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Abstract

Background: Individual and environmental health outcomes are frequently linked

to changes in the diversity of associated microbial communities. Thus, deriving health
indicators based on microbiome diversity measures is essential. While microbiome data
generated using high-throughput 16S rRNA marker gene surveys are appealing for this
purpose, 16S surveys also generate a plethora of spurious microbial taxa.

Results: When this artificial inflation in the observed number of taxa is ignored, we
find that changes in the abundance of detected taxa confound current methods for
inferring differences in richness. Experimental evidence, theory-guided exploratory
data analyses, and existing literature support the conclusion that most sub-genus
discoveries are spurious artifacts of clustering 16S sequencing reads. We proceed to
model a 165 survey’s systematic patterns of sub-genus taxa generation as a function of
genus abundance to derive a robust control for false taxa accumulation. These controls
unlock classical regression approaches for highly flexible differential richness inference
at various levels of the surveyed microbial assemblage: from sample groups to specific
taxa collections. The proposed methodology for differential richness inference is avail-
able through an R package, Prokounter.

Conclusions: False species discoveries bias richness estimation and confound differ-
ential richness inference. In the case of 16S microbiome surveys, supporting evidence
indicate that most sub-genus taxa are spurious. Based on this finding, a flexible
method is proposed and is shown to overcome the confounding problem noted with
current approaches for differential richness inference.

Package availability: https://github.com/mskb01/prokounter

Keywords: Microbiome, Spurious, Surveys, False discoveries, Species misclassification,
Richness, Differential richness

Background

Clinically relevant health outcomes are often accompanied by changes in the diver-
sity of associated microbial communities. For instance, decreased gut microbiome
diversity accompanies childhood diarrhea [1] and enteric infections [2] and has been
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shown to predict the onset of infant type I diabetes [3]. Distinct intra-tumoral micro-
bial diversity levels are associated with cancer sub-types [4—6]. Thus, inferring disease
associated changes in microbiome diversity metrics is useful for characterizing dis-
ease pathology and progression.

Among the various diversity measures, richness quantifies the number of taxonomic
groups in a community [7, 8]. Changes in species richness of biological communities
have informed key environmental management practices that are relevant to public
health and well-being [7-23]. Of the technologies available for characterizing micro-
bial communities, 16S rRNA (ribosomal RNA) gene surveys are widely adopted for
their high throughput and low cost. As a broad screening tool, they largely avoid the
need for laborious culturing of microbes. This makes them especially attractive for
deriving health metrics based on the microbiome.

In this work, we focus on inferring changes in richness of microbial communities
between sample groups (i.e., differential richness) with 16S survey data.

To infer differential richness, one first estimates richness for the specific commu-
nities of interest in each survey sample. The estimated values are then compared
between sample groups with either fixed or mixed effects models, or with non-par-
ametric statistical tests, possibly adjusting for sampling effort [24—27]. There are two
types of sample-level estimates of richness. Observed richness refers to the number of
taxa observed in a sample. Asymptotic richness is obtained by adding an estimate of
the number of unobserved taxa to the number of observed taxa. Approaches to esti-
mate asymptotic richness vary, but often assume that relatively uncommon taxa are
the most informative [28]. Both types of richness estimates enable valid comparisons
among macro-ecological communities [24, 25, 28—30].

However, direct application of the aforementioned richness estimates and compari-
sons to 16S microbiome data would ignore the plethora of uncommon and spurious
taxa that inflate observed richness estimates in 16S survey data [27, 31-34]. When
this artificial inflation in observed richness is ignored, we find that differential abun-
dance of detected taxa confounds current methods for differential richness inference.
The problem is severe when between-sample richness comparisons are made at lower
taxonomic levels, e.g., genus. Thus, direct application of classical methods to microbi-
ome differential richness inference is unreliable.

Attempts to overcome sequencing noise have been made. Chiu and Chao [35],
noting that singleton taxa are highly susceptible to sequencing noise, establish an
improved estimator for counting singleton taxa by relying on more abundant taxa
(also see Willis [36]). However, the estimator is often numerically undefined at lower
levels of the taxonomy, and still takes most of the observed richness at face value.

Our results indicate that the observed frequencies of spurious taxa are determined
by the output abundances of input sequences and thus need not be restricted to sin-
gleton frequencies alone. We therefore aimed to develop a flexible differential rich-
ness inference procedure for 16S microbiome surveys—one that would not only allow
investigators to seek sample-wide richness changes across experimental groups (as is
commonly done in modern metagenomics) but also within genera or taxa collections

of any particular interest, while accounting for false taxa accumulations.
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The paper is divided into several sections. The “Most sub-genus taxa in 16S surveys
are likely technical artifacts” section, based on our own experiments and exploratory
data analyses guided by theory, presents multiple lines of evidence supporting the view
that most sub-genus taxa currently identified in 16S surveys are spurious. This allows
us to exploit within-genus taxa accumulation data to derive a robust control for false
taxa accumulations (the “Methods” section). The “Spurious taxa confound differential
richness inference” section illustrates the confounded differential richness inferences
arising from current methods, when detected taxa exhibit a net non-zero relative abun-
dance fold change between sample-groups. The “Prokounter enables flexible differential
richness inference” section applies the proposed procedure (Prokounter) to a variety of
datasets and illustrates the value that differential richness inferences at lower taxonomic
levels add to clinical and public health-related microbiome data analyses. For example,
application of Prokounter to a gut microbiome survey of a traveling individual [2] identi-
fies the invading genera with increased richness in member taxa, during and after an
enteric infection.

Results
Most sub-genus taxa in 16S surveys are likely technical artifacts
16S surveys reconstruct target microbial populations by clustering sequencing reads.
Spurious microbial taxa occur when the clustering procedure’s error model fails to cap-
ture the entirety of sequence variation induced by the technical steps in 16S sequenc-
ing. These steps include, but are not limited to, PCR amplification of 16S material and
sequencing (Fig. 1A).

To identify the major parameters underlying false taxa accumulations, we math-
ematically model the nucleotide substitution errors introduced by a chain of PCR
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Fig. 1 Within-genus false taxa accumulation structure. A Sequences in input samples are subjected to
various technical steps during 16S sequencing (gray shade). The output reads from 165 sequencing are
clustered for sequence similarity using a methodology of choice. Of the number of taxa (clusters) thus
reconstructed, some are true, i.e, equal in sequence to those in the input sample, the rest are spurious i.e,,
false (red). B For every genus, the accumulation is determined as a function of its recovered abundances.
Notation: ngo the respective true number of taxa associated (true richness), y,the genus recovered
abundance, f(-) the abundance dependent technical component driving false taxa accumulations
within-genus



Kumar et al. Genome Biology ~ (2022) 23:166 Page 4 of 25

amplification and sequencing processes allowing for back mutations (Additional File 1
[37—-41]). Under reasonable assumptions, we find that the rate of falsely classifying an
error variant of a source sequence (type I error) using a priori fixed sequence similar-
ity thresholds strongly increases with the source sequence’s recovered (i.e., output)
abundance. The average recovered abundance is multiplicative in the source sequence’s
apparent input abundance and the total sampling depth (Additional File 1). Thus, false
sequence clustering decisions, and hence the resulting false clusters, increasingly accu-
mulate with the true source sequence’s recovered abundance and not necessarily sample
depth. We therefore identify a mechanism through which spurious clusters of sequences
are increasingly identified as microbial taxa, regardless of the underlying biological
reality.

Given the empirical observation that 16S genetic segments are mostly limited in reso-
lution to prokaryotic genera [42—-49], we explored within-genus taxa accumulations (i.e.,
the number of detected sub-genus taxa as a function of recovered genus abundances),
in several publicly available 16S surveys. In general, we expect genera to vary in their
true richness and the relative abundances of member taxa. This must accordingly
induce biological variation in the genus-specific taxa accumulation patterns. However,
this expectation did not broadly hold in the several microbiome surveys analyzed here.
Within-genus taxa accumulation patterns were highly concordant for several genera
within study (Fig. 2A, Additional File 2: Fig. S1-S3). Relative to the number of detected
genera, which ranged from 60 to 400 across studies, a clustering analysis indicates that
within-genus taxa accumulation data supports only 2—8 distinct accumulation patterns
in each study (Additional File 3: Table S1). Multiple dominant genera can be clustered to
the same accumulation pattern. In addition, relative to study specific covariates, a robust
trend estimate of the within-genus taxa accumulation data explains the bulk of the var-
iation in genus-specific and sample-wide taxa accumulations (Tables 1 and 2) in each
study. Similar qualitative conclusions follow when genus recovered abundance is used
as a predictor, instead of an estimated trend (Additional File 3: Tables S2-S3). Finally,
these qualitative and quantitative attributes of the accumulation patterns were obtained
regardless of the 16S clustering approach used (Tables 1 and 2). These results indicate a
strong within-study regularity in observed taxa accumulations across genera and sample
groups—as if most genera have similar taxa richness and evenness—suggesting a likely
technical origin.

Single colony experiment

To further verify these conclusions, we conducted a 16S sequencing experiment on
a target Pseudomonas aeruginosa population. The experimental sample was by itself
overnight derived from a single P. aeruginosa colony (Additional File 1). In a series
of experimental samples, we varied both the input abundance of Pseudomonas cells
and the PCR amplification cycles. Our mathematical model (Additional File 1), which
tracked the probability distribution of cell division induced nucleotide substitutions
over generations, indicates that under no selection pressure, we can expect one bio-
logical 16S genotype in our input. An upper bound on the number of our input taxa
is given by the number of 16S genes generally found within the Pseudomonas genus
(~4), times two for taxa clusters corresponding to forward and reverse complement
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Fig. 2 Concordant taxa accumulations across genera, confounded differential richness inference, and the
Prokounter strategy. A Sample-wide taxa accumulations are visualized with respect to sample depth (left).
Within-genus taxa accumulations are visualized with respect to the total recovered genus abundances for
two gener a, i.e, the sum of the abundances of all taxa within the genus. B Differential richness log-fold
changes (LFC, y-axis) track differential relative abundance fold changes (LFC, x-axis) in the waste-water
treatment survey. C Prokounter exploits within-genus accumulation data to model false taxa accumulation
rates. When exploited in a standard Poisson regression setting, the resulting differential richness fold changes
are uncorrelated with genus-wide differential abundance statistics (right). Dashed lines represent confidence
intervals. Points colored in red are the genus-specific differential richness inferences for the waste-water
treatment survey

strands. What we found was a rather different representation, rich with low abun-
dant and poorly replicating taxa: the total numbers of observed Pseudomonas taxa
were 1050 and 300 for clustering methods based on sequence similarity with respec-
tive thresholds of 99% and 97% and 90 for a probabilistic clustering method (Dada2).
The bulk of the newly identified Pseudomonas taxa preferentially contributed to the
low frequency regime of the taxa abundance histogram (Additional File 2: Fig. S4),
suggesting that they are likely clusters of rare, erroneous 16S sequencing reads gen-
erated during amplification and sequencing. Notably, taxa within-Pseudomonas,
despite having a noisy occurrence with respect to amplification cycles and input cells
(Fig. 3A), accumulated along the Pseudomonas genus recovered abundance axis in
a clear, robust fashion (Fig. 3B). As expected, the stricter the sequence similarity
threshold, the stronger the rate of taxa accumulations along the recovered abun-
dance axis (Fig. 3B). Furthermore, taxa accumulations from several detected genera
followed quantitatively similar patterns (Fig. 3C, Tables 1 and 2). From prior experi-
ments in our laboratory and from control samples, we know Pseudomonas lab con-
taminants have very weak relative abundances. Restricting the above analysis to only
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taxa accumulations are driven by experimental and technical parameters. Contaminant Pseudomonas are
expected to fall with input loads, indicating false discovery accumulations at higher recovered Pseudomonas
abundances. B The genus recovered abundance axis offers a succinct representation for taxa accumulations.
Average and the 95% point-wise confidence intervals for the logged within-Pseudomonas taxa accumulation
trends are shown with colored lines for each method, with colored circles indicating the respective
observations. C An overlay of taxa accumulations across multiple detected genera in the study. Colors
indicate genera

those Pseudomonas taxa that track input cells does not change the aforementioned
conclusions qualitatively (Additional File 2: Fig. S5).

Similar results on taxa accumulation patterns were also obtained for the multiple-
genera Oral and Gut mock communities of the microbiome quality control project,
handling lab B (MBQC [27]).

Because true taxa are expected to replicate across study samples, we explored sub-
genus taxa occurrence rates (Additional File 2: Fig. $19). In all studies, we find that
over 50% of sub-genus taxa in over 50% of the detected genera did not replicate in
more than 10% of the samples. Mock experimental communities are expected to rep-
resent a greater degree of homogeneity than real world communities as the latter may
contain rare variants. Restricting analysis to experimental communities with single-
and multiple- mock genera, we find that in eight out of nine datasets, over 50% of
sub-genus taxa in over 50% of the mock genera replicated in less than 50% of the sam-
ples (Additional File 2: Fig. S19). These results indicate poor within-study replicability
of most sub-genus taxa.

Finally, because we expect true taxa richness and evenness to vary along the tax-
onomic tree, we explored taxa accumulations for the various taxonomic levels (i.e.,

family, order, class and phylum) in each study. Remarkably, the total number of

Page 8 of 25
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observed taxa at any level of the taxonomic tree was strongly predicted by recovered
abundance alone and was not dependent on the taxonomic level considered (Fig. 2A,
S20). These results indicate a strong regularity in taxa accumulations across taxo-
nomic levels, suggesting that spurious taxa accumulations overwhelm observed rich-
ness statistics.

Taken together, our results indicate that most sub-genus taxa in 16S surveys are

spurious.

Spurious taxa confound differential richness inference
That observed spurious sub-genus taxa increasingly accumulate with genus recovered
abundances leaves us with two expectations.

First, without appropriate corrections, inferring differences in a genus’ number of asso-
ciated taxa (i.e., genus-wise differential richness) are highly likely to be confounded by
the genus’s respective difference in the recovered abundances (differential abundance).
We observe that estimated genus-wise richness values from asymptotic estimators grew
systematically with the genus-specific recovered abundances (Additional File 2: Fig. S6).
In addition to observed richness, estimates of unobserved richness can exhibit similar
behavior (Additional File 2: Fig. S7). This in turn induces an artifactual positive correla-
tion between the resulting genus-wise differential richness fold changes and the genus-
wise differential abundance fold changes (Fig. 2B, Additional File 2: Fig. S8).

Second, inferring differential richness between sample-groups (i.e., sample-wide dif-
ferential richness) are highly likely to be confounded by a net non-zero relative abun-
dance fold change of detected genera. Straightforward simulations where spurious taxa
are generated in an abundance dependent fashion illustrate this behavior (Additional
File 2: Fig. S6). Interestingly, illustrative examples of the same were rare in several 16S
surveys, suggesting that spurious taxa accumulations are comparable at the sample-
level. Indeed, in many datasets, the relative abundance log fold changes of member
genera were symmetric and concentrated around zero (Additional File 2: Fig. S9-S10).
Nevertheless, exceptions with asymmetric relative abundance log fold change distribu-
tions exist and a case in point is offered by the long-term time series study discussed
below (Additional File 2: Fig. S11).

In Additional File 4, we model the abundance dependent generation of spurious taxa
in 16S surveys within the sampling theoretic framework of Chao [29] and Harris [50],
and find that the above observations agree with theory.

Prokounter enables flexible differential richness inference

To overcome the aforementioned biases when applying current richness estimators to
16S surveys and to establish a flexible differential richness inference approach, we devel-
oped Prokounter.

While zero-truncated statistical models offer one route to modeling member inclu-
sions in a population survey, the same can be achieved by incorporating appropriate pre-
dictors in a regression context [51]. The former is the approach taken by some classical
richness estimators to model species abundance [28, 52]. We take the latter view and
proceed as follows. Based on the results from the “Most sub-genus taxa in 16S surveys
are likely technical artifacts” section, we assume that most sub-genus taxa in 16S surveys
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are false. This allows us to exploit a 16S survey’s overall sub-genus taxa accumulation
trend, along with any systematic genus-specific effects, as a sampling effort dependent
control for false taxa accumulation (Methods). This control is exploited within standard
regression methods for differential richness inference.

With a few 16S surveys, we illustrate the insights offered by the proposed procedure,
in achieving genus-specific and sample-wide differential richness inferences.

Unlike other estimators analyzed here (Chaol [29], ACE [53], Breakaway [54], Breaka-
way_nofl [36] and Chiu-Chao [35]), the uncorrelatedness of Prokounter’s richness sta-
tistics with genus-wide differential abundance statistics is clear in each dataset (Fig. 2C,
S12, compare to Fig. 2B, S8). Breakaway and Breakaway_nofl estimates were the most
variable, often accompanied by wide confidence intervals. On several occasions, genus-
specific differential richness estimates were not well defined in numerical value when
using current richness estimators for numerical and not necessarily statistical iden-
tifiability reasons. Sample-wide inferences agreed among all methods in most cases,
except when detected genera exhibited a net non-zero relative abundance fold change
distribution.

Richness estimates produced by sequencing noise aware estimators Breakaway_nof1l
and Chiu- Chao were well correlated with their basic counterparts Breakaway and
Chaol (Additional File 2: Fig. S21), implying that the confounded inferences observed
with the latter are likely to be inherited. This was confirmed by simulations (Additional
File 2: Fig. S6C). Visualizations of the behavior of Breakaway_nofl and Chiu-Chao esti-
mators (such as in Fig. 2B) for genus-level inferences were not possible as both estima-
tors were either mostly numerically undefined at lower levels of the taxonomy and/or
suffered failed numerical convergence (Additional File 2: Fig. S22). For example, in the
time series study discussed below, restricting to those samples where the Chaol esti-
mates were well-defined, the Chiu-Chao estimator was undefined for over 95% of the
time. Because both Breakaway_nofl and Chiu-Chao methods attempt to correct spuri-
ous singleton frequencies based on ratios of higher order frequencies (e.g., doubletons,
tripletons), estimation issues arise whenever these ratios are not well-behaved. The
above results indicate that these situations are not rare in 16S microbiome data.

In all surveys below, asymptotic genus-wise and sample-wide richness estimates heav-
ily tracked their respective observed richness values (97-100% Pearson correlations,
Additional file 2: Figs. S13-S17).

Pseudomonas dilution study

The Pseudomonas dilution experiment varied two parameters of a 16S experimen-
tal pipeline: amplification cycles and input cells of a single colony-derived microbial
population.

Increased amplification cycles can allow increased sampling of both contaminant and
input genera. Thus, within further sampling constraints imposed by the multiplexed
nature of the experiment, we expect sample-wide richness to grow with amplifica-
tion cycles. Sample-wide differential richness inference from all methods matched this

expectation.
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It is well known that the abundance of lab contaminants falls with input loads [34]. If
the dynamic range in input loads is sufficiently high, we can expect inferred sample-wide
richness to fall with input Pseudomonas cells. Results from Prokounter, Chaol/Betta
[26] and ACE/Betta, Breakaway_nofl/Betta, and Chiu-Chao/Betta matched this expec-
tation. Breakaway/Betta failed to reject the corresponding null hypotheses (p =0.4).

The genus of principal interest in this experiment is Pseudomonas. The genus-wide dif-
ferential richness results from Prokounter indicated a decrease in richness with respect
to input cells and an increase with respect to amplification cycles. This is in line with our
expectations as we expect the detection rate of lab contaminant Pseudomonas species to
grow with amplification cycles and fall with input Pseudomonas loads. In direct contrast,
Chaol/Betta, ACE/Betta, Breakaway_nofl/Betta, and Chiu-Chao/Betta, confounded by
input Pseudomonas’s increasing abundance, indicated a Pseudomonas richness increase
with input cells (p =0 for both) and Breakaway/Betta failed to reject (p=0.251).

Long-term time series study

Based on a clustering analysis of abundance profiles, David et al., [2] identified that a
distinct sub-group of the phyla Firmicutes replaced another Firmicutes sub-group,
post-enteric infection, in the gut microbiome of an individual relocating to a different
country. Prokounter refines this result further by identifying several Firmicutes genera
(Faecalibacterium, [Ruminococcus], Oscillospora) that are less rich post-infection. On
the other hand, Dorea and Coprobacillus, members of Firmicutes, were found to have
significantly increased richness in infection and post-infection samples. The genus Aci-
netobacter from the phylum Tenericutes was found to have significantly increased rich-
ness in samples collected during infection, while this was not the case post-infection.
Thus, differential richness adds another state variable to the microbiome state specifica-
tions of the original study.

In David et al’s dataset, sample-wide inferences disagreed among the methods com-
pared. Relative to pre-infection samples, Prokounter generated inferences of reduced
richness for both infection and post-infection samples consistent with antibiotic expo-
sure. Chaol/Betta and ACE/Betta indicated reduced richness post-infection with a
relatively weak significance for reduced richness in infection samples. Breakaway_nofl/
Betta and Chiu-Chao/Betta indicated reduced richness post-infection but failed to reject
the null for infection samples (p-value =.10 Breakaway_nof1l/Betta, p-value=.16 Chiu-
Chao/Betta). Breakaway/Betta failed to reject any of the corresponding null hypotheses
(p-value=0.99 infection and p-value=0.74 post-infection), potentially owing to the
very high variability of Breakaway estimates. As established in the previous subsection,
these differences in inferences likely stem from the asymmetric differential abundance of
detected genera in the samples collected during infection.

Waste-water treatment

To demonstrate an ecological monitoring application, we applied Prokounter to 16S data
arising from a waste-water treatment plant [55]. The method indicates that relative to
the effluent, sample groups from each of the post-treatment stages have significantly
reduced microbial richness values. These results readily agree with our expectation of
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a publicly implemented waste-water treatment protocol. Chaol/Betta, Chiu-Chaol/
Betta, and ACE/Betta produced similar results. While Breakaway_nof1/Betta failed to
reject the null for inlet to pumphouse (p=0.169), Breakaway/Betta failed to reject the
null for sample groups corresponding to both effluent (p =.065) and inlet to pumphouse
(p=.692).

Using differential abundance analysis, the original study highlighted the persistence of
Legionella and Mycobacterium in post-treatment samples calling into question the effi-
cacy of the treatment process. Performing genus-specific differential richness analysis
with Prokounter indicates that the treatment plant reduces the richness associated with
several types including Mycobacterium. We did not detect Legionella as reduced in rich-
ness in the effluent. These results indicate that waste-water treatment has been effective

with removing Mycobacterium sub-types.

Pathogenesis

We applied Prokounter to a 16S survey of the cerebrospinal fluid from hydrocephalus
children hypothesized to have infectious (PIH) and non-infectious (NPIH) origins [56].
We intuitively expected, and observed, that the cerebrospinal fluid enveloping the cen-
tral nervous system to register lower richness compared to laboratory controls. PIH
samples had relatively lower richness compared to clinical control samples.

A genus that is more abundant with reduced richness might indicate invasion of a sub-
species. Genus-specific differential richness inference with Prokounter yields two genera
as having lowered richness in the PIH samples: Paenibacillus and Streptococcus. Paeni-
bacillus was the dominant pathogenic genus identified with the PIH phenotype using
16S data [56].

Discussion

Summary

16S microbiome surveys reconstruct target microbial populations by clustering
sequencing reads. Spurious microbial taxa occur when the clustering procedure’s error
model fails to capture the entirety of sequence variation induced by the technical steps
in 16S sequencing (Additional File 1, Fig. 1A). We have shown that the false taxa thus
generated not only inflates the estimate of a (microbial) community’s richness (Addi-
tional File 4, Additional File 2: Fig. S6), but they also cause taxa differential abundance
to confound differential richness inferences (Fig. 2B, Additional File 2: S8). This occurs
because every false taxon is generated through errors from one or a few true (i.e., input)
taxa, and hence, their rates of production increase with the output abundance of the
corresponding source taxa (Additional File 1). Based on our result that most sub-genus
discoveries are likely false (the “Most sub-genus taxa in 16S surveys are likely techni-
cal artifacts” section), we have established abundance dependent controls for false taxa
accumulations using a given survey’s within-genus taxa accumulation data (Methods,
Fig.2C, S2, S18). We have shown that our strategy overcomes the confounding problem
(Fig. 2C, S12). And we have illustrated the utility of differential richness inferences in
individual and public health-related microbiome data analyses (the “Prokounter enables
flexible differential richness inference” section).
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Assumption

Our approach assumes that most sub-genus taxa in 16S surveys are spurious and are
poor representatives of the underlying microbial community. We have provided several
lines of evidence to support this conclusion: First, a mock experiment of an overnight
derived microbial population indicated that observed richness can be severely inflated
(Fig. 3, S5). Our expectation was set in part by a mathematical model of cellular repro-
duction, where we tracked the probability distribution over substitutions, over genera-
tions (Additional File 1). Second, in a manner similar to what we would expect of low
probability errors, most sub-genus taxa in both controlled mock and real world datasets
are rare and show poor replicability across samples (Additional File 2: Fig. S19). Third,
the total number of taxa observed for any taxonomic level was strongly determined
by the category’s recovered abundance alone and was not dependent on the level itself
(Fig. 2, S20). Fourth, within-genus taxa accumulation patterns in several publicly avail-
able datasets, including those from single- and multi-genera mock experiments, appear
remarkably regular as if most genera in 16S surveys have similar richness and taxa even-
ness (Figs. 2 and 3, S1-S3, Tables 1 and 2, Additional File 3: Tables S2-S3). Finally, the
literature offers abundant support for abundance dependent false taxa generation in 16S
surveys, of which we note a closely related few. Kunin et al., [32] demonstrate the large
number of false Escherichia taxa that arise in a 16S survey of a target E. coli popula-
tion (also see Degnan and Ochman [57], Pinto and Raskin [58]). Based on the empiri-
cal observation that the number of false taxa generated are sampling effort dependent,
Schloss et al. [59] recommend that community-level comparisons be made at compa-
rable sampling depths. Haas et al., [60] illustrate the predictable, abundance-dependent
generation of false chimeric taxa within genera in mock communities. Finally, consist-
ent with our results on spurious taxa accumulations, Fouladi et al. [61] demonstrate the
abundance dependent accumulation of 16S sequencing read error variants in microbi-
ome datasets.

Implications for richness theory and automated ecological surveys

False microbial taxa in 16S surveys arise because automated procedures to reconstruct
taxa misclassify sequencing reads from their true types. Thus, in Additional File 1, we
analyzed the influence of amplification and sequencing induced substitutions in caus-
ing misclassifications (also see Schloss [62] and Sze and Schloss [63]). In Additional File
4, we mathematically modeled the false taxa that arise through misclassification and
showed in part that a traditional asymptotic richness estimator (Chaol [29]) is biased
under this more general sampling scenario. The severity of bias is determined by sam-
pling parameters. Together with the results mentioned in the previous paragraphs, we
conclude that classical richness theory, which predominantly focuses on estimating
undetected richness while assuming observed richness at face value, should be general-
ized for observed species misclassifications in modern high throughput and highly auto-
mated surveys.

Asymptotic richness estimators track observed richness values in 16S surveys
In the several 16S surveys considered here, asymptotic richness estimates tracked
observed richness values both sample-wide and at within-genera levels (Additional File
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2: Fig. S13-S17). Our mathematical models and simulations that incorporate false taxa
accumulations within the sampling theoretic framework of Chao [29] and Harris [50]
indicate that such tracking can arise when the apparent richness (i.e., the true plus false
richness) and not necessarily true richness is undersampled in a survey (Additional File
4). This explains the observed tracking in the Pseudomonas genus in the Pseudomonas
dilution experiment, where we do not expect undersampling of the true Pseudomonas
community (Additional File 2: Fig. S13).

False discovery control in differential richness analysis, confounding with differential
abundance

Hughes et al. [64] argue that traditional macroecological richness estimators continue
to enable robust sample-wide richness comparisons in 16S surveys. Our analysis iden-
tifies exceptions (the “Long-term time series study” section) and clarifies the practical
conditions under which controlling for spurious discoveries become important. In par-
ticular, we find that false taxa accumulations cause abundance dependent inflation in
observed taxa numbers and their frequencies (Additional File 1 and 2), causing differ-
ential (relative) abundances of detected taxa to confound differential richness inference
with traditional methods (Fig. 2B, Additional File 2: S6-S8, S11). When spurious taxa
accumulations are comparable across contrasted experimental groups, no such con-
founding arises (Additional File 2: Fig. $9-S10). Our empirical analyses indicate that such
an assumption is too strong for making differential richness inferences at lower taxo-
nomic levels (e.g., genus-specific) of a microbial assemblage (Fig. 2B). Unlike human
gene expression studies that enjoy a known nucleotide reference catalog to reconstruct
gene expression, microbiome studies often lack a well-defined reference. Thus, microbi-
ome studies typically reconstruct the target microbial population bioinformatically by
clustering 16S sequencing reads for sequencing noise, with error models derived based
on sequence similarity thresholds, or by modeling sequencing noise. However, arriving
at accurate error models is hard in practice (e.g., higher order sequence dependence of
errors is not modeled), and thus spurious microbial discoveries are bound to occur when
typing several millions of sequencing reads (Additional Files 1 and 2). It is in this context
that we find utility with our proposed differential richness inference method, which aims
to estimate and correct for the generation of spurious taxa in highly automated micro-

ecological surveys.

Relaxing microbiome richness comparisons to taxonomic groups

Microbiome analyses frequently restrict richness comparisons to the entire microbial
assemblage obtained in study samples (sample-wide richness inference). From the per-
spective of deriving health and ecological indicators based on community assemblages,
analysis of a community’s finer organization levels is equally interesting [2, 8, 10-12, 17].
Our genus-wise differential richness results (the “Prokounter enables flexible differential
richness inference” section) indicate that contrasting richness for taxonomic sub-groups
can enable practically useful inferences and add interesting dimensions to microbiome

state space descriptions.
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Within-genus taxa accumulation structure and the trend estimator

Our results document reliable across-genera regularity in the patterns of within-genus
taxa accumulations, across many studies and genus-specific experiments (Figs. 2 and 3,
S1-S3, Tables 1 and 2, Additional File 3: Tables S2-S3). We speculate that genus abun-
dances, in contrast to sampling depth, more accurately track the sampling rate of false
sequence variation in 16S surveys for at least two reasons. First, commonly exploited
16S rRNA target segments are limited in resolution beyond genus level [42-49]. Sec-
ond, genus recovered abundances, unlike total sampling depth, normalize for the sam-
pling rates of distinct genera. This restricts us from mixing taxa accumulation statistics
over truly disparate input biological sequences from distinct genera, while allowing us
to preserve any systematic genus specific effects. We used a robust trend estimate of
the within-genus taxa accumulation data to model spurious taxa accumulation (Meth-
ods, Figs. 2 and 3, S1-S3). The coherent accumulation of a large number of detected taxa
translated to low estimation uncertainties. These curves were not necessarily linear in
the recovered genus abundances (Additional File 2: Fig. S1-S3). The systematic genus-
specific contributions to this trend can arise due to between-genera variation in both
detectable true input sequence diversity (copy number [48] or number of distinct cell
types) and 16S sequencing noise [62, 63].

Emphasis on sub-genus taxa

We have exploited the characteristics of sub-genus taxa accumulations to estimate con-
trols for the generation of spurious taxa in a microbiome survey. However, our results
indicate that estimation of the needed controls could also be done based on higher
order taxonomic groupings as they too exhibit similar taxa accumulation characteristics
(Fig. 1). In principle, we may lose power in resolving genus-specific technical effects (as
illustrated in Additional File 2: Fig. S18), and this necessitates a discussion of two cases.
First, if grouping of genera is made because of very similar/identical 16S sequences
(e.g., Escherichia-Shigella), we may not need to account for individual genus-specific
effects within the grouping, as sequencing errors are strongly dependent on nucleotide
sequence context. Second, when taxonomic descriptions for sequences are incomplete
or not available, based on the comprehensive work of Yarza et al. on rational taxonomic
boundaries [47], we recommend a numerical measure of 94.5% sequence identity for
typing arbitrary collections of 16S sequences to achieve a reasonable “Genus-level”
grouping for estimation purposes.

Abundance dependent control in bioinformatic sequence analysis

Beyond differential richness inference, there is a need for recovered abundance depend-
ent control in other (meta)genomic sequence analyses, e.g., sequencing read mapping
and taxonomic annotation, which exploit fixed sequence similarity thresholds. Proba-
bilistic methods have a natural incorporation of abundance in clustering/mapping
decisions. In all cases, however, poor error models would continue to drive false taxa
accumulations. It must be noted that we have not analyzed false negative rates in this
study [65, 66].
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Limitations of differential richness inference

Observed (and reportedly, asymptotic [67]) richness estimates cannot forecast crossing
over of species accumulation curves that can in principle occur with additional sampling
effort. However, differential analysis of both these estimates over realized sampling effort
is still useful for detecting perturbations to the evenness of a biological community [64,
68] and is thus effective for deriving predictors of individual and environmental health.

Future work

There are several avenues for future research. First, an integrated estimation procedure
of false taxa accumulation rates and differential richness fold changes would lead to
more appropriate p-values under the assumed statistical models. Second, development
of ecological richness estimators in the presence of species misclassifications would be
a valuable addition to the literature. Additional File 4 considers a simple but a useful
special case. Third, 16S surveys on mixtures of microbial species with varied related-
ness and controlled input richness levels would enable a joint characterization of detect-
able 16S resolution, taxa reconstruction algorithms, and richness estimators. Fourth,
control for multiple testing over tree structured hypotheses can be incorporated if one
wishes to automate hypothesis testing over taxa collections defined by subtrees of a tax-
onomic tree [69, 70]. Finally, all our empirical observations were based on a set of 16S
surveys that operate over partial 16S gene targets. Because full length 16S surveys also
involve amplification, and sequencing protocols [46], we expect the qualitative nature of
our results to generalize to such surveys, perhaps at a lower taxonomic level (e.g., spe-
cies), and this can be explored.

Taken together, this paper significantly clarifies the dynamics of spurious discovery
accumulation in 16S surveys, presents strategies for modeling their generation, demon-
strates the need to control for the observed false discoveries in microecological surveys
while deriving differential richness inferences, and offers a flexible practical solution to
achieve the same.

Conclusions

Estimates of species richness based on classical richness estimators are biased when eco-
logical surveys include false species generated by misclassifying true species. In the spe-
cific case of 16S surveys, the rate of generation of false taxa strongly increases with the
output abundances of true input sequences. Thus, changes in the abundance of detected
taxa are mistaken for changes in richness by current methods for differential richness
inference. The results in this paper lead to the conclusion that most sub-genus taxa in
16S surveys are spurious. Based on this finding, a flexible method for differential rich-
ness inference was proposed and was shown to the overcome the confounding problem.
The paper clarifies the dynamics of spurious taxa accumulations in 16S microbial sur-
veys and argues for the development of diversity estimators that adapt to species mis-
classifications in modern, highly automated ecological surveys.



Kumar et al. Genome Biology ~ (2022) 23:166 Page 17 of 25

Methods

Prokounter

Our proposed procedure for differential richness inference works in two steps. A con-
trol for false taxa accumulation is established first. The estimated control is subsequently
exploited within standard generalized linear models for differential richness inference.

Let n denote the reconstructed number of taxa for genus g in sample j, y,; denote the
corresponding recovered abundance (i.e., genus’s total count in the sample), and 7 repre-
sent the sample depth.

Let f(logy,) indicate the logged technical contribution to taxa accumulation for a
given genus and its recovered abundance level. This function is used to model the log
of the expected false taxa accumulation. Its estimate ﬂ (log yg,')is obtained using within-
genus taxa accumulation data as follows.

Estimating the technical contribution ﬁ
We explored two strategies to estimate a robust within-genus accumulation trend.
A semi-parametric smoothing spline model is assumed on z,;= logn,;

2 | &9 = 1(89g) +eg = k +fr(logyg) +fc (@) +for (g, logyg,) + &g )

with g,~N(0, ), and appropriate side conditions are placed on f(-) (Chapters 2-3 [71,
72],). Here, x and fz(-) denote the intercept and recovered abundance dependent com-
ponents; f; and f; indicate the genus and its respective interaction functions with the
recovered genus abundance.

Briefly, # is estimated as a unique solution to the penalized optimization problem:
7 = arg minyepy [( h|y.,x.) + 4] (h), where l(-|}, x) is the negative log likelihood, A is a

regularization parameter, and J(-)is a roughness penalty that penalizes overfitting of / to the
data. The specification of J(-) involves, in part, integrals of squared second order derivatives of
the estimand over the range of logy,; thereby enforcing smoothness. Additional File 6 offers
more details on the model construction and an exact correspondence to example 2.7 in Gu
[73]. Numerical optimization is perf ormed using the R package gss [71]. Supplementary fig-
ures Additional File 2:52 and Additional File 2: S18 offer examples of the fits that result.

Thetechnical contribution to taxa growth is estimated as ﬂ (g, logygj) =« + fR (logyg,') + fG @
. Only the significant genus effects are retained after multiple testing correction with the Benja mini-
Hochberg procedure. When the genera contributions are null or similar, as we observed empirically
in several datasets (e.g., Additional File 2: Fig. S9, S10), ft (g, lOgygj) o fR (logygj) A

The latter observation inspires the following alternative strategy: estimate f;(-) as a
net average within-genus accumulation curve using the loess smoother. Both options
are made available in our software. As expected, inferences arising and the results in
Tables 1 and 2 are similar with both approaches. Additional File 2: Fig. S3 offers exam-
ples of the fitted trends. The spline strategy does offer better control in the presence of
systematic genus effects (Additional File 2: Fig. S18).

For consistency;, in this paper, we have chosen the spline strategy.

The fitted f’t(.) can be used to control for false taxa accumulation in standard differen-
tial richness inference procedures. In Prokounter, we incorporate it through the models
presented below.
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Differential richness in ference

We use Greek letters to indicate regression parameters. A -in the subscript indicates vec-
torizing over the subscript. X denotes the experimental design matrix. Genus-specific,
sample-wide, and taxa collection models are presented in Equations (2—4) below. In each
case, given the quantity modeled, reasonable transformations of the estimated logged
technical contribution, f;(~), based on Eq. 1, are used. Terms involving X below can be
viewed to approximate the effects arising from genus-recovered abundance interaction
terms from eqn. 1.

Genus-specific differential richness inference

The conditional mean of the observed richness is modeled through the link:
logE [ng v X, i()] = X" g + v (10, @)

where the right hand side is an approximate form for the log of the conditional expec-
tation of the right hand side of Eq. (1).

Sample-wide differential richness inference

For inference across sample groups, we posit:
T 1 i
10gE [n41 . X, /i ()] = X;T¢ + ylogzg:ywoeff( °&g) 3)

where the + indicates summation over a subscript. As in Eq. (2), the right hand side
of Eq. (3) is an approximate form for the log of the conditional expectation of the right
hand side of Eq. (1), now summed over g. The net sample-wise technical contribution is
modeled as a simple sum of the technical contributions from the genera detected in the
sample. Although Eq. (3) does not immediately arise from eqn.(2), we find the simplicity
and emphasis on dominant contributors to the sum, the more abundant genera, appeal-
ing. In addition, we often find that v,~1 and y~ lin applications.

Differential richness inference for arbitrary collections of genera
For an arbitrary taxonomic group k (e.g., phyla), with a set of member genera G,, we
assume:

logE [nyg] y¢., X, fe(1)] = Xy + yklOngekayg,weﬂ(logw) (@)

As with the sample-wide model, here too, we have modeled the sample-wise technical
contribution for each collection k based on the sum of genus-level technical contribu-
tions, but now restricted only to those genera considered within the collection.

Keeping to the traditional theme of continuous Poisson mixtures driving sample-wide
species accumulations, we chose negative binomial variance functions when perform-
ing sample-wide inferences and Poisson variance functions for genus-specific richness
inferences. For the several studies considered here, the estimated overdispersion coeffi-
cients for sample-wide negative binomial models were in the range of 1073 to 10, For

well expressed genera, inferences and model diagnostics were not sensitive to the two
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distribution assumptions. Parameter estimation and inference on the regression param-
eters 4, (and yywere performed using R’s glm function. Maximum likelihood estimation
with iteratively reweighted least squares converges rapidly in about ten iterations or less.
Speaking to the explanatory power of ft, as implied by Tables 1 and 2, the residual devi-
ance is often small, on the order of the residual degrees of freedom. To gauge reproduc-
ibility of inferences over fitted f’t(~), confidence intervals based on the bootstrap ¢ [74]
are also available for the regression coefficients of the sample-wide differential richness
inference model.

The above models, which were used to generate the results in the applications section,
exploit observed richness as response variables and are therefore non-asymptotic in
nature. In the several 16S surveys considered here, asymptotic genus-wise and sample-
wide richness estimates heavily tracked their respective observed richness values (97—
100% Pearson correlations, Figs. S13-S17). We therefore propose the same regression
models above for standard inverse variance weighted regression analyses of asymptotic
richness estimates. As expected, results from such a procedure were similar to those
obtained with observed richness as the response variable. Also see ref. [26] for a hetero-
geneity test of potential interest.

We implement these procedures in an R package Prokounter. Additional File 4 pre-
sents further discussions on the regression models above.

Package and code availability
The R package Prokounter is available at the URL: https://github.com/mskb01/proko
unter

Code for the paper is available under https://github.com/mskb01/prokounterPaper

Richness estimators and differential analyses
Estimates and standard errors for Chaol and ACE estimators were calculated using the
R package vegan [75]. Breakaway and Breakaway_nofl estimates and standard errors
were obtained using the R package Breakaway. Chiu-Chao method’s estimates and
standard errors were obtained using the source code attached to the original paper [35].
Differential richness inferences corresponding to the five estimators were obtained with
the R package Betta [26]. Rarefaction based interpolated and extrapolated richness esti-
mates and standard errors were obtained using the package iNext [76]. The R package
doParallel [77] was used for several parallel computing tasks.

The following datasets and study design variables were used to construct design matri-
ces for sample-wide and genus-specific differential analyses reported in the applications
section.

1. Hydrocephalus [56] (PIH100 FST97)—control and case

2. Wastewater [55] (WW FST99)—Influent, effluent, before uv treatment, after UV
treatment, pond storage, and inlet to pumphouse for subsequent spray irrigation

3. MBQC, Handling lab B (MBQC-HLB) - Gut mock, oral mock, the rest of the stool
samples were typed as other
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4. Time series study [2] (TS FST97, Donor B)— based on the original study, three time
windows were established to define sample groups: days up to 150 were categorized
as pre-infection, days from 151 u pto 159 as infection, and days post 159 were typed
as post-infection

5. Pseudomonas dilution study (Pseudomonas FST97)—number of cycles and logged
number of input Pseudomonas cells

Dilution experiment

A monoisolate was prepared overnight from a Luria-Bertani (LB) agar plate into a 5mL
LB liquid, which grew to 10° cells. A tenfold serial dilution of cells from 10° to 10 cells
in phosphate buffer saline (PBS) was generated. DNA was isolated, 16S amplified, and
sequencing libraries were prepared as previously described [56]. Briefly, DNA was iso-
lated using the Zymobiomics DNA miniprep kit following manufacturers’ protocol
with bead beating and proteinase K treatment. For 16S amplification, primer-extension
polymerase chain reaction (PE-PCR) of the V1-V2 region was performed using an M13
tagged 336R universal primer as previously described [78], and amplification cycles
were varied. Briefly, target DNA was mixed with a 10 pl of 10X buffer and annealed with
M13 tagged 336R by first heating to 95°C and then cooling to 40°C slowly. The annealed
product was extended using Klenow polymerase (5 U/ul and primers digested with 20U/
ul Exo I (NEB, USA), then amplified with 500nM primers (805R and M13) using the
MolTaq 16S Mastermix (Molzym GmbH & Co Kg, Germany). Library preparation was
done with the Hyper Prep Kit (KAPA Biosystems, USA) following the manufacturer’s
protocol and libraries were sequenced on MiSeq using the 600 cycle v3 kit. Sequencing
reads are available from SRA under the Bioproject ID: PRINA779422.

16S datasets and taxa reconstruction pipelines

All datasets were obtained as described under the “Availability of data and materials”
section. We generated three varieties of taxa count data from each of the Pseudomonas,
PIH100 16S, and MBQC HL-B (handling lab B) sequencing data. These include sequence
similarity threshold based taxa clustering methods for 99% and 97% sequence similari-
ties (Qiimel), and a probabilistic taxa clustering method (Dada?2) as follows.

Quality filtering of sequencing reads

Paired-end reads were processed with Trimmomatic [79] (v0.38) to remove universal
adapters and low-quality reads. Reads with ambiguous bases were removed or truncated
using DadaZ2’s filterAndTrim [80] function. The 16S V1-V2 regions in both our Pseu-
domonas and PIH100 data were sequenced using 2x300bp paired-end reads. Based on
sequencing read quality score profiles, we retained the first 240bp and 210bp in the for-
ward and reverse reads for the Pseudomonas dataset. These numbers were respectively
200bp and 190bp for PIH100. For HL-B, we removed the first 2bp following the primers
in the forward and reverse reads. This allowed us to neglect the trailing low quality bases
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adversely affecting the taxa reconstructions, while still allowing for sufficient overlap to
merge paired-end reads.

Reads with either the designed primers or their reverse complements were filtered
using cutadapt [81]. The quality filtered reads were then clustered with Qiimel [82] and
Dada 2[80] as below.

Qiime1

Quality filtered forward and reverse reads were merged using Pear [83], and then clus-
tered using pick_open_reference_otus.py (Qiimel version 1.9.1), which implements the
Qiimel open reference OTU clustering algorithm. Briefly, closed reference clustering of
merged reads were performed against the Silval32 database at 97% and 99% sequence
similarity thresholds, using Uclust [84] v.1.2.22q . Reads that did not map to the data-
base were subsampled and used as new centroids for a de novo OTU clustering step
at the respective sequence similarity thresholds. Remaining unmapped reads were sub-
sequently close clustered against the de novo OTUs. Finally, another step of de novo
clustering was performed on the remaining unmapped reads. Taxonomy was assigned
to taxa representative sequences with Uclust based on the Silva132 [85] database. These
sequences were filtered with Pynast [86], and OTU tables generated.

Dada2

Dada2 allows denoising forward and the reverse reads independently. Error rates were
estimated separately for the quality filtered forward and reverse reads for each sam-
ple. This estimation step is based on a sample of reads for computational tractability.
Reads were deduplicated and sequence clusters inferred based on the estimated error
rates. Taxa from forward and reverse reads were merged at the end of the workflow. Chi-
meric taxa were removed with the function removeChimeraDenovo. The resulting taxa
were assigned taxonomic labels based on the Silval32 database, using their naive Bayes
classifier.
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