of temporal expression changes in simulations

To benchmark the robustness and performance of TDEseq, we simulated extensive 
scRNA-seq datasets using the Splatter R package [46] and compared two versions of 
TDEseq with other five existing approaches but not specific designs for time-course 
scRNA-seq data analysis, which are the two-sided Wilcoxon rank-sum test (Wilcoxon 
test), tradeSeq [47], ImpulseDE2 [25], edgeR [27, 48], and DESeq2 [26] (the “Materials 
and methods” section). The simulations were typically designed to assess the ability of 
TDEseq in terms of type I error control and temporal gene detection power with vary-
ing various parameter settings, including the number of time points (i.e., 4, 5, or 6), the 

eg =
(
eg11, · · · , egMnM

)′
∼ MVN (0, σ 2

g IN×N ).

https://sqsun.github.io/software.html


Page 6 of 31Fan et al. Genome Biology           (2024) 25:96 

number of cells for each sample in each time point (i.e., 50, 100, or 200; three replicates/
samples for each time point), the expected UMI counts for each cell of scRNA-seq data 
(i.e., 7.0 as low, 9.7 as medium, and 13.8 as high), the effect size of temporal expression 
changes (i.e., 0.1 as low, 0.4 as medium, and 0.7 as high), and the sample-level unwanted 
technical variations (i.e., batch effects; 0 as no batch effects, 0.04 as medium, and 0.12 as 
high).

To do so, we considered a baseline simulation scenario: the number of time points as 5; 
the number of cells in each sample as 100; the expected UMI counts for each cell as 9.7; 
the batch effect size as 0.04; the time point-specific effect size as 0.4; all cells were meas-
ured by 10,000 genes, in which 1,000 genes were randomly assigned one of four possible 
temporal patterns (i.e., growth, recession, peak, and trough; Additional file 2: Fig. S1A-
S1D) in power simulations. With the baseline parameter settings, we varied one param-
eter at a time to examine whether the gene was temporally expressed over multiple time 
points. Notably, the expected UMI counts under baseline settings were estimated from 
the lung adenocarcinoma progression scRNA-seq data [14] (the “Materials and meth-
ods” section).

With the baseline parameter setup, we found that only Mixed TDEseq and DESeq2 
generated the well-calibrated p-values under the null simulations, whereas all other 
methods produced the inflated or conserved p-values (Fig. 1B). Besides, for the power 
simulations, Linear TDEseq and Mixed TDEseq can produce a more powerful tempo-
ral expression pattern detection rate across a range of FDR cutoffs (Fig.  1C). Specifi-
cally, with a false discovery rate (FDR) of 5%, the power detection rate of both Linear 
and Mixed TDEseq was 43.3% and 40.8%, respectively, followed by DESeq2 was 38.7%, 
edgeR was 36.4%, tradeSeq was 25.9%, and ImpulseDE2 was 18.4%. Furthermore, we also 
examined the accuracy of pattern detection, finding both Linear and Mixed versions of 
TDEseq outperformed ImpluseDE2 (the sole method capable of identifying pattern-spe-
cific genes). Specifically, with an FDR of 5%, the averaged accuracy of pattern exami-
nation (with 10-time repeats) for Mixed TDEseq achieved 99.0% for growth, 100% for 
recession, 80.4% for peak, and 43.6% for trough. In contrast, ImpulseDE2 achieved 73.1% 
for growth, 83.5% for recession, 39.3% for peak, and 21.3% for trough (Fig. 1D).

In addition, we systematically examined the performance of the type I error control 
rate under other parameter settings. Our findings indicate that Mixed TDEseq con-
sistently produces well-calibrated p-values (Additional file 2: Fig. S2A, S2B, S3A, S4A, 
and S4B) except when dealing with high UMI counts (Additional file 2: Fig. S3B). These 
observations are presumably due to the presence of sample-level variations or batch 
effects associated with high UMI counts. On the other hand, in terms of temporal 
expression gene detection and averaged accuracy of pattern examination, either Mixed 
or Linear TDEseq displayed more powerful performance across a range of parameter 
settings regardless of the number of time points (Additional file 2: Fig. S2C and S2D), the 
low expected UMI counts for each cell (Additional file 2: Fig. S3C), the large number of 
cells per sample (Additional file 2: Fig. S4D), and the small effect size setups (Additional 
file 2: Fig. S5), as well as the accuracy of pattern examination (Additional file 2: Fig. S6). 
Meanwhile, we found both pseudobulk-based methods, i.e., either edgeR or DESeq2, 
performed well with high UMI counts (Additional file  2: Fig. S2D) and small num-
ber of cells per sample (Additional file 2: Fig. S3C). These observations were probably 
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consistent with the previous studies that DESeq2/edgeR performed well on log-normal 
distributed small sample size RNA-seq data [49, 50]. Taken together, we summarized 
the findings on detection power at an FDR of 5% across diverse parameter settings. The 
results demonstrated that the power of temporal gene detection increases with a rise in 
the number of time points, effect size, and UMI counts. Conversely, it diminishes as the 
number of cells within each individual increase, along with sample-level variations (i.e., 
batch effects) (Additional file 2: Fig. S7). Notably, the Wilcoxon test did not fare well in 
all power simulations, presumably due to failure to properly control the type I error rate.

In addition, we further examined the performance of TDEseq in other two temporal 
expression patterns: (1) a plateau in the first few time points, then another plateau in 
the last few time points (we referred to this pattern as a bi-plateau pattern; Additional 
file 2: Fig. S1E), and (2) a multi-mode pattern at begin time points then stable in last time 
points (we referred this pattern as a multi-modal pattern; Additional file  2: Fig. S1F). 
Under the bi-plateau pattern, Mixed TDEseq still displayed more powerful performance 
than other methods (Additional file 2: Fig. S8A), suggesting the shape-restricted spline 
function is flexible to capture bi-plateau patterns. In contrast, under the multi-modal 
pattern, all methods achieved low detection power, but edgeR and DESeq2 showed a 
higher performance than other methods (Additional file 2: Fig. S8B). However, this may 
not be a great issue since the multi-modal pattern may be a rare scenario in real data 
applications [25].

TDEseq coupled with batch removal strategy exhibits excellent performance in analyzing 

large heterogeneous scRNA‑seq data

Intuitively, in situations with minimal or no sample-level variations (i.e., batch effects), it 
is reasonable to expect that trajectory-based differential expression methods (e.g., trade-
Seq) would yield comparable results to temporal-based differential expression meth-
ods. To do so, we reduced the batch effect size to zero. As a result, we observed that 
both versions of TDEseq and tradeSeq generated well-calibrated p-values under the null 
simulations, whereas ImpulseDE2 demonstrated overly conservative p-values and the 
Wilcoxon test displays inflated p-values (Additional file  2: Fig. S9A). Again, both ver-
sions of TDEseq and all other approaches generated comparable results of temporal 
expression pattern (Additional file 2: Fig. S9B). As we know, the presence of unwanted 
batch effects poses substantial obstacles in detecting temporal expression changes. We 
therefore increased the batch effect size to 0.12. As a result, we found Mixed TDEseq 
outperformed other methods in terms of temporal expression pattern detection power 
(Fig. 1F). However, the p-values generated by Mixed TDEseq were not well-calibrated 
(Fig. 1E).

To this end, to properly control the unwanted variables in the large batch effects sce-
nario, we additionally carried out the batch effects correction procedure prior to per-
forming temporal gene expression analysis. To do so, we benchmarked five existing 
batch removal methods that can return the corrected gene expression matrix, including 
MNN [51], scMerge [52], ZINB-WaVE [53], ComBat [54], and Limma [55]. As a result, 
with evaluation criterion iLISI score [56] (the “Materials and methods” section) for batch 
correction approaches, we found scMerge (0.49) achieved a higher alignment score than 
Limma (0.48), ComBat (0.48), MNN (0.11), and ZINB-WaVE (0.21; Additional file  2: 
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Fig. S10). Moreover, we found Mixed TDEseq coupled with scMerge (Mixed TDE-
seq + scMerge) performed reasonably well in terms of the type I error control (Fig. 1E 
and Additional file 2: Fig. S11A) and was more powerful in detecting temporal expres-
sion genes (Fig. 1F and Additional file 2: Fig. S11B), suggesting this combination is suit-
able for time-course scRNA-seq data with strong sample-level variations (i.e., batch 
effects). Taken together, TDEseq coupled with scMerge may be an ideal combination for 
the identification of temporal gene expression patterns when time-course scRNA-seq 
data involves large heterogeneous samples.

TDEseq performs well in the intertwined cells among time points

The simulations above all display the time point-specific expression. To mimic the cell 
differentiation scenario where the same type of cells were intertwined among time points 
(Additional file  2: Fig. S12A), we simulated additional scRNA-seq datasets (denoted 
as smudged data) using the Symsim R package [57] (the “Materials and methods” sec-
tion). Consequently, the pseudotime was inferred using Slingshot [6] according to the 
recommendation from the previous studies [31, 32]. In this simulation, we first took the 
inferred pseudotime as inputs in tradeSeq and ImpulseDE2, while the time points as 
inputs in both versions of TDEseq, edgeR, and DESeq2. As a result, we observed that the 
performance of Linear TDEseq was comparable with ImpluseDE2 in a small proportion 
of intertwined cells between time points (Additional file 2: Fig. S12B). With a medium 
proportion of intertwined cells (Additional file 2: Fig. S12C) and a large proportion of 
intertwined cells (Additional file  2: Fig. S12D), the pseudotime-based methods trade-
Seq and ImpulseDE2 outperformed the time points-based methods, both versions of 
TDEseq, edgeR, and DESeq2. Furthermore, we took the inferred pseudotime as inputs 
in both versions of TDEseq, Linear TDEseq outperformed Mixed TDEseq, and Impul-
seDE2, but not tradeSeq (Additional file 2: Fig. S12E).

In addition, we further examined the temporal expression patterns that were 
detected by Linear TDEseq. As a result, we found even though the pseudotime as 
inputs, TDEseq displayed four distinct temporal expression patterns (Additional 
file 2: Fig. S12F). Therefore, TDEseq was also useful for detecting temporal expression 
patterns with the pseudotime as inputs.

TDEseq detects drug‑associated temporal expression changes of time‑course scRNA‑seq 

data

We first applied TDEseq on a drug-treatment time-resolved scRNA-seq dataset (Addi-
tional file  3: Table  S1). The data were assayed by Well-TEMP-seq protocols to profile 
the transcriptional dynamics of colorectal cancer cells exposed to 5-AZA-CdR [23] (the 
“Materials and methods” section). This scRNA-seq dataset consists of D0, D1, D2, and 
D3 four time points (Fig.  2A), and each time point contains 4,000 cells. We expected 
these scRNA-seq datasets to exhibit minimal individual heterogeneity across multiple 
time points since Well-TEMP-seq addressed the cell lines within one chip [23] (Addi-
tional file 2: Fig. S13A). Therefore, we performed the temporal gene detection methods 
without batch effects correction. Since only one sample was involved in each time point, 
we excluded Mixed TDEseq, edgeR, and DESeq2 in this application.
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Next, we examined the ability of Linear TDEseq in terms of type I error control. To 
do so, we utilized a permutation strategy (repeated 5 times) to construct a null distri-
bution (the “Materials and methods” section). Consistent with simulation studies, 
we found Linear TDEseq can produce well-calibrated p-values while tradeSeq pro-
duced inflated p-values and ImpulseDE2 produced overly conserved p-values (Fig. 2B). 

Fig. 2  The time-resolved scRNA-seq data analysis for the HCT116 cell lines after 5-AZA-CdR treatment. A 
The experimental design of HCT116 cell lines treated with 5-AZA-CdR. The scRNA-seq data were assayed by 
Well-TEMP-seq protocols, consisting of four time points, i.e., D0, D1, D2, or D3 after treatment. B The quantile–
quantile (QQ) plot shows the type I error control under the null simulations with permutation strategy. The 
well-calibrated p-values will be expected laid on the diagonal line. The p-values produced by Linear TDEseq 
(orange) and tradeSeq (green) are reasonably well-calibrated, while those from ImpulseDE2 (blue) are overly 
conservative. C The power comparison of temporal expression gene detection across a range of FDR cutoffs. 
Linear TDEseq was highlighted using solid lines, while other methods were represented by dashed lines 
in the plots. Linear TDEseq displays the powerful performance of temporal expression gene detection. D 
The heatmap demonstrates the pattern-specific temporal expression genes that were identified by Linear 
TDEseq. Gene expression levels were log-transformed and were standardized using z-scores for visualization. 
The top-ranked temporal expression genes identified by Linear TDEseq show distinct four patterns. E The 
Venn diagram shows the overlapping of the temporally expressed genes (FDR ≤ 0.05) identified by Linear 
TDEseq, tradeSeq, or ImpulseDE2. Those method-specific unique genes were enriched in the number of 
GO terms (NGO, BH-adjusted p-value < 0.05). The temporal expression genes detected by Linear TDEseq were 
enriched with a greater number of GO terms. F The UMAP shows two temporal expression genes, i.e., DKK1 
and IFITM3, which were identified by Linear TDEseq but not by tradeSeq. G The bubble plot demonstrates the 
significant GO terms enriched by pattern-specific temporal expression genes, which were identified by Linear 
TDEseq. The peak-specific temporal expression genes enriched more significant GO terms. The Wilcoxon test 
was excluded from this comparison due to its poor performance in simulations. DESeq2 and edgeR were 
excluded from this comparison due to only one sample at each time point. FDR denotes the false discovery 
rate
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Besides, in terms of temporally expressed gene detection, Linear TDEseq outperformed 
other methods across a range of FDR cutoffs (Fig. 2C), even in pattern-specific tempo-
ral expression gene detection (Additional file  2: Fig. S13B). For example, Linear TDE-
seq identified a total of 5,596 temporally expressed genes at an FDR of 5%, including 
1,341 growth genes, 1,177 recession genes, 225 trough genes, and 2,853 peak genes, 
which displayed four distinct temporal expression patterns (Fig. 2D). In contrast, Impul-
seDE2 identified a total of 4,792 temporally expressed genes and tradeSeq detected a 
total of 2,672 temporally expressed genes (Additional file 3: Table S3). Overall, besides 
the 2,427 common shared temporally expressed genes detected by Linear TDEseq, 
tradeSeq, and ImpulseDE2 methods (Fig. 2E), a total of 559 temporally expressed genes 
were uniquely detected by TDEseq, which were also significantly enriched in cell cycle 
DNA replication (GO:0044786; BH adjusted p-value = 7.89e − e) and response to inter-
leukin1 (GO:0070555; BH adjusted p-value = 0.031). In contrast, tradeSeq or Impul-
seDE2 unique genes were not enriched in 5-AZA-CdR treatment response associated 
GO terms (Fig. 2E). Specifically, we found tumor suppressor genes which were a target 
of 5-AZA-CdR, i.e., DKK1 [23, 58] was identified by TDEseq as top-ranked significant 
temporal expression genes (p-value < 1e − 300, FDR = 0), while not being detected by 
tradeSeq (p-value = 0.82, FDR = 0.90), probably due to though this gene had clearly peak 
pattern, the log fold change was small enough, and it was difficult to detect with penal-
ized splines; besides, a 5-AZA-CdR response gene IFITM3 [58, 59] was also identified by 
TDEseq as top-ranked significant genes (p-value < 1e − 300, FDR = 0), but not detected 
by tradeSeq (p-value = 0.19, FDR = 0.36, Fig. 2F).

Finally, we performed gene set enrichment analysis (GSEA) on the pattern-spe-
cific temporal expression genes to examine top GO terms enriched by the given gene 
lists (the “Materials and methods” section). Specifically, with an FDR of 5%, a total of 
1,341 growth-specific temporal expression genes were detected by Linear TDEseq. 
These genes were enriched in a total of 179 GO terms. Because the 5-AZA-CdR treat-
ment leads HCT116 cells to a viral mimicry state, and triggers the antiviral response 
[60], we expected a result of an immune response that drives the immune-associated 
genes is  upregulated. Indeed, the GO terms contain many immune response terms, 
such as the cell activation involved in the immune response process (GO: 0002263; 
BH-adjusted p-value = 8.90e − 7), indicating immune response was activated by the 
5-AZA-CdR treatment; a total of 1,177 recession-specific temporal expression genes 
were enriched in a total of 244 GO terms, e.g., many regulations of histone methylation 
terms such as positive regulation of histone H3-K4 methylation (GO: 0051571; BH-
adjusted p-value = 0.047), implying DNA methylation inhibitions and gene expression 
regulation were occurred after 5-AZA-CdR treatment, due to the global DNA dem-
ethylation effects of 5-AZA-CdR [61]; a total of 2,853 peak-specific temporal expres-
sion genes were enriched in a total of 249 GO terms. For example, the ATP metabolic 
process pathways, particularly oxidative phosphorylation (GO: 0006119; BH-adjusted 
p-value = 3.30e − 7), are impacted by the increase of intracellular ROS and mitochon-
drial superoxide induced by 5-AZA-CdR. However, this effect diminishes over time 
[62]; similarly, a total of 225 trough-specific temporal expression genes were enriched 
in a total of 89 GO terms, with a significant portion belonging to cell cycle pathways, 
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including mitotic nuclear division (GO: 0140014; BH-adjusted p-value = 1.06e − 6). 
These findings suggest that 5-AZA-CdR treatment may lead to the suppression of 
tumor cell proliferation and division [60] (Fig. 2G).

TDEseq detects hepatic cell differentiation‑associated temporal expression genes 

of time‑course scRNA‑seq data

We next applied TDEseq to a hepatoblast-to-hepatocyte transition study from the 
C57BL/6 and C3H embryo mice livers [38] (the “Materials and methods” section; 
Additional file  3: Table  S1). This scRNA-seq dataset consists of 7 developmental 
stages from 13 samples, including E10.5 (54 cells from 1 sample), E11.5 (70 cells from 
2 samples), E12.5 (41 cells from 2 samples), E13.5 (65 cells from 2 samples), E14.5 
(70 cells from 2 samples), E15.5 (77 cells from 2 samples), and E17.5 (70 cells from 2 
samples) [63] (Fig. 3A). Compared with the above time-resolved scRNA-seq data, this 
time-course scRNA-seq dataset contains multiple samples at each stage, exhibiting 
small individual heterogeneity across all developmental stages (Additional file 2: Fig. 
S14A). Therefore, we carried out both versions of TDEseq that would be expected to 
be comparable in such a scenario and excluded edgeR and DESeq2 in this application 
due to one or two samples involved in each time point.

To do so, we first examined the ability of TDEseq in terms of type I error control 
using permutation strategies (the “Materials and methods” section). Consistent with 
the simulation results, Linear TDEseq, Mixed TDEseq, and tradeSeq could produce the 
well-calibrated p-values whereas ImpulseDE2 generated overly conservative p-values 
(Fig.  3B). Besides, in terms of temporally expressed gene detection, both versions of 
TDEseq outperformed other methods across a range of FDR cutoffs (Fig. 3C and Addi-
tional file  2: Fig. S14B). Specifically, Linear TDEseq identified a total of 9,975 tempo-
rally expressed genes at an FDR of 5%, including 1,266 growth genes, 7,146 recession 
genes, 217 trough genes, and 1,346 peak genes, which displayed four temporal distinct 
patterns (Fig. 3D); Mixed TDEseq identified a total of 8,924 temporally expressed genes, 
including 1,242 growth genes, 6,708 recession genes, 136 trough genes, and 838 peak 
genes. In contrast, ImpulseDE2 detected a total of 7,737 temporally expressed genes, 
while tradeSeq detected a total of 7,108 temporally expressed genes (Additional file 3: 
Table S4). Notably, comparing with tradeSeq and ImpulseDE2, there were a total of 948 
temporally expressed genes uniquely detected by Linear TDEseq at an FDR of 5% and 
a total of 3,517 temporally expressed genes uniquely detected by Mixed TDEseq at an 
FDR of 5%. Comparing the results of Linear TDEseq and Mixed TDEseq, we found the 
p-values generated from both Mixed TDEseq and Linear TDEseq demonstrated a high 
correlation (Spearman R = 0.954; Additional file 2: Fig. S14C). We further observed that 
some of the genes from Linear TDEseq displayed a smaller p-value than that from Mixed 
TDEseq. This observation was presumably due to Linear TDEseq being more sensitive in 
large sample-level variations across time points. For example, the p-value of a recession-
specific gene MAPK13 generated by Linear TDEseq (p-value = 1.0e − 300) was extremely 
small than Mixed TDEseq (p-value = 1.8e − 2; Additional file 2: Fig. S14D).

Moreover, the temporally expressed genes detected by both versions of TDEseq but 
not detected by tradeSeq or ImpulseDE2 were highly related to hepatic cell differenti-
ation (Fig.  3E), where many of them have been validated by the previous studies [38, 
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64, 65]. For example, we found a key mouse fetal liver development regulator Atf4 
[65], which exhibits a growth pattern (Fig.  3F), was only identified by TDEseq as the 
top-ranked significant temporal expression gene (p-value < 1e − 300, FDR = 0), while 

Fig. 3  The time-course scRNA-seq data analysis for mouse fetal liver development. A The experimental 
design of mouse fetal liver sample collection. The scRNA-seq data were assayed on the FACS isolated cell 
populations, consisting of seven liver developmental stages, i.e., E10.5, E11.5, E12.5, E13.5, E14.5, E15.5, and 
E17.5. B The quantile–quantile (QQ) plot shows the type I error control under the permutation strategy. The 
well-calibrated p-values will be expected laid on the diagonal line. The p-values produced by Linear TDEseq 
(orange), Mixed TDEseq (plum), and tradeSeq (green) are reasonably well-calibrated, while those from 
ImpulseDE2 (blue) are overly conservative. C The power comparison of temporal expression gene detection 
across a range of FDR cutoffs. The TDEseq methods were highlighted using solid lines, while other methods 
were represented by dashed lines in the plots. Both versions of TDEseq display the powerful performance of 
temporal expression gene detection. D The heatmap demonstrates the pattern-specific temporal expression 
genes that were identified by Linear TDEseq. Gene expression levels were log-transformed and were 
standardized using z-scores for visualization. The top-ranked temporal expression genes identified by Linear 
TDEseq show distinct four patterns. E The Venn diagram shows the overlapping of the temporally expressed 
genes (FDR ≤ 0.05) identified by Linear TDEseq, tradeSeq, or ImpulseDE2. Those method-specific unique 
genes were enriched in the number of GO terms (NGO, BH-adjusted p-value < 0.05). The temporal expression 
genes detected by Linear TDEseq were enriched more GO terms. F The UMAP shows two temporal 
expression genes, i.e., Atf4 and Itgb1, which were uniquely identified by Linear TDEseq. G The bubble plot 
demonstrates the significant GO terms enriched by pattern-specific temporal expression genes, which were 
identified by Linear TDEseq. The recession-specific temporal expression genes enriched more significant GO 
terms, whereas trough-specific temporal expression genes were not enriched in any GO terms. The Wilcoxon 
test was excluded from this comparison due to its poor performance in simulations. DESeq2 and edgeR were 
excluded from this comparison due to only one or two samples at each time point. FDR denotes the false 
discovery rate
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not being detected by tradeSeq (p-value = 0.240, FDR = 0.275) and ImpulseDE2 
(p-value = 0.243, FDR = 0.079). Besides, Itgb1 displays the growth pattern (bi-plateau 
pattern; Fig.  3F) for liver microstructure establishment during the embryonic pro-
cess, which was only identified by TDEseq as the top-ranked significant temporal 
expression gene (p-value < 1e − 300, FDR = 0), while not being detected by tradeSeq 
(p-value = 0.272, FDR = 0.309). These genes uniquely detected by Linear TDEseq were 
enriched in the liver embryo process, particularly the cell cycle process (GO:0022402, 
BH-adjusted p-value = 1.33e − 5) and embryo development (GO:0009790; BH-adjusted 
p-value = 0.0361), whereas the temporal expression genes uniquely detected by tradeSeq 
or ImpulseDE2 were not enriched in liver development-related gene sets (Fig. 3E), and 
ImpulseDE2 wrongly detected the peak or trough pattern genes as growth pattern genes 
(Additional file  2: Fig. S14E). In addition, the enrichment analysis of unique temporal 
expression genes from Mixed TDEseq and Linear TDEseq showed similar results (Addi-
tional file 2: Fig. S14F).

Next, we performed GSEA on the pattern-specific temporal expression genes identi-
fied by Linear TDEseq, to examine the four pattern-specific functions during hepatic 
cell differentiation (the “Materials and methods” section). Specifically, with an FDR of 
5%, a total of 1,266 growth-specific temporal expression genes were enriched in a total 
of 685 GO terms. Notably, these growth-related genes were significantly enriched in 
liver function-associated pathways, reflecting the mature process from hepatoblasts 
to hepatocytes. For example, almost all of these enriched terms were associated with 
metabolic processes, biosynthetic processes, or organic substance transport, with key 
functions attributed to mature hepatocytes (Fig.  3G), particularly the fatty acid meta-
bolic process (GO:0006631; BH-adjusted p-value = 4.99e − 37), lipid catabolic process 
(GO:0016042; BH-adjusted p-value = 3.34e − 26), and secondary alcohol metabolic 
process (GO:1902652; BH-adjusted p-value = 8.06e − 16), which are the main functions 
of mature hepatocytes. On the other hand, a total of 7,146 recession-specific tempo-
ral expression genes were enriched in 1,000 GO terms. Interestingly, these GO terms 
were related to embryo or tissue development (Fig.  3G), such as embryonic morpho-
genesis (GO:0048598; BH-adjusted p-value = 1.04e − 3) and mesoderm morphogenesis 
(GO:0048332; BH-adjusted p-value = 4.05e − 3). This finding suggests the involvement 
of an embryo development process, possibly linked to organogenesis occurring at the 
E14.5 stage [66]. Furthermore, these genes may signify the loss of embryonic cell identity 
in mature hepatocytes.

Finally, since the scRNA-seq data showed intertwined cells among time points (Addi-
tional file 2: Fig. S14G), we further applied TDEseq with the pseudotime as inputs. As a 
result, we observed both versions of TDEseq generated comparable results with trade-
Seq and ImpulseDE2 for temporal expression gene detection (Additional file  2: Fig. 
S14H). Besides, these genes demonstrated distinct temporal expression patterns for 
TDEseq (Additional file 2: Fig. S14I).

Taken together, we found both versions of TDEseq yields similar results in terms of 
type I control rate and temporal expression gene detection when scRNA-seq data exhib-
its small individual heterogeneity over time points. Therefore, considering the compu-
tation burden for large-scale scRNA-seq data applications, we recommended Linear 
TDEseq in a small individual heterogeneity scenario.
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TDEseq detects the epithelial cell evaluation‑associated temporal expression genes 

of time‑course scRNA‑seq data

We again applied TDEseq to detect temporal expression genes altered in human meta-
static lung adenocarcinoma (LUAD) cancer [14] (the “Materials and methods” section). 
Here, we were primarily interested in epithelial cells of this time-course scRNA-seq data, 
which involves a total of five distinct evolution stages, i.e., stage normal, stage I, stage 
II, and stage III and stage IV (Additional file 3: Table S1). Since stage II contains a rela-
tively small number of cells (i.e., 119 cells) compared with other stages, we excluded this 
stage, resulting in a total of 3,703 cells from 11 samples in the normal stage; 5,651 cells 
from 8 samples in stage I; 1,500 cells from 2 samples in stage III; and 3,053 cells from 7 
samples in stage IV (Fig. 4A). We noticed that these scRNA-seq datasets contain sample-
level variations across stages (iLISI = 0.10; Additional file  2: Fig. S15A). Therefore, we 
performed both versions of TDEseq in such a scenario.

To do so, we first examined the ability of temporal gene detection methods in 
terms of type I error  controls. As we expected, when large sample-level variations 
were involved, Mixed TDEseq and Linear TDEseq produced well-calibrated p-values. 
The other methods tradeSeq, ImpulseDE2, DESeq2, and edgeR generated the inflated 
p-values (Fig. 4B). Either in terms of temporal expression gene detection (Fig. 4C) or 
in terms of temporal expression pattern detection (Additional file 2: Fig. S15B), both 
versions of TDEseq outperformed other methods across a range of FDR cutoffs. Spe-
cifically, Mixed TDEseq identified a total of 11,919 temporally expressed genes at an 
FDR of 5%, which displayed four temporal distinct patterns (Fig.  4D), while Linear 
TDEseq detected 12,263 temporal genes, tradeSeq detected 9,562 temporal genes, 
ImpulseDE2 identified 8,440 temporal genes, DESeq2 detected 5,081 temporal genes 
and edgeR detected 2,565 temporal genes (Additional file 3: Table S5).

To validate whether the temporal expression genes were related to epithelial cell evalu-
ation, we performed the following two lines of enrichment analyses. We examined the 
temporal expression genes detected by Mixed TDEseq but not detected by tradeSeq, 
ImpulseDE2, DESeq2, or edgeR, finding many genes were associated with LUAD evo-
lution. For example, a LUAD driver MAP2K1 [68] was detected by Mixed TDEseq as 
significant temporal expression genes that gradually upregulated during LUAD progres-
sion (p-value = 1.17e − 7, FDR = 0), while not detected by ImpulseDE2 (p-value = 0.553, 
FDR = 0.105); besides, another LUAD drivers KRAS [68] was also detected by Mixed 
TDEseq as significant temporal expression genes that gradually upregulated dur-
ing LUAD progression (p-value = 4.05e − 12, FDR = 0), while not detected by trade-
Seq (p-value = 0.089, FDR = 0.356). Furthermore, we performed pairwise comparisons 
of Mixed TDEseq vs other methods. The result shows the unique temporal expression 
genes from Mixed TDEseq were enriched in GO terms that related to the LUAD pro-
gression (Fig. 4E), such as signal transduction by p53 class mediator [69] (GO:0072331; 
BH-adjusted p-value = 1.09e − 4) and cellular response to hypoxia [70] (GO:00071456; 
BH-adjusted p-value = 4.91e-3). On the other hand, we curated a total of 136 LUAD-
related genes from the ONGene database [67] (Additional file 3: Table S6) to highlight 
the importance of temporal expression genes detected by different methods. As a result, 
we found that the temporal expression genes from Mixed TDEseq were enriched more 
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genes than other methods across a range of top genes (Fig. 4F). Notably, though Linear 
TDEseq detected more temporal genes, the temporal genes uniquely identified by Mixed 
TDEseq were enriched in more biologically meaningful GO terms (Additional file 2: Fig. 
S15C), e.g., epithelial cell migration (GO:0010631; BH-adjusted p-value = 0.048).

Finally, we performed GSEA on the pattern-specific temporal expression genes to 
examine the four pattern-specific functions during LUAD progression. Specifically, 

Fig. 4  The time-course scRNA-seq data analysis for human metastatic LUAD. A The experimental design of 
human lung sample collection. The scRNA-seq data were assayed by 10X Genomics Chromium protocols, 
consisting of 4 LUAD evaluation stages, i.e., normal, stage I (early LUAD), stage III (advanced LUAD), and stage 
IV (lymph node metastasis). B The quantile–quantile (QQ) plot shows the type I error control under the 
permutation strategy. The well-calibrated p-values will be expected laid on the diagonal line. The p-values 
produced by Linear TDEseq (orange) and Mixed TDEseq(plum) are reasonably well-calibrated, while those 
from tradeSeq (green), ImpulseDE2 (blue) edgeR (dark green), and DESeq2 (brown) are inflated. C The power 
comparison of temporal expression gene detection across a range of FDR cutoffs. The TDEseq methods 
were highlighted using solid lines, while other methods were represented by dashed lines in the plots. Both 
versions of TDEseq display the powerful performance of temporal expression gene detection. D The heatmap 
demonstrates the pattern-specific temporal expression genes that were identified by Mixed TDEseq. 
Gene expression levels were log-transformed and were standardized using z-scores for visualization. The 
top-ranked temporal expression genes identified by Mixed TDEseq show distinct four patterns. E The Venn 
diagram shows the overlapping of the temporally expressed genes (FDR ≤ 0.05) in pairwise comparisons 
between Mixed TDEseq and tradeSeq, ImpulseDE2, DESeq2, and edgeR. Those method-specific unique genes 
were enriched in the number of GO terms (NGO, BH-adjusted p-value < 0.05). Many more GO terms were 
enriched in the Mixed TDEseq-unique temporal expression genes than in other methods. F The proportion of 
enrichment for the detected temporal expression genes. The given gene set (136 genes) was collected from 
ONGene [67] database. Mixed TDEseq enriched more temporal genes than other methods across a range of 
top-number cutoffs. G The bubble plot demonstrates the significant GO terms enriched by pattern-specific 
temporal expression genes, which were identified by Mixed TDEseq. The Wilcoxon test was excluded from 
this comparison due to its poor performance in simulations. FDR denotes the false discovery rate
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with an FDR of 5%, Mixed TDEseq detected a total of 3,249 growth-specific temporal 
expression genes, which were enriched in 812 GO terms (Fig. 4G). The top GO terms 
contained many tumor proliferation or metastasis-associated pathways, such as signal 
transduction by p53 class mediator [69] (GO:0072331; BH-adjusted p-value = 1.57e − 6) 
and regulation of canonical Wnt signaling pathway [71] (GO:0060828; BH-adjusted 
p-value = 2.81e − 3), suggesting epithelial cells proliferation towards tumor cells; Mixed 
TDEseq identified a total of 3,671 recession-specific temporal expression genes, which 
were enriched in 276 GO terms (Fig. 4G). Those genes would be expected enriched in 
normal lung function terms as a result of the process of low-grade tumors develop-
ing into high-grade tumors. Indeed, the top GO terms contained lung development 
(GO:0030324; BH-adjusted p-value = 8.26e − 3) and lamellar body (GO:0042599; BH-
adjusted p-value = 4.08e − 4), suggesting the proliferation process of epithelial cells 
towards tumor cells. TDEseq detected a total of 2,526 peak-specific temporal genes, 
which were enriched in a total of 244 GO terms. Notably, those peak genes were further 
enriched in hypoxia pathways, such as response to oxidative stress (GO:0006979; BH-
adjusted p-value = 1.19e − 2), as well as epithelium migration (GO:0090132; BH-adjusted 
p-value = 4.56e − 2). This evidence further validated the fact that hypoxia occurs in the 
intermediate stages of LUAD promoting lymphatic metastasis [70].

Taken together, Mixed TDEseq can address time-course scRNA-seq data with rela-
tively large sample-level variations over time points. However, one of the concerns 
regarding whether batch effects removal can improve the identification of temporal 
expression genes. To do so, we performed the temporal gene detection analysis using 
Mixed TDEseq either with or without batch correction. We found that Mixed TDE-
seq can generate well-calibrated p-values in both cases (Additional file  2: Fig. S15D). 
In terms of temporal expression gene detection, Mixed TDEseq alone would produce 
a more powerful performance than that with batch correction across a range of FDR 
cutoffs (Additional file 2: Fig. S15E). The slightly poor performance of Mixed TDEseq 
coupled with scMerge may be due to the over-correction of sample-level variations. 
Furthermore, we observed the temporal expression genes uniquely identified by Mixed 
TDEseq were significantly enriched in LUAD-related pathways (Additional file  2: Fig. 
S15F), suggesting Mixed TDEseq well-addressed time-course scRNA-seq data with rela-
tively large sample-level variations.

TDEseq detects NK cell response temporal genes of time‑course scRNA‑seq data

We finally applied TDEseq to detect the temporal expression changes of natural killer 
(NK) cells from 21 severe/critical COVID-19 patients [9] (the “Materials and methods” 
section). This time-course scRNA-seq dataset contains 19 time points (Additional file 3: 
Table  S1), which could be grouped into five developmental stages (Fig.  5A), i.e., stage 
I (consisting of 930 cells from 3 patients), stage II (939 cells from 4 patients), stage III 
(893 cells from 3 patients), stage IV (768 cells from 3 patients), stage V (1,000 cells from 
8 patients). Since these scRNA-seq datasets contain large sample-level variations across 
different stages (iLISI = 0.11; Fig.  5B), presumably due to a large number of heteroge-
neous patients involved in this study. To do so, following the results from simulation 
studies, we first carried out Mixed TDEseq with or without the batch effect removal 
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procedure using scMerge [52], since tradeSeq and ImpulseDE2 have originally built-in 
variables to control sample-level variations. For a fair comparison, we additionally incor-
porated the sample indicator variables as covariates in both tradeSeq and ImpulseDE2 
models.

Fig. 5  The time-course scRNA-seq data analysis for the NK cell response to SARS-COV-2 infection. A The 
experimental design of SARS-COV-2 infection samples from PBMC. The scRNA-seq data were assayed by 
10X Genomics Chromium protocols, consisting of 5 stages, i.e., stage I (4–8 days), stage II (10–13 days), 
stage III (19–24 days), stage IV (28–34 days), and stage V (110–123 days). B The UMAP demonstrates cell 
alignment from different stages. These scRNA-seq datasets display strong batch effects over heterogeneous 
samples (iLISI = 0.10, left panel). The cells are well-aligned after performing integrative analysis using 
scMerge (iLISI = 0.36, right panel). C The quantile–quantile (QQ) plot shows the type I error control under the 
permutation strategy. The well-calibrated p-values will be expected laid on the diagonal line. The p-values 
produced by Mixed TDEseq (plum), Mixed TDEseq coupled with scMerge (purple), and tradeSeq (green) 
are reasonably well-calibrated, while those from ImpulseDE2 (blue) are overly conservative, and those from 
edgeR (dark green) and DESeq2 (brown) are inflated. D The power comparison of temporal expression gene 
detection across a range of FDR cutoffs. The TDEseq methods were highlighted using solid lines, while other 
methods were represented by dashed lines in the plots. TDEseq coupled with scMerge is more powerful in 
identifying more temporal expression genes than other comparative methods. E The heatmap demonstrates 
the pattern-specific temporal expression genes that were identified by Mixed TDEseq coupled with scMerge. 
Gene expression levels were log-transformed and then standardized using z-scores for visualization. The 
top-ranked temporal expression genes identified by Mixed TDEseq coupled with scMerge show distinct 
four patterns. F The Venn diagram shows the overlapping of the temporally expressed genes (FDR ≤ 0.05) 
identified by Mixed TDEseq coupled with scMerge, tradeSeq, DESeq2, and edgeR. ImpulseDE2 was excluded 
because it only identified 3 temporal DE genes. Those method-specific unique genes were enriched in the 
number of GO terms (NGO, BH-adjusted p-value < 0.05). The temporal expression genes detected by Mixed 
TDEseq coupled with scMerge enriched more GO terms. G The bubble plot demonstrates the significant 
GO terms enriched by pattern-specific temporal expression genes, which were identified by Mixed TDEseq 
coupled with scMerge. The Wilcoxon test was excluded from this comparison due to its poor performance in 
simulations. FDR denotes the false discovery rate
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As we expected, in terms of type I error control, Mixed TDEseq and Mixed TDEseq 
coupled with scMerge (Mixed TDEseq + scMerge) can produce well-calibrated p-val-
ues (Fig. 5C). Besides, in terms of temporal expression gene detection, Mixed TDEseq 
coupled with scMerge detected more temporal expression genes than Mixed TDEseq 
across a range of FDR cutoffs (Fig. 5D, Additional file 3: Table S7). In addition, with a 
range of FDR cutoffs Mixed TDEseq + scMerge identified more pattern-specific tem-
poral genes (Additional file  2: Fig. S16A), which displayed four temporal distinct pat-
terns (Fig. 5E). Moreover, the temporal expression genes that were uniquely detected by 
Mixed TDEseq + scMerge were enriched in the defense response to the virus GO term 
(GO:0051607) [72] (Additional file 3: Table S8; Additional file 2: Fig. S16B). Therefore, 
we performed the Mixed TDEseq + scMerge in the following analysis.

Notably, many top temporal expression genes uniquely detected by Mixed TDE-
seq coupled with scMerge were highly related to the NK cell response to COVID-19 
infection. For example, GNLY which highly expressed in healthy people than patients 
with viral infections [73] was identified by Mixed TDEseq + scMerge as a signifi-
cant temporal expression gene (p-value = 2.93e − 5, FDR = 0.0; Additional file  2: Fig. 
S16C), while not being detected by tradeSeq ( p-value = 0.377, FDR = 1.0), Impul-
seDE2 (p-value = 0.994, FDR = 1), DESeq2 (p-value = 0.028, FDR = 0.051), or edgeR 
(p-value = 0.015, FDR = 0.093). Another example is the ILF3 gene which plays an 
important role in the establishment of type I IFN antiviral program [74] was uniquely 
identified by Mixed TDEseq + scMerge (p-value = 2.67e − 4, FDR = 1.16e − 3; Addi-
tional file  2: Fig. S16C) but did not detect by tradeSeq (p-value = 0.746, FDR = 1.0), 
ImpulseDE2 (p-value = 0.952, FDR = 1.0), DESeq2 (p-value = 0.684, FDR = 0.712), or 
edgeR (p-value = 0.904, FDR = 0.892). This evidence supported that the temporal DE 
genes detected by Mixed TDEseq + scMerge were more specific to the SARS-COV-2 
response biological process. Consequently, we further performed the GSEA on the tem-
poral expression genes uniquely detected by Mixed TDEseq + scMerge, enriched in the 
immune response to virus infection pathways such as T cell activation (GO:0042110; 
BH-adjusted p-value = 0.027), and response to interleukin-12 (GO:0070671; BH-
adjusted p-value = 0.029) [75] (Fig. 5F).

Finally, we performed GSEA on the pattern-specific temporal expression genes. 
Specifically, with an FDR of 5%, Mixed TDEseq + scMerge detected a total of 654 
growth-specific temporal expression genes, which were significantly enriched in cell 
cycle-associated pathways, such as mitotic G1/S transition checkpoint (GO:0044819; 
BH-adjusted p-value = 7.81e − 3). It was shown that NK cells showcased upregulated 
patterns of cell cycle and division after SARS-COV-2 infection [76], also enriched in 
the cellular response to interleukin-12 (GO:0071349; BH-adjusted p-value = 1.33e − 2), 
because IL-12 promotes NK cell proliferation at the end stage of SARS-COV-2 infec-
tion [77]; Mixed TDEseq + scMerge detected a total of 809 recession-specific temporal 
expression genes, which were enriched in the immune response to the virus as a result 
of SARS-COV-2 infection. Indeed, most of the top GO terms were immune response-
associated pathways, such as defense response to the virus (GO:0051607; BH-adjusted 
p-value = 1.76e − 29) and type I interferon signaling pathway (GO:0060337; BH-adjusted 
p-value = 1.81e − 28) which promotes NK cell expansion during viral infection [78]; 
Mixed TDEseq + scMerge detected a total of 567 peak-specific temporal expression 
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genes, which were enriched in oxidative phosphorylation (GO:0006119; BH-adjusted 
p-value = 0.025) and mitochondrial gene expression (GO:0140053; BH-adjusted 
p-value = 4.11e − 2), consistent with that long period of activation enhances effector 
functions in the NK cells and upregulated OXPHOS [79, 80] (Fig. 5G).

Taken together, we found Mixed TDEseq coupled with scMerge performed effec-
tively in mitigating substantial sample-level variations (i.e., batch effects), which were 
presented in time-course scRNA-seq data. However, the batch correction methods do 
introduce extra variations into the data. Therefore, a more comprehensive assessment of 
the performance of temporal gene testing is required to determine whether these varia-
tions are advantageous, particularly for sparse scRNA-seq data [29].

Discussion
In this paper, we have presented TDEseq, a non-parametric statistical method designed 
for identifying temporal expression patterns in time-course single-cell RNA sequenc-
ing (scRNA-seq) data. By incorporating shape-constrained spline models, TDEseq typi-
cally enables the detection of four specific temporal patterns, i.e., growth, recession, 
peak, or trough. Two versions of TDEseq (i.e., Mixed TDEseq and Linear TDEseq) were 
developed to accommodate different real data application scenarios. Specifically, Mixed 
TDEseq is designed for analyzing the time-course scRNA-seq data with heterogeneous 
samples and large sample-level variations (i.e., batch effects) across time points, such as 
cancer evolution, while Linear TDEseq is tailored for handling the data with small heter-
ogeneous samples, such as cell differentiation. With extensive simulations and four real 
data applications, TDEseq generated well-calibrated p-values and demonstrated power-
ful detection of temporal expression genes, highlighting its robustness and reliability in 
time-course scRNA-seq data analysis.

Particularly, the statistical modeling of TDEseq is different from tradeSeq and 
ImpluseDE2. TDEseq incorporates either I-splines [35] or C-splines [36] to model 
temporal expression patterns, and builds upon linear additive mixed models (the 
“Materials and methods” section) to characterize the dependent cells within an indi-
vidual. TDEseq was originally designed for time-course scRNA-seq studies, in which 
cells for each time point were not largely intertwined between adjacent time points. 
In contrast, tradeSeq [31] employs a generalized additive model framework to model 
gene expression profiles of pseudotime for different lineages, while ImpluseDE2 [25] 
relies on a descriptive impulse function [81] to distinguish permanently from tran-
siently upregulated or downregulated genes over multiple time points. As a result, 
we observed that the p-values from tradeSeq and ImpluseDE2 under permuted null 
were not well-calibrated even to control the sample-level variations as covariates, 
presumably due to its inability to model dependent cells within an individual rather 
than independent cells. We also found that the power of tradeSeq or ImpluseDE2 was 
lower than that of TDEseq (Additional file 2: Fig. S7), likely due to its suitability for 
detecting a distinct type of differential expression patterns along a lineage or between 
lineages. In addition, we also developed a linear version of TDEseq to ensure more 
scalable computation for large-scale scRNA-seq data but with small batch effects. As 
a result, we found the performance of Linear TDEseq was comparable with Mixed 
TDEseq in small sample heterogeneity (Fig.  1C and 1F). Besides, we found two 
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pseudo-bulk aggregation methods, DESeq2 and edgeR, performed well in both high 
UMI counts and small number of cells per sample scenarios (Additional file  2: Fig. 
S3D and S4C). However, the pseudo-bulk aggregation methods potentially generated 
biased inference and underpowered results due to the cells from the same individual 
are not statistically independent [82]. Finally, we found TDEseq demonstrates power-
ful performance in capturing the temporal expression patterns with the intertwined 
nature of cells across time points, particularly in the scenarios characterized by a 
modest proportion of intertwined cells between time points. Nevertheless, with the 
case where a substantial proportion of cells exhibit intertwined across time points, we 
suggest the pseudotime-based methods are used for detecting temporal expression 
genes. Exploration of the extent of cell intertwining could be pursued through trajec-
tory inference or leveraging existing biological insights.

Based on the aforementioned observations, the sample-level variation (i.e., batch 
effect) plays a crucial role in the identification of temporal expression genes. However, 
the removal of this unwanted variation in time-course scRNA-seq data poses signifi-
cant challenges [83, 84], and there are currently no efficient criteria to measure these 
effects. Fortunately, we provide a solution called TDEseq, which can effectively handle 
such unwanted variation across multiple time points in time-course scRNA-seq stud-
ies. In contrast, tradeSeq and ImpluseDE2 directly model gene expression raw counts 
and incorporate the covariates to control the individual heterogeneity. However, this 
approach leads to a significant loss in power for detecting temporal expression genes 
and inevitably increases the computational burden. This is a reason why TDEseq was 
designed to model the transformed gene expression level (e.g., log-normalized or var-
iance stabilizing transformation) rather than the count nature of raw gene expression 
data, allowing for scRNA-seq data preprocessing prior to performing TDEseq. Fur-
thermore, even in the presence of large individual heterogeneity in scRNA-seq data, 
TDEseq, when coupled with batch removal methods, offers a promising approach to 
identifying temporal expression genes. In this study, we evaluated five batch effects 
removal methods. The results indicated that scMerge displays a more powerful per-
formance than the other four methods. However, it is worth noting that the simulated 
scRNA-seq data may not fully mimic real-time-course scRNA-seq data. Therefore, 
alternative batch removal methods could also be applied to TDEseq analysis, espe-
cially a well-designed batch correction method specifically tailored for time-course 
scRNA-seq data, which would greatly enhance the performance of TDEseq.

Finally, several potential extensions for TDEseq can enhance its capabilities. Pres-
ently, TDEseq is designed to identify four distinct patterns—growth, recession, peak, 
and trough. In our efforts to broaden the scope of temporal expression patterns, we 
explored the bi-plateau pattern. While TDEseq demonstrated powerful performance 
in this pattern, it faced challenges in handling multi-modal temporal expression pat-
terns. Besides, we observed that Mixed TDEseq detected weak peak or weak trough 
patterns as growth or recession patterns, while Linear TDEseq detected weak peak or 
weak trough patterns as peak or trough patterns making the difficult determination 
of temporal expression patterns. This would be a meaningful exploration in future 
research. Furthermore, the parameter inference of LAMM, the underlying model of 
TDEseq, becomes notably challenging when the number of cells is large (number of 
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cells > 6,000). To address this issue, it would be beneficial to incorporate more effi-
cient algorithms that reduce the computation burden. Alternatively, a down-sampling 
strategy or a pseudo-cell [2, 85] strategy could be employed for each time point when 
dealing with an extremely large number of cells.

Overall, TDEseq is well-suited to analyzing time-course scRNA-seq datasets. Thus, 
it can be flexibly deployed to investigate the important temporal expression genes and 
their potential roles during growth, development, or disease progression.

Conclusions
In this paper, we present an algorithm TDEseq for the identification of temporal expres-
sion genes in time-course scRNA-seq data. To detect the temporal expression genes, we 
propose a linear additive mixed model that relies on shape-constrained spline. TDEseq 
accounts for the correlated nature of cells within individuals and demonstrates robust-
ness in the presence of cellular heterogeneity and sample variations. With and extensive 
and comprehensive evaluation on various datasets, including both synthetic and real 
scRNA-seq data, TDEseq has shown superior performance against other methods such 
as tradeSeq, ImpulseDE2, Wilcoxon test, DESeq2, and edgeR. Overall, TDEseq stand as 
a powerful tool enabling the precise identification of temporal expression genes in time-
course scRNA-seq data and facilitating a deeper understanding of the dynamic biologi-
cal processes.

Materials and methods
Models and algorithm

As the aforementioned overview, TDEseq typically models the log-normalized gene 
expression levels along the multiple time points as inputs. Subsequently, TDEseq is per-
formed to identify temporal expression genes that display one of four possible patterns 
(i.e., growth, recession, peak, or trough). Specifically, we assume the transformed gene 
expression level ygji(t) for gene g , individual j and cell i at time point t is,

where wgji is the cell-level or time-level covariate (e.g., cell size, or sequencing read 
depth), αg is its corresponding coefficient; ug is a random vector to account for the varia-
tions from heterogeneous samples, i.e.,

where �N×N is a block diagonal matrix with a total of M block matrices, in which all 
elements of �nj×nj are ones; nj is the number of cells for the individual or replicate j , and ∑M

j=1 nj = N  ; egji is a random effect, which is an independent and identically distributed 
variable that follows a normal distribution with mean zero and variance σ 2

g  to account 
for independent noise, i.e.,

(1)
ygji(t) = w

′

gjiαg +
∑K

k=1
sk (t)βgk + ugji + egji , i = 1, 2, · · · , nj; g = 1, 2, · · · ,G; t = 1, 2, · · · ,T , j = 1, . . . ,M.

ug ∼ MVN
(
0, σ 2

gu�N×N

)
.

eg =
(
eg11, · · · , egMnM

)′
∼ MVN (0, σ 2

g IN×N ).
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Where sk(t) is a smoothing spline basis function to characterize the temporal 
gene expression patterns. The regression function is estimated by a linear combi-
nation of the basis function with constrained. In particular, the I-splines defined as 
Ikl (t) =

∫ t
ξ1
Mk

l (v)dv [35] were used to characterize both growth and recession patterns, 
while C-splines as Ck

l (t) =
∫ t
ξ1
Ikl (v)d(v) [36], taking integral operation of I-splines, were 

used to characterize both peak and trough patterns, where the order 1  M-splines are 
computed as,

The order k M-splines are computed as.

Where the number of M-splines basis functions is k + l ; l  is the number of grid 
points; and k is the order of splines; we define knots 1 = ξ1 < · · · < ξk+l = T  . With 
the spline functions s1(t), . . . , sK (t) , we infer the parameters of Eq. 1 for gene g  , which 
could be translated into estimating the parameters of the equation,

where W0 is the linear part of the spline basis function, and S is the nonlinear part of the 
spline basis function which is an N × (k + l) matrix with columns s1(t), . . . , sk+l(t) ; k is 
the number of knots of the spline functions; for the growth or recession patterns, S was 
assigned by I-spline basis functions and W0 = [1N ] . For both peak and trough patterns, 
S was assigned by the C-spline basis vectors and W0 = [1N , t] , where t = (t1, . . . , tN )′ 
represents the time points. 1N is an all-ones vector; W is a covariates matrix; αg , αg0 , 
and βg are the corresponding regression coefficients. Hence, the complete likelihood 
L(yg , t ,W0,W|αg0,αg ,βg ) of the transformed gene expression data yg for gene g at a 
time, t is:

Where µg = E

(
yg

)
= W0αg0 +Wαg + Sβg is the mean and Kg =

σ 2
gu

σ 2
g
�N×N + IN×N 

is the covariance matrix; MVN (•) represents multivariate normal distribution. For 
any pattern constraints, we assume a linearly independent set of S,W0 and W 
together as a closed convex cone:

The parameter estimation of TDEseq models is notoriously difficult, as it involves 
the calculation of a matrix determinant and a matrix inversion of Kg . To enable scala-
ble estimation and inference for TDEseq models, we have developed an efficient infer-
ence algorithm that: 1) performs a block diagonal matrix (one individual as an all-one 

M1
l (t) =

{
1

ξl+1−ξl
, ξl ≤ t ≤ ξl+1.

0, otherwise

Mk
l (t) =

{
k[(t−ξl)M

k−1
l (t)+(ξl+k−t)Mk−1

l+1 (t)]

(k−1)(ξl+k−ξl)
, ξl ≤ t ≤ ξl+1.

0, otherwise

E

(
yg

)
= Wαg + [W0S][

αg0

βg
].

L
(
yg , t ,W0,W|αg0,αg ,βg

)
= MVN

(
µg , σ

2
g Kg

)
.

(2)∇ =

{
µg ∈ R

N : µg = E

(
yg

)
= W0αg0 +Wαg + Sβg ,βg ≥ 0

}
.
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block matrix) eigen-decomposition (Additional file  1: Supplementary Text), 
i.e.,  Kg =

σ 2
gu

σ 2
g
�N×N + IN×N = UgU

′

g ; 2) transforms the variables of Eq.  2 

as: ỹg = U
−1
g yg , W̃0 = U

−1
g W0, W̃ = U

−1
g W , and , S̃ = U

−1
g S resulting in

and the following new closed convex cone:

To efficiently estimate the parameter of an ordinary linear regression model (Eq.  3) 
with cone constraint (Eq. 4), we developed a cone projection algorithm following previ-
ous work [41]. With the estimated parameters, we further examined the gene expression 
pattern-specific parameter βg , which follows a mixture of Beta distributions [86] (Addi-
tional file  1: Supplementary Text). Finally, TDEseq returns p-values for four temporal 
expression patterns, i.e., growth, recession, peak, and trough.

The choice of parameter knots in TDEseq models

The number of knots can significantly influence the smoothness and flexibility of the 
resulting curve [87]. Increasing the number of knots in general results in a more adapt-
able spline, enhancing its ability to capture intricate and irregular data patterns. None-
theless, excessive flexibility in a spline can lead to overfitting, causing it to closely mimic 
noise in the data instead of representing the fundamental trend. Conversely, using too 
few knots can lead to underfitting, resulting in an overly smooth spline that misses cru-
cial data features. Particularly, in this paper, we found that temporal gene detections are 
typically more robust with varying the number of knots across a range of FDR cutoffs 
(Additional file 2: Fig. S17). TDEseq performed well when the number of knots k equals 
the number of time points. Therefore, we set the number of knots of TDEseq as the 
number of time points by default.

Linear TDEseq

Linear TDEseq is a reduced special model of Mixed TDEseq (Eq. 1), which drops the 
random effect term ugji , typically to model only one individual involved in each stage or 
small individual heterogeneity across all stages in time-course scRNA-seq data. Specifi-
cally, we assume the log-normalized gene expression level ygi(t) for gene g and cell i at 
time point t can be modeled as,

As a result, the parameter estimates of Eq. 5 could fall into Eqs. 3 and 4, where the 
cov

(
yg

)
= σ 2

g IN×N . Therefore, we can directly apply the cone projection algorithm to 

estimate 
(
αg0,αg ,βg , σ

2
g

)
 without iteration procedure. Compared with Mixed TDEseq, 

Linear TDEseq is much more efficient in analyzing large-scale time-course scRNA-seq 
data.

(3)E

(
ỹg

)
= W̃0αg0 + W̃αg + S̃βg .

(4)∇ =

{
µ̃g ∈ R

N : µ̃g = W̃0αg0 + W̃αg + S̃βg ,βg ≥ 0
}
.

(5)
ygi(t) = w

′

giαg+
∑K

k=1
sk(t)βgk+egi, i = 1, 2, · · · ,N ; g = 1, 2, · · · ,G; t = 1, 2, · · · ,T
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Testing temporal expression patterns

Testing whether a gene shows a temporal expression pattern over all time points can 
be translated into testing the null hypothesis: H0 : βg = 0 . The statistical power of such 
a hypothesis test will depend on how well the pattern-constrained spline function fits 
the observed temporal expressions. We, therefore, compute p-values for growth, reces-
sion, peak, or trough (each at a time), thereby combining these four p-values through the 
Cauchy combination rule [45]. Specifically, we first convert each of the four p-values into 
a Cauchy statistic and then aggregate the four Cauchy statistics through summation and 
convert the summation back to a single p-value based on the standard Cauchy distribu-
tion (Additional file 1: Supplementary Text). After obtaining m p-values across m genes, 
we computed the false discovery rate (FDR) through the permutation strategy.

Determining one of the temporal expression patterns for each gene

A primary goal of TDEseq is assigning a suitable expression pattern of four given patterns 
(i.e., growth, recession, peak, or trough) for each gene. Specifically, for the linear version 
of TDEseq, TDEseq calculated the Akaike information criterion (AIC) [88] for gene g:

where k is the number of parameters and Lgp is the likelihood for gene g and pattern p . 
For Mixed TDEseq, the marginal AIC is not an asymptotically unbiased estimator of the 
AIC and favors smaller models without random effects, but conditional AIC induces a 
bias that can lead to the selection of any random effect not predicted to be exactly zero 
[89]. Therefore, we used B-statistics to determine the temporal expression patterns for 
gene g:

where SSRgp1 is the sum of squared residuals with parameters estimated via cone projec-
tion algorithm, and SSRgp0 is the sum of squared residuals under the null hypothesis.

Simulations

To make our simulations as realistic as possible, we simulated time-course scRNA-seq 
data using the Splatter package [46], in which the parameters were inferred from real 
LUAD scRNA-seq data [14]. Splatter simulated scRNA-seq data by specifying the num-
ber of cells (using batchCells parameter) and the number of time points (using group.
prob parameter). Specifically, in null simulations, we set the probability of the differen-
tial expression genes de.prob = 0 and the effect of time point-specific size parameter de.
facloc = 0 to denote the non-temporal expression gene across all stages. We simulated 
200 cells measured by 10,000 genes for each sample, to examine the performance of type 
I error control.

In power simulations, we varied the number of time points, the number of cells per 
sample, the time point-specific effect size de.facloc, and expected UMI counts lib.loc 
(Additional file 3: Table S2). To do so, we set the probability of temporal expression gene 

AICgp = 2k − 2log
(
Lgp

)
, p = 1, 2, 3, or 4.

Bgp =
SSRgp0 − SSRgp1

SSRgp0
, p = 1, 2, 3, or 4.
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in a group de.prob = 0.3, the number of stages as 5, the time point-specific effect size 
parameter de.facloc = 0.4, and the expected UMI count lib.loc = 9.4 as the baseline simu-
lation scenario. We then varied the number of time points to be either 4, 5, or 6 (3 sam-
ples/replicates per time point); the number of cells to be either 100, 200, or 300 for each 
sample; the time point-specific effect size parameter as 0.1, 0.4 or 0.7; and expected UMI 
counts as 7, 9.4, and 13.7 (estimates from rat liver scRNA-seq data). Splatter also added 
batch effects (i.e., sample-level variations) for the simulated dataset. The batch effects 
were applied to all genes for each sample. For the batch effects, we simulated 100 cells for 
each batch, and we varied sample-level variations, i.e., batch effects (i.e., batch.facloc) to 
be either 0, 0.04, or 0.12 to represent small, moderate, or strong batch effects. With these 
parameter settings, we limited our simulations to six specific temporal expression pat-
terns—growth, recession, peak, trough, bi-plateau, and multi-modal patterns. For tem-
poral expression effect sizes, we generated time point-specific effect sizes by setting the 
parameter de.facloc, one time point at a time. Then, we examined temporal expression 
patterns based on effect sizes across time points, limiting our simulations to six specific 
temporal expression patterns (Additional file  2: Fig. S1). We simulated three samples/
replicates for each time point and repeated 10 times for each simulation scenario.

Besides temporal expression patterns, we also generated the smudged time-course 
scRNA-seq data using the SymSim R package [57]. Specifically, the parameter settings 
were as follows: the transcription rate vary = “s”; the variance of Brownian motion, 
Sigma = 0.4; the mean rate of subsampling of transcripts alpha_mean = 0.05; the stand-
ard deviation rate of subsampling of transcripts alpha_sd = 0.02; the mean of sequencing 
depth depth_mean = 10,000; and the standard deviation of sequencing depth depth_
sd = 3,000. All datasets were measured by 2,000 cells and 10,000 genes. Consequently, 
to generate the data that were intertwined cells among time points, we proportionally 
mixed the cells from the other two adjacent time points for each stage. Specifically, with 
a given time point, we randomly sampled p1 = 90% cells from the given stage and then 
sampled p2 = 8% and p3 = 2% from two adjacent stages, respectively, as a low propor-
tion of intertwined cell scenario. Similarly, we set p1 = 70%, p2 = 24% and p3 = 6% as a 
medium proportion of intertwined cell scenario and p1 = 50%, p2 = 40% and p3 = 10% 
as a high proportion of intertwined cell scenario.

The difference in statistical models among TDEseq and tradeSeq or ImpluseDE2

In addition to TDEseq, we also employed other two temporal expression analysis meth-
ods, tradeSeq, and ImpulseDE2. The tradeSeq builds on the generalized additive model 
(GAM) that directly models raw gene expression counts in scRNA-seq data, i.e.,

where ygi represents the raw counts for gene g and cell i ; t represents the time points; 
wgi represents the covariates and 

∑K
k=1 bk(t)βgk represents a linear combination of K  

cubic basis functions; Ni denotes the total counts for cell i ; NB is a negative binomial 

ygi ∼ NB
(
µgi,φg

)

log
(
µgi

)
= wT

giαg +
∑K

k=1
bk(t)βgk + log(Ni)
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distribution. To avoid overfitting issues, tradeSeq employed penalized spline which 
shrinkages βgk to zero and therefore are less sensitive to temporal genes with small 
fold changes. Notably, tradeSeq [47] was primarily developed for detecting trajectory-
based differential expression genes; however, the applicability of tradeSeq was extended 
beyond this setting, i.e., also can be applied to bulk time-course RNA-seq data analysis 
[31]. Therefore, we performed an analogous analysis using tradeSeq in the comparison. 
On the other hand, ImpulseDE2 [25] combines the impulse model [81] with a negative 
binomial noise model to directly model the raw counts of gene expression measure-
ments. The impulse function is the scaled product of two sigmoid functions:

where h0 = fImpulse(t → −∞), h2 = fImpulse(t → ∞) , and h1 models the intermediate 
expression, t1 and t2 are the state transition times, an d β is the slope parameter of both 
sigmoid functions.

The impulse function is a more restrictive model compared with spline functions, 
therefore limiting its power. It was originally designed to model the bulk time-course 
RNA-seq data. To adapt for temporal expression analysis of time-course scRNA-seq 
data, we modified the implementation of ImpulseDE2 following the tradeSeq paper. 
Both methods take a count matrix Y and a time points vector t as input and return one 
p-value for each gene at a time.

Methods for comparison

We compared TDEseq with five existing methods for identifying temporal expression 
genes from time-course from scRNA-seq data (tradeSeq, and Wilcoxon test) or bulk 
RNA-seq data (ImpulseDE2, edgeR, and DESeq2). For tradeSeq (version 1.4.0), we used 
the functions fitGAM and associationTest (https://​stato​mics.​github.​io/​trade​Seq/​artic​les/​
trade​Seq.​html). The number of knots parameter k in the tradeSeq was chosen by 100 
random genes based on the tradeSeq vignette. For ImpulseDE2 (version 0.99.10), we 
followed the modified implementation of ImpulseDE2 in the tradeSeq paper (https://​
github.​com/​statO​mics/​trade​SeqPa​per). For DESeq2 (version 1.40.2) and edgeR (version 
3.42.4), we treated time points as categorical factors and tested DE genes using a likeli-
hood ratio test.

Permutation strategy to construct the null distribution

In real data applications, to calculate the false discovery rate (FDR), we construct an 
empirical null distribution of p-values through permuting the time point variables and 
repeating 5 times. Afterward, we computed the FDRs using.

Where Pnull
rk  is an increasing ordered p-value for kth gene and rth permutation; Palt

g  is 
an increasing ordered p-values under the alternative hypothesis.

µ(t) = fImpulse(t) =
1

h1

(
h0 + (h1 − h0)

1

1+ e−β(t−t1)

)
∗ (h2 + (h1 − h2)

1

1+ eβ(t−t2)

fdrg =

∑g
k=1

∑5
r=1I

(
Palt
g > Pnull

rk

)

5 ∗ g
, g = 1, 2, · · · ,G.

https://statomics.github.io/tradeSeq/articles/tradeSeq.html
https://statomics.github.io/tradeSeq/articles/tradeSeq.html
https://github.com/statOmics/tradeSeqPaper
https://github.com/statOmics/tradeSeqPaper
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Functional gene set enrichment analysis

The gene set enrichment analyses of temporal expression genes were performed by the 
enrichGO function implemented in the clusterProfiler R package (version 3.18.1) [90]. 
Specifically, we used all genes as the background and set the minimal and maximal sizes 
of genes annotated by Gene Ontology (GO) terms for testing as 10 and 500, respectively. 
The significant GO terms were selected by setting BH-adjusted p-value < 0.05.

Batch effects removal evaluation

We used the LISI metric to measure cell batch distribution (iLISI) [56]. The LISI met-
ric was designed to assess whether clusters of cells in a scRNA-seq dataset are well-
mixed across categorical variables (batches). We took the median value of the scores 
computed for all cells in the dataset and scaled the value between 0 and 1 to denote 
the worst and best cell mixed.

HCT116 cell lines after 5‑AZA‑CdR treatment data

The scRNA-seq data were assayed by Well-TEMP-seq, which contains 5-AZA-CdR-
treatment HCT116 cell lines after 0 days (4,000 cells), 1 day (4,000 cells), 2 days (4,000 
cells), or 3  days (4,000 cells) [23]. The Well-TEMP-seq technology can distinguish 
new RNAs from pre-existing RNAs, we used the new RNAs which better reflect RNA 
dynamics for downstream analysis. For the preprocessing of scRNA-seq data, the 
genes with more than 99% zero counts were filtered out, resulting in 7,314 genes and 
16,000 cells for further analysis.

Mouse hepatoblast differentiation data

The scRNA-seq data were assayed by Smart-seq2 protocols [63] on isolated cells from 
mouse fetal livers at 7 different developmental stages [38]. Gene expression levels 
were measured by a total of 14,226 genes and 345 cells. In our analysis, we only con-
sidered the hepatoblast cells for temporal expression analysis. Finally, for the preproc-
essing of scRNA-seq data, the genes with more than 99% of zero counts were filtered 
out, resulting in 14,180 genes and 345 cells for further analysis.

Human metastatic LUAD progression data

The scRNA-seq data [14] were assayed by 10X Genomics Chromium protocols [91] 
on LUAD samples from 5 distinct developmental stages, i.e., the control stage consists 
of a total of 80,441 cells in 7 cell types from 21 samples; stage I consists of a total of 
31,026 cells in 7 cell types from 8 samples; stage II consists of a total of 3,840 cells in 7 
cell types from 1 sample, stage III consists of a total of 10,283 cells in 7 cell types from 
2 samples, and stage IV (metastasis) consists of a total of 82,916 cells in 7 cell types 
from 26 samples. In our analysis, we only employed the epithelial cells from the con-
trol lung samples (3,703 cells), stage I tumor lung samples (5,651 cells), stage III tumor 
lung samples (1,500 cells), and stage IV samples (lymph node metastasis, 6,582 cells). 
To relieve the computational burden in practice, we utilized a down-sampling strategy 
to randomly select 1,000 cells for the stage that contains more than 1,000 cells. Finally, 
for the preprocessing of scRNA-seq data, the genes with more than 99% of zero counts 
were filtered out, resulting in 15,263 genes and 4,000 cells for further analysis.
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Human COVID‑19 immune response data

The scRNA-seq data were assayed by 10X Genomics Chromium protocols on human 
SARS-COV-2 infection samples from disease progression ranging from 4 to 123 days 
[9]. In our analysis, we only employed the NK cells from the 21 serve/critical patients 
and divided those patients into 5 stages according to the time point interval, i.e., stage 
I (4–8 days, 930 cells), stage II (10–13 days, 939 cells), stage III (19–24 days, 893 cells), 
stage IV (28–34 days, 768 cells), and stage V (110–123 days, 1,000 cells). Finally, for 
the preprocessing of scRNA-seq data, the genes with more than 99% of zero counts 
were filtered out, resulting in 10,699 genes and 4,530 cells for further analysis.
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