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Background
Much attention in the analysis of single-cell data has focused on grouping cells to cell 
types or on modeling trajectories of cell development and differentiation [1, 2]. Much 
less work in this area has focused on the analysis of genes within identified clusters or 
for a given path within reconstructed trajectories. Methods that have been developed for 
these tasks, including scLM [3], and GPseudoClust [4], have mainly focused on cluster-
ing genes within cell types and did not utilize dynamic information obtained from time 
series scRNA-Seq studies or from other trajectory inference methods.

A unique aspect of scRNA-Seq data is the ability to extract detailed dynamics even 
when using a small number, or a single, time point. Such analysis, which is often termed 
pseudotime ordering of cells results in a reconstructed trajectory of cells along a (usually 
small) number of branches and paths. An important question for the resulting trajectory 
is, What are the sets of expressed and repressed genes that are activated or repressed 
along a specific branch in the model and how different branches vary in such sets? This 
information can be very useful in determining the function or type of cells along a cer-
tain path [5]. Moreover, comparing such clusters between two paths that split at a cer-
tain point in the pseudotime can help explain the differences that led to the separation 
and in some cases can be used to predict specific interventions that may affect cell fate 
decisions [6].

Abstract 

We develop scSTEM, single-cell STEM, a method for clustering dynamic profiles of 
genes in trajectories inferred from pseudotime ordering of single-cell RNA-seq (scRNA-
seq) data. scSTEM uses one of several metrics to summarize the expression of genes 
and assigns a p-value to clusters enabling the identification of significant profiles and 
comparison of profiles across different paths. Application of scSTEM to several scRNA-
seq datasets demonstrates its usefulness and ability to improve downstream analysis of 
biological processes. scSTEM is available at https://​github.​com/​alexQ​iSong/​scSTEM.
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While clustering of genes along paths is of interest, it is also challenging. As men-
tioned above, the number of branching points in an inferred trajectory is usually quite 
small [7, 8]. This means that genes in different paths often share parts of the paths and, 
assuming a constant rate change along a specific edge in the path, that the actual number 
of different values we can obtain for a gene along each of the paths is fairly small (Fig. 1). 
Thus, any clustering methods that would attempt to cluster pseudotime ordered data 
would have to account for the large overlap and the relatively small number of effective 
time points.

To provide such method that can be used to cluster pseudotime ordered data, we 
extended the Short Time-series Expression Miner (STEM) [9] so that it can be applied 
to scRNA-Seq data. STEM was originally developed for short time series bulk data and 
employs a unique approach to identify significant clusters. Unlike most methods that 
are data driven, STEM pre-computes the set of all possible expression profiles. It then 

Fig. 1  Flowchart of scSTEM pipeline. A The flowchart of scSTEM gene clustering. Colored solid circles 
represent cells mapped to different key segments of a trajectory tree. Aggregation of expressions are 
performed for each key segment. The resulted matrix (rows as genes and column as key segments) will be 
used as input for STEM to perform gene clustering. B Comparison function enables comparison of clustering 
results from different trajectory paths. This will identify clusters having similar genes but showing different/
similar temporal expression patterns



Page 3 of 17Song et al. Genome Biology          (2022) 23:150 	

assigns genes to the pre-computed expression profiles and groups similar profiles to cre-
ate clusters. By using a pre-defined set of profiles, STEM can assign significance to each 
cluster by comparing the enrichment of a profile to an enrichment of the same profile for 
randomized temporal data. Since STEM needs to account for all possible profiles, such 
method can only work for short time series datasets [10]. STEM is the most widely used 
method for clustering time series bulk data, though until now was not able to cluster 
single-cell data.

Here, we extended STEM and developed scSTEM, which can use trajectory informa-
tion from single-cell data to cluster genes. To perform such clustering, scSTEM first 
uses one of several pseudotime inference methods to construct a trajectory for a given 
scRNA-Seq data. Next, for every gene in every connected component in the analysis 
scSTEM generates summary time series data using several different approaches for each 
of the paths. This data is then used as input for STEM and clusters are determined for 
each path in the trajectory. Users can also compare STEM clusters between two trajecto-
ries in the same component to determine what are the differences in genes and biological 
processes that led to the divergence of these trajectories. We compared scSTEM to sev-
eral other methods and show that scSTEM produced the best functional relevant clus-
ters and scales well to large single-cell datasets. We have tested scSTEM on a number 
of datasets with different trajectory inference methods and gene summarization meth-
ods. As we show, scSTEM can correctly identify the key functional processes expected 
to be active along different paths. In addition, comparisons using scSTEM provide bio-
logical insights about the activity of different cell types, including clusters distinguishing 
between very similar cell types such as T cells and NK cells.

Results
scSTEM—clustering time series scRNA‑Seq data

The overall idea for scSTEM is to cluster genes based on their temporal expression pat-
terns along a given trajectory path. The clustering process starts with building a tra-
jectory tree using expression count matrix, gene metadata, and cell metadata as input 
files. scSTEM can work with several trajectory inference methods including several 
popular methods (Monocle 3 [11], Slingshot [7], PAGA [12], etc., see “Methods”). For 
an input dataset, following trajectory inference a user can select one of the paths using 
the scSTEM GUI. scSTEM then uses one of the several metrics (“Methods”) to sum-
marize the expression profiles of genes along the selected path. These values, for each 
gene, are then used as inputs for STEM clustering. By using aggregated gene expressions 
along each path, scSTEM reduces the impact of noise and dropouts while still taking full 
advantage of scRNA-Seq data to identify many different trajectories within a time series 
dataset. The final output from scSTEM for each path includes (1) a table of enriched GO 
terms for each cluster, (2) a table of gene list and corresponding cluster assignments, 
and (3) a plot showing temporal gene expression profiles. Each profile represents a small 
set of genes with similar temporal pattern, and significant profiles are further grouped 
together to construct larger clusters. Figure 1A illustrates each key step of the scSTEM 
pipeline. Apart from clustering genes on each individual path, scSTEM also allows for 
comparison of clustering results between different paths (Fig.  1B). This would match 
clusters having similar genes that may be expressed differently in different branches. In 
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the following subsections, we will demonstrate application of scSTEM to a number of 
time series scRNA-seq data sets.

Identification of functional gene clusters using scSTEM

We applied scSTEM to three scRNA-seq data sets: (1) human fetal immune cells [13], 
(2) mouse embryonic blood cells [11], (3) mouse embryonic neural crest cells [11]. For 
each data set, we selected a subset of genes for our analysis. These genes can either be 
top-ranked cell-type-specific marker genes or highly variable genes. We have found that 
such filtering is important for trajectory inference and for scSTEM to produce meaning-
ful and compact gene clusters (Additional File 2: Fig. S1). We preprocessed the expres-
sion count matrix, cell metadata, and gene metadata as described in “Methods”.

Human fetal immune cells [13]

In this study, researchers looked at fetus development and profiled cells from several dif-
ferent tissues over time. To focus on a specific biological process, we have analyzed the 
set of blood cells from this dataset (103,766 cells sampled at 18 time points). Cell type 
annotations provided in the original publication [13] have identified several immune cell 
clusters within these blood cells including ILC3 cell, T cell, and NK cell cluster. We next 
used Monocle 3 and mean expression to perform scSTEM clustering analysis for the 
immune cell partition for this data set. Monocle 3 identified 7 paths, and scSTEM analy-
sis of these resulted in several significant clusters (between 1 and 5 significant clusters 
per path, each with 35 ~ 301 gene) (Additional file  1). These clusters successfully cap-
tured key properties of these cells and the genes activated during their development. As 
can be seen in Fig. 2, cluster 0 in path 1 is associated with regulation of NK cell-mediated 
cytotoxicity (Fig. 2B), while cluster 1 in path 5 and cluster 1 in path 4 are both associated 
with T cell activation and differentiation (Fig. 2C, D). We have also tested other methods 
for pseudotime inference with this data and observed similar results. For example, the T 
cell activation and differentiation cluster and path were also captured by using Slingshot 
and mean expressions (Fig. 2C). Expressions of genes in significant clusters mostly show 
an increase in levels as cells transition along the trajectory enabling the identification of 
those genes that are likely associated with immune cell fates (Fig.  2B–D). Using addi-
tional trajectory inference methods and other expression summarization methods leads 
to similar results as shown in Additional file 2: Fig. S2 and Additional file 2: Fig. S3.

Mouse embryonic blood cells

This data set investigated gene expressions during early organogenesis of mouse 
embryo [11]. In this analysis, we applied scSTEM to erythroid and white blood cells 
(42,262 cells sampled from 5 time points). We used the cell type annotations as given 
in the original publication [11]. Although there is no clear separation of cell types in 
the 2D UMAP space, scSTEM was able to identify significant clusters consisting of 
immune development and immune response-related genes (Fig.  3B, C, interleukin-
related terms and phagocytosis-related terms). Using Monocle3 and mean expres-
sions, scSTEM has identified 6 paths each with between 1 and 5 significant clusters, 
and each path contains 52 ~ 401 genes (Additional file  1). Interestingly, in contrast 
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to the increased expressions of immune response-related clusters, cell development/
immune system development-related clusters are characterized by decreased expres-
sion levels of genes assigned to these profiles (cluster 1 in Fig. 3B and cluster 1 of path 
5 identified by Monocle 3 + mean expressions in Fig. 3C). This is likely the result of 
fixation of the terminal cell fate as time progresses which leads to repression of devel-
opmental programs in these cells. In contrast, as time progresses more and more, fate 
(immune)-related genes are expressed at higher levels as indicated by the profiles. 
Therefore, scSTEM can reveal functional gene clusters modulating different biologi-
cal processes, as well as their temporal expression patterns. For this data set, we also 
applied PAGA and entropy reduction as additional trajectory inference method and 
additional gene summarization method and compared them to the Monocle 3 + mean 
expression results. As illustrated in Fig.  3C, PAGA and Monocle 3 have identified 
similar paths and clusters, showing increased immune response activity by mean 
expression and entropy reduction. Results for other trajectory inference methods can 
be found in Additional file 2: Fig. S4 and Additional file 2: Fig. S5.

Fig. 2  scSTEM results for human fetal immune cells. A UMAP visualization of human fetal immune data set. B 
scSTEM results for path 1 (NK cell-related path), with top 10 enriched GO terms (ranked by enrichment fold). C 
Comparison of scSTEM results between using Monocle3 and using Slingshot as trajectory inference method. 
The top 10 enriched GO terms have shown T cell-related activities. D scSTEM results and enriched GO terms 
for path 5, a T cell-related path. The top 10 enriched GO terms have shown T cell-related activities. Black 
curves indicate the trajectory tree, and the highlighted red curves are edges along one selected path. Yellow 
cells are cells mapped to the selected path and grey cells are other remaining cells
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Fig. 3  scSTEM results for mouse embryonic blood cells and comparison for different trajectory inference 
methods and different gene summarization methods. A UMAP visualization of mouse embryonic blood 
cell data set. B scSTEM results for path 1, with top 10 enriched GO term (ranked by enrichment fold). C 
scSTEM results and the top 10 enriched GO terms for different trajectory inference methods and different 
gene summarization methods. Black curves indicate the trajectory tree, and the highlighted red curves are 
edges along one selected path. Yellow cells are cells mapped to the selected path and grey cells are other 
remaining cells
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Mouse embryonic neural crest cells

Finally, we applied scSTEM with Monocle 3 and mean expression to neural crest cells 
in mouse embryo organogenesis data set (22,283 cells sampled from 5 time points). 
scSTEM has identified 12 paths with 1 ~ 6 significant clusters (Additional file  1). Sev-
eral of the significant clusters identified by scSTEM are related to neuron development 
(Fig. 4B, C, E), and these clusters can be used to identify new genes associated with these 
functions. Note that these clusters showed diverse expression patterns. For example, 

Fig. 4  scSTEM results for mouse embryonic neural crest cells. A UMAP visualization of mouse embryonic 
neural crest cell data set. B–D scSTEM results and the top 10 enriched GO terms (ranked by enrichment fold) 
for clusters in different trajectory paths. Black curves indicate the trajectory tree, and the highlighted red 
curves are edges along one selected path. Yellow cells are cells mapped to the selected path and grey cells 
are other remaining cells
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cluster 1 in path 2 (Fig.  4B) and cluster 1 in path 7 (Fig.  4E) show decreased expres-
sions for neuron/axon development-related genes, while cluster 1 in path 5 (Fig.  4C) 
represents increased expressions for neuron/axon development. This suggests the same 
functional module may drive cells towards different terminal fates through modulation 
of gene expressions. Results for additional trajectory inference and gene summarization 
methods can be found in Additional file 2: Fig. S6 and Additional file 2: Fig. S7.

scSTEM can characterize functional role of unannotated cell clusters

One challenge users may face is to determine the functional role of cell cluster when cell 
type annotation is not available. Here, we demonstrate that scSTEM is able to charac-
terize the functional role of unannotated cells in the human fetal immune cell data set 
[13]. We applied scSTEM to the largest unannotated cell cluster and its adjacent clus-
ter in spleen tissue using Monocle 3 + mean expression. In the original publication, the 
authors did not identify a specific cell type for these cells but marked this cluster based 
on its highly expressed genes STC2 and TLX1. We therefore used “STC2_TLX1” to label 
this cell cluster. This cell cluster may represent progression from an unknown cell type 
towards stromal cell (Additional File 2: Fig. S8 A B). The results showed that scSTEM 
has identified cluster0 in path3 as significant. This cluster is characterized by a strong 
decline in expressions, which may signify its role during the cell transition. GO analysis 
further revealed that cluster 0 is likely to associate with “antigen processing and pres-
entation of endogenous antigen” (corrected p-value = 0.004, Additional File 2: Fig. S8 
C). The discussions in the supplementary materials of human fetal immune cell data set 
paper [13] suggested this STC2_TLX1 cell cluster may relate to mesenchymal precursors 
or stem cells. These cells have been reported to activate antigen presentation [14, 15]. 
Although the true cell type of STC2_TLX1 cell cluster remains undetermined, scSTEM 
analysis may help to annotate this unknown set of cells based on the profiles and func-
tion of the clusters.

Comparison of functional gene clusters using scSTEM

In addition to clusters of expressed or repressed genes within specific paths, an impor-
tant biological question is the identification of differentially activated pathways and pro-
gram between different conditions, cell types, and developmental stages. For example, 
an important question in single-cell analysis is determining the reasons for a branching 
point in which some cells continue to one fate whereas others continue to another. A 
possible way to address this is to compare the expression of significant clusters between 
two paths in a trajectory to determine if the same set of genes display significantly dif-
ferent expression patterns following the branching point. scSTEM can be used to iden-
tify such differences between two cluster sets by identifying significant intersections in 
genes assigned to profiles in two different paths (“Methods”).

We performed the comparative analysis using human fetal immune cell data set to 
compare the clustering results related to the two very similar cell populations, T cells 
and NK cells. By using Monocle 3 + mean expressions, we have identified clusters with 
similar genes that showed discrepant expression patterns in different paths. As can be 
seen Fig. 5A, path 2 is related to progression towards NK cells while path 6 and path 
7 are related to progression towards T cells. These two cell types are fairly similar, and 
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identification of the specific program that differs between them is of interest. scSTEM 
identified that genes assigned to Cluster 0 in path 2 (C0P2, 301 genes) significantly 
overlap genes assigned to cluster 2 in path 7 (C2P7, 124 genes) and cluster 2 in path 6 
(C2P6, 56 genes). See Additional file 3 for genes assigned to the clusters in each path. 
Genes in C0P2 display elevated expressions (See Additional File 2: Fig. S9 for detailed 
visualizations of gene profiles and clusters) along NK cell developmental path, and GO 
enrichment analysis indicates that these genes are significantly associated with NK cell 
cytotoxicity (Fig.  5C and Additional file  4). In contrast, for the T cell path, the same 
genes are assigned to C2P7 and C2P6 which display increased expressions at the begin-
ning (shared part of the path) but decreased expressions later when the T cell fate is 
achieved. Interestingly, many of the genes in C0P2 are known NK markers (14 genes, 
hypergeometric test, p-value < 0.001). These markers include SAMD3, a signal trans-
ducer protein that has been reported to have reduced expressions in T cells [16]. GZMM 
and GZMA were also included in the C0P2 cluster. These are granzymes that mediate 
targeted cell death through NK cells [17]. GZMM is reported to be primarily expressed 
in NK cells and has shown reduced expressions in other innate T cells [17]. Although 
GZMA has been reported to be expressed both in T cells and NK cells, the observed 
expression patterns may indicate that GZMA has a stronger role in NK cells, which is 
less characterized in previous studies. Thus, by identifying differential expression pat-
terns for significant clusters, scSTEM was able to zero in on some of the key NK-specific 
genes and show that their expression indeed differs in T cells.

Fig. 5  Comparison of functional gene clusters in human fetal immune cell data set. A The Comparison for 
clustering results between NK cell path and T cell paths. Each row on the left side represents one scSTEM 
cluster from path 2 (NK cell path), which significantly overlapped with each cluster shown on the right 
side (clusters from T cell path). Highlighted clusters are the ones significantly enriched for NK cell markers 
in each path. Black curves indicate the trajectory tree, and the highlighted red curves are edges along one 
selected path. Yellow cells are cells mapped to the selected path and grey cells are other remaining cells. 
B Differentiation of T cells and NK cells. C The top 10 enriched GO terms for path 2 (NK cell path, ranked by 
enrichment fold), cluster 0 (highlighted in A)
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To further validate the role of the genes, we compared all three clusters to 80 avail-
able human NK cell expression markers [18] (https://​www.​pangl​aodb.​se/​marke​rs.​html?​
cell_​type=%​27NK%​20cel​ls%​27). We performed hypergeometric test and used all protein 
coding genes (19,965 genes) in GRCh38 genome [19] as background. The results showed 
that C0P2 has 14 NK cell markers (p-value < 0.001) and C2P7 has 4 NK cell markers 
(p-value < 0.001) and no NK cell markers were found in C2P6. The comparison between 
C0P2 and C2P7 is consistent with the expectation that NK cell marker genes showed 
increased expression early in the common developmental path between NK cells and T 
cells (Fig. 5A, B) but later in the more differentiated NK cell-specific path and T cell-spe-
cific path, these genes showed drastically different expression patterns, possibly leading 
to different cell fates. The above analysis used all protein coding genes as background for 
hypergeometric test. We have also performed a stricter analysis in which we compared 
scSTEM significant clusters to the subset of 3000 genes which passed the initial filtering. 
For this analysis, we still observed a significant enrichment of NK cell markers for C0P2 
(p-value = 0.012) though the enrichment for C2P7 was not significant (p-value = 0.240) 
when using this reduced background.

Comparison with previous clustering methods

To further evaluate the clusters identified by scSTEM, we compared scSTEM cluster-
ing results to a number of other single-cell gene clustering methods (scHOT [20] and 
tradeSeq [5]). Since a common workflow for single-cell analysis is to first identify differ-
entially expressed (DE) genes and then perform GO enrichment analysis based on rank-
ings by p-values from DE analysis, we have also compared our pipeline to two single-cell 
DE methods (Monocle 3 and tradeSeq [5]). In this analysis, we focused on the NK cell-
related path in human fetal immune cell data set [13] (3000 genes and 4058 cells). Since 
there is no standard metric for comparing gene clustering results, we used NK gene ratio 
to evaluate the results (number of genes annotated with natural-killer-cell-related func-
tions divided by cluster size or DE gene number). Results show that scSTEM achieved 
the best functional relevance, with highest NK gene ratio among all methods (5.98% for 
scSTEM, 0% for scHOT, 3.39% for Monocle 3, 3.72% for tradeSeq in DE analysis, and 
0% for tradeSeq in clustering analysis). See Additional file 2: Fig. S10 A B for complete 
results. As for computation efficiency, scSTEM is the second-fastest method among all 
methods (16 s for Monocle3, 60 s for scSTEM, > 10,000 s for tradeSeq and > 40,000 s for 
scHOT). Additionally, scSTEM only produced two significant clusters, as compared to 
66 clusters from tradeSeq and 6 clusters from scHOT, which may make the clustering 
results easier to interpret. To evaluate whether scSTEM can capture underlying biologi-
cal signals from DE genes, we generated synthetic scRNA-seq datasets with simulated 
DE genes. (See Additional File 2: Supplementary Note for results).

Discussion
Several methods have been developed to reconstruct trajectories using single-cell data. 
To enable downstream analysis of the resulting trajectories and the clustering of genes 
along paths in each trajectory, we extended the STEM method and developed scSTEM. 
scSTEM retains much of the features that made STEM a big success in bulk time series 
analysis. Specifically, scSTEM is able to assign significance to profiles and to group 

https://www.panglaodb.se/markers.html?cell_type=%27NK%20cells%27
https://www.panglaodb.se/markers.html?cell_type=%27NK%20cells%27
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similar profiles to form clusters. Since the clusters are not data driven, scSTEM also 
allows the ability to compare clusters between trajectories to infer key differences that 
may indicate which biological processes or functions leading to the observed branching 
in the inferred trajectory.

To enable the use of single-cell data in STEM, we combined it with several popular 
pseudotime inference methods. Users can choose one of these methods to infer trajec-
tories and then perform scSTEM analysis on the resulting paths. scSTEM provides a 
number of options for users for summarizing genes along an edge in the path. The first 
is mean expression which works well for cases where the expression of genes along a 
specific path is expected to be homogeneous (for example, in cases where the data is 
sampled at a high rate and so there are only small differences between cells on the same 
path). Rate change may be a useful metric for cases where cells are expected to change 
along a path in a predictable way (for example during development, some pathways are 
expected to be steadily increasing whereas others decreasing). Finally, entropy can be 
used for cases where little is known about the underlying molecular activity in each path.

Once the user selects a trajectory inference and gene summarization method, scSTEM 
clusters cells along each path. These clusters are easy to interpret and are represented 
by cluster plots in which the trend of expressions corresponds to the progression of 
cell fates along each specific trajectory path. Gene clustering of each path is fast (less 
than 30 s for each trajectory path analyzed in this study), making it possible to cluster 
thousands of genes from many cells without the need to limit clustering to only a few 
hundred of genes as in [4]. Although scSTEM still needs some “prefiltering” process to 
reduce the list of input genes to a few thousand (3000 ~ 5000 in this study), the cluster-
ing engine can easily handle larger number of genes. However, to generate interpretable 
results, we recommend the users to limit to a few thousand of input genes. Following 
clustering, the user can also compare significant profiles across clusters to identify path-
ways and processes that differ between different paths. scSTEM performs comparison by 
testing the number of overlapping genes in clusters from different paths. Users can then 
compare the expression patterns of clusters with significant overlap and combine with 
other evidence (GO enrichment, cell type information, etc.) to determine whether there 
are functional relevancies between clusters. An important assumption used by scSTEM 
is that the expression change of a gene along the edges between milestones is linear. 
There is some prior work that supports this idea for time series expression data [21]. We 
have also further examined whether such linearity is observed for genes in the human 
fetal immune cell data set. Genes expressed in at least 5% of the cells that mapped to 
the edges were selected for this analysis. For each gene, we used corrected p-values (BH 
corrections) from F test to evaluate the fit of a linear model. As shown in Additional File 
2: Fig. S11, we observe a significant fit for a linear model for over 50% of the genes for 
internal (non-terminal) edges. We observe less agreement for terminal edges, but this 
is in part a function of the way the trajectory is constructed. Terminal edges have much 
fewer cells and significant than internal edges (since each branching further splits the 
number of genes) which leads to noisy expression profile that is harder to model using a 
simple curve. As a method for sanity check, we have added the relevant functionality in 
scSTEM interface, where users can conveniently generate plot that shows linear fit for a 
trajectory path.
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While useful, there are several limitations that should be noted. First, scSTEM relies 
on trajectory inference methods, which may not accurately reconstruct cell trajectories. 
While the package provides access to several such methods, and so it is likely that at 
least a few will work well, there is no guarantee that the resulting trajectories indeed cap-
ture the underlying process. Second, most trajectory inference methods do not reflect 
directionality of progression along the path. scSTEM uses real time point information 
to pinpoint the origin of the trajectory tree, but if such time information does not agree 
with the real direction, the analysis would be inaccurate. Third, in some cases, trajec-
tory methods provide too many branches, which artificially increases the path length 
and may be detrimental to scSTEM analysis.

To further improve scSTEM in the future, time point information may be explicitly 
used during the construction of trajectory and clustering of genes. Methods that provide 
directionality of single-cell progression such as RNA velocity [22, 23] may be considered.

We have provided scSTEM as an R shiny GUI-based tool which does not require 
any coding experience (available at https://​github.​com/​alexQ​iSong/​scSTEM). While 
not being limited to bioinformatians and computational biologists, we aim to provide 
scSTEM to the broader audiences of all researchers interested in analyzing scRNA-seq 
data.

Conclusions
We have developed a computational tool, scSTEM, to cluster genes for scRNA-seq 
data. We applied scSTEM to published scRNA-seq data sets, and the results showed 
that scSTEM has successfully captured the T cell, NK cell, immune process, and neuron 
development-related gene clusters. The comparison between gene clusters from T cell 
and NK cell trajectory path has revealed NK cell-specific expression patterns of several 
genes. scSTEM is able to work with different trajectory inference methods for single-cell 
data. Users may choose the method of interest and identify the best method for the rel-
evant biological question. We believe scSTEM can be used as a powerful tool to dissect 
complex scRNA-seq datasets and reveal meaningful gene expression patterns.

Methods
Retrieval and preprocessing of data sets

We have tested scSTEM on three time series single-cell data sets: (1) human fetal 
immune cells [13], (2) mouse embryonic blood cells [11], (3) mouse embryonic neural 
crest cells [11]. For the human fetal immune cell data set, we downloaded processed 
UMI counts from https://​desca​rtes.​brotm​anbaty.​org/​bbi/​human-​gene-​expre​ssion-​dur-
ing-​devel​opment/. The data set contained 103,766 cells sampled at 18 time points. For 
this data set, we used the top 3000 cell-type-specific marker genes as was done in the 
original publication [13]. For mouse embryonic blood cells and mouse embryonic neural 
crest cells, we downloaded processed UMI counts from https://​oncos​cape.​v3.​sttrc​ancer.​
org/​atlas.​gs.​washi​ngton.​edu.​mouse.​rna/​downl​oads. The mouse embryonic blood cell 
dataset contained 42,262 cells sampled at 5 time points while the neural crest dataset 
contained 22,283 cells and 5 time points. For both datasets, we filtered genes expressed 
in less than 10 cells and cells expressing less than 200 genes. We next identified the top 

https://github.com/alexQiSong/scSTEM
https://descartes.brotmanbaty.org/bbi/human-gene-expression-during-development/
https://descartes.brotmanbaty.org/bbi/human-gene-expression-during-development/
https://oncoscape.v3.sttrcancer.org/atlas.gs.washington.edu.mouse.rna/downloads
https://oncoscape.v3.sttrcancer.org/atlas.gs.washington.edu.mouse.rna/downloads
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5000 most variable genes by Seurat (Version 4.0.3) and used these genes for downstream 
analysis.

scSTEM pipeline

Normalization and dimensionality reduction

For initial visualization of the data, scSTEM performs normalization of UMI count 
data using log normalization provided by Monocle3 package [11]. Normalized data is 
reduced to 100 dimensions prior to dimensionality reduction by UMAP.

Selection of cells by partition

Instead of using all cells to perform trajectory inference, it is important to infer trajec-
tory tree for a subset of cells relevant to the biological question of interest. Therefore, 
scSTEM allows users to select a subset of cells after the dimensionality reduction step 
and before trajectory inference step. scSTEM uses Leiden algorithm to cluster cells. For 
each connected component in the Leiden graph, the software assigns a cluster ID allow-
ing the users to analyze each of these separately. User can then select the cell partition 
by selecting the corresponding cluster IDs in the scSTEM GUI and perform trajectory 
inference for the selected cells.

Trajectory inference

To perform pseudotime inference, scSTEM allows users to select one of several popular 
methods. To enable this, we use a general trajectory inference framework provided by 
the dynverse package [2]. Dynverse supports several popular methods including sling-
shot [7], PAGA [12], and more. The trajectory is represented by a graph in which each 
node is a milestone node and edges connecting them represent transitions between two 
milestone nodes. Although scSTEM is primarily designed to work with general trajec-
tory structures, it imposes some constraints which impacts the set of methods that can 
be used for the initial pseudotime inference. These include (1) the inferred trajectories 
provided by the method should follow a tree structure without loops; (2) the inference 
method only takes a set of starting cells as prior information if prior information is 
required. These requirements still leave a very large set of 19 trajectory inference meth-
ods which can be used with scSTEM (See Additional file 2: Table S1).

Trajectory inference will produce a trajectory tree, with nodes representing possible 
cell states and edges representing the transitions among these cell states. Following the 
terminologies used by Dynverse, we term these nodes as “milestone nodes.” A path is 
the shortest path connecting the root node and a leaf node. The goal for scSTEM is to 
perform gene clustering on each path. scSTEM assigns an ID number to each path. The 
user can then select a single or multiple path(s) by checking the corresponding path ID 
numbers in the GUI.

Summarizing gene expression levels along a path

While each path may contain hundreds or even thousands of cells, the changes between 
milestone nodes is usually linear for genes. Thus, the trajectory of a specific gene along a 
specific path can be represented with a small set of values, one for each of the milestone 
nodes along the paths. These values are used as inputs to scSTEM to cluster the genes 
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along the path and to assign significance value to the clusters. However, there are several 
different ways in which one can summarize the expression of genes along the path and 
different summarization may be more appropriate for different studies.

scSTEM provides three methods for aggregating expression levels from cells assigned 
to a specific segment. A segment is defined as the set of milestone nodes and edges con-
necting two consecutive milestone nodes in the trajectory. We define three types of 
milestone nodes: (1) the root node, (2) branching node, and (3) leaf node. For directed 
trees, a branching node is a node having greater than or equal to two outgoing edges. For 
undirected tree, branching node is a node having greater than or equal to three edges 
connected to it. Once trajectory tree has been constructed, scSTEM will iterate over all 
possible paths going from root node to leaf node and aggregate gene expressions in each 
key segment and in each path. We term these segments as “sampled time point,” and 
each path may include several such sampled time points. scSTEM then clusters genes for 
each path based on these time point values. When the number of sampled time points is 
less than three, the STEM algorithm will not be able to produce meaningful clusters. To 
address this issue, in such cases scSTEM further breaks paths into more segments using 
ordering of pseudotime values. For paths containing only one key segment, scSTEM will 
partition the segment into three segments by looking for 1/3 and 2/3 quantile points. For 
paths containing only two key segments, scSTEM will partition each segment into two 
segments by looking for median point. We have observed that this strategy is useful for 
trajectory inference methods that do not create complex branch structure. The metrics 
used to aggregate gene expressions for each sampled time point are described below.

Mean expression  This metric simply computes the mean of normalized expression val-
ues for each gene in all cells belonging to a sampled time point.

Entropy reduction score  ROGUE (Ratio of Global Unshifted Entropy) is a statistic ini-
tially proposed to measure the impurity of cell population [24]. We used ROGUE score 
to measure the purity of a gene in a cell population. The ROGUE score for gene i in a 
population of n cells is calculated as

where E(Xi) is the expected gene count from Poisson-Gamma model and lnE(Xi) repre-
sents differential entropy under H0 that cell population is homogeneous and thus only 
one Poisson-Gamma component is present for all cells. The right part of the equation 

n
j=1(lnXij)

n  measures the differential entropy for the other extreme case: when cell popu-
lation is extremely heterogeneous, each cell represents its own cluster. This metric can 
capture the consistency of expression levels for this gene in this segment.

Change rate of gene expression  This metric measures the rate of expression change for 
each gene along the segment. To compute the change rate, we first apply a filtering strat-
egy to remove zero and low expression values which may represent dropouts. We use a 
Z-score based simple strategy here. For each gene, scSTEM computes Z-scores for all 
expressions in the segment and then removes cells with Z-score < 1.96 and Z-score > 1.96 

dsi = lnE(Xi)−

∑n
j=1

(

lnXij

)

n
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for that time point. After this filtering step, scSTEM fits a linear model using the remain-
ing cells:

where ei denotes expression of gene i, t is the pseudotime values of cells within each 
sampled time point, and ε represents the noise in the expression values. scSTEM then 
uses βi , the linear rate parameter, as the value for this gene in this segment.’

STEM clustering

STEM is an algorithm for clustering genes in short time series data [10]. STEM clusters 
genes by assigning genes to pre-generated model profiles that represent distinct expres-
sion profiles. The main advantage of STEM over other unsupervised methods is the use 
of a pre-defined set of profiles which enables it to assign significance to each of the clus-
ters. Each gene is assigned to one of these pre-defined profiles based on its expression 
level, and clusters are constructed from genes assigned to the same profile (or a number 
of different profiles with a similar trajectory). Since the set of possible profiles is pre-
determined, STEM can assign significance to the number of genes assigned to each pro-
file by using permutation tests. We used metrics described in “Methods” to summarize 
the expression of each gene in each of the paths. Values are ordered for each gene based 
on the pseudotime order of the edges on a path leading to a short time series dataset that 
summarizes the expression of the genes in each selected path. STEM further processes 
the input to compute log ratio for each sampled time point with respect to the first sam-
pled time point and then uses these ratios to cluster genes. See also [9, 10] for more 
details about STEM algorithm.

Comparison of clustering results in different paths

STEM can compare the clustering results from two different bulk RNA-seq time series 
data sets. Similarly, we have enabled scSTEM to perform comparison of clustering 
results from different trajectory paths to reveal how functional gene clusters change 
along different cell lineages. scSTEM performs hypergeometric test to identify clusters 
that have significant number of overlapping genes in different paths then visualizes the 
expression patterns of these similar clusters (Fig. 1B). Users can easily perform the com-
parison in the scSTEM GUI by selecting any two paths of interest.

GO enrichment analysis

We used built-in GO enrichment analysis in STEM software to perform GO analysis. 
If input gene IDs are ensemble IDs, scSTEM will first map them to gene symbols by 
biomaRt R package then passed down the converted IDs to STEM for GO analysis.

Comparison of different clustering and DE methods

For DE gene analysis, we first performed trajectory inference with Monocle 3 and 
extracted cells mapped to path 1 (Fig. 2B) from the human fetal immune cell data set. 
Then, we ran differential expression analysis using graph_test() function in Monocle 
3 and the workflow of DE gene analysis in tradeSeq (see tradeSeq documentation: 

ei = βit + ε
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http://​www.​bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​vigne​ttes/​trade​Seq/​inst/​doc/​
Monoc​le.​html). GO enrichment was then performed using ranking of p-values.

For clustering analysis, we have run two comparison methods as well, scHot and 
tradeSeq, on the same path. scHOT clusters genes by computing the pairwise Spear-
man correlation followed by hierarchical clustering. Such operations are very com-
putationally expensive for large datasets. We thus only applied scHOT to the top 300 
marker genes in the NK cell path (the path shown in Fig. 2B).
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