
PEGR: a flexible management platform
for reproducible epigenomic and genomic
research
Danying Shao1  , Gretta D. Kellogg2  , Ali Nematbakhsh2, Prashant K. Kuntala3, Shaun Mahony3  ,
B. Franklin Pugh4  and William K. M. Lai4,5*   

Background
Reproducibility is one of the cornerstones of scientific research. However, reproducibil-
ity has been a longtime challenge across many scientific fields [1–5]. These difficulties
arise from complexities in experimental and bioinformatic workflows that diverge over
time, across different operators, and often with limited versioning [6–9]. In the field of
genomics, collections of massive datasets that can be parsed in many ways have added
to the reproducibility challenge [10–17]. One method to address these issues is to apply
systematic metadata capture and management software that is tailored to (epi)genomic
data collection.

In general, a genomic project is composed of two distinct but interrelated compo-
nents: “wet-bench” biochemistry experiments and “dry-bench” bioinformatic analysis. In
wet-bench experiments: sample type (human tissue biopsy, yeast, etc.), reagents (cata-
log number, wash buffer recipe, etc.), growth environment (log growth, % confluence,

Abstract 

Reproducibility is a significant challenge in (epi)genomic research due to the com-
plexity of experiments composed of traditional biochemistry and informatics. Recent
advances have exacerbated this as high-throughput sequencing data is generated
at an unprecedented pace. Here, we report the development of a Platform for Epi-
Genomic Research (PEGR), a web-based project management platform that tracks and
quality controls experiments from conception to publication-ready figures, compatible
with multiple assays and bioinformatic pipelines. It supports rigor and reproducibility
for biochemists working at the bench, while fully supporting reproducibility and reli-
ability for bioinformaticians through integration with the Galaxy platform.

Keywords:  Genomics, Galaxy, High-throughput sequencing, Data management
system, Reproducibility, Science gateway

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Shao et al. Genome Biology (2022) 23:99
https://doi.org/10.1186/s13059-022-02671-5

*Correspondence:
wkl29@cornell.edu
5 Department
of Computational Biology,
Cornell University, Ithaca, NY
14850, USA
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0002-1920-3081
http://orcid.org/0000-0002-9171-8696
http://orcid.org/0000-0002-2641-1807
http://orcid.org/0000-0001-8341-4476
http://orcid.org/0000-0003-4351-7037
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-022-02671-5&domain=pdf

Page 2 of 19Shao et al. Genome Biology (2022) 23:99

etc.), and experimental protocols (ChIP-seq, Western blot, etc.) are examples of critical
metadata that need to be captured. Minor variations in these experimental components
can result in distinct experimental outcomes [18, 19]. Confounding these issues is the
traditional reliance on storing experiment metadata in hand-written notebooks, which
are not searchable and often incomprehensible to a third party [20]. Consequently, it can
be difficult to follow and accurately reproduce an experimental protocol from start to
finish.

Similarly, in bioinformatics analysis, different analytical tools, software versions, and
tool parameters may generate different analytical outcomes. While progress has been
made in tracking and reproducing informatic workflows (e.g., Pegasus, Galaxy), these
platforms are generally limited to reproducing software workflows [21, 22]. To our
knowledge, there are no free open-source platforms in active development that manage
entire experimental pipelines, from wet-bench experiments to bioinformatic analyses
[23]. Laboratory information management systems (LIMS) typically focus on inven-
tory management and sample tracking and have limited capability to record experimen-
tal metadata, data analysis parameters, and for interfacing with project team members
[24–26]. Although there have been several commercial efforts in this direction, they can
be limited in scope (e.g., only tracking sequencing reagents) and/or rather expensive to
small academic laboratories [27, 28]. These platforms typically have limited integration
between data production and a wide range of experimental metadata.

We developed the Platform for Epigenomic and Genomic Research (PEGR), a web-
based project management platform that integrates wet-bench sample tracking with
downstream bioinformatic workflows (managed by Galaxy workflows) to address the
challenge of experimental reproducibility. PEGR provides end-to-end management of
(epi)genomics projects from initial reagent usage through to the reproducible generation
of publication-quality figures. PEGR logs sample information and experimental details. It
manages metadata produced by Galaxy or any other workflow system and provides sam-
ple reporting and visualization. It supports Findable, Accessible, Interoperable and Reus-
able (FAIR) best practices by tracking the metadata throughout the entire sequencing
pipeline to enable experimental reproducibility [29]. Previously, we presented a proof-of-
concept vision of PEGR software [30]. We now present a fully functional and open-source
version of PEGR software, including streamlined experiment tracking with reagent bar-
coding, flexibility for multiple heterogeneous bioinformatics workflows, and a project
management approach. To date, PEGR has been officially acknowledged in two papers
generating thousands of genomic datasets and is actively utilized by multiple (Lai, Pugh,
and Mahony) research labs and the Cornell Epigenomic Core Facility [31, 32]. PEGR is
freely available and open source at https://​github.​com/​seqco​de/​pegr.

Results
Overview

PEGR is a project management platform designed to organize, track, and disseminate
the workflow of (epi)genomic projects from the start of an experiment through DNA
sequencing, bioinformatic analyses, and figure generation (Fig. 1). It tracks sample
information and sequencing metadata, manages the bioinformatics workflow, and

https://github.com/seqcode/pegr

Page 3 of 19Shao et al. Genome Biology (2022) 23:99 	

provides QC reporting and visualization. PEGR is intended to enable a more complete
scientific workflow from hypothesis generation through publication-quality figures.

PEGR supports user submission of detailed sample and experiment information
through several methods, including a web-interface, real-time QR reagent barcode
tracking with an Android app, and an Excel-based sample submission form. After
experimental metadata has been recorded in PEGR (e.g., cell line, species, assay), a
sequencing run can then be relationally linked to this information. PEGR tracks Illu-
mina sequencing runs in real-time by periodically probing the sequencer’s output data
repository. When PEGR detects the completion of a sequencing run (i.e., RunCom-
pletionStatus.xml), it will automatically initiate an external bioinformatics workflow
platform. Presently PEGR natively supports the Galaxy platform and is extensible to
other workflow engine platforms such as Pegasus and bash shell scripting [22]. PEGR
collects the metadata information of bioinformatic outputs in real-time and displays
them in an online workflow monitoring dashboard. Users are also able to query PEGR
programmatically using a RESTful API for metadata related to specific samples or
workflow runs. Critically, PEGR maintains and tracks the relational links between the
figures and analyses generated by the bioinformatic software back through the start-
ing reagents for any given sample.

Fig. 1  Schematic of feature integration within PEGR. The outer text represents the stages of an (epi)
genomic workflow that PEGR manages. Arrows reflect workflow direction, whereas the inner text represents
the conduits by which PEGR controls information flow through each stage. PEGR captures customizable
metadata based upon the settings and fields set by an administrator for the platform

Page 4 of 19Shao et al. Genome Biology (2022) 23:99

Inventory management

PEGR provides an inventory management section in support of a key aspect of experi-
mental reproducibility, creating the ability to simply and easily track the exact chemi-
cals, enzymes, reagents, antibodies, equipment, and sample material that form the basis
of experimental assays. While this form of reagent tracking is accomplished by most
laboratories at a basic level, in practice, the quality of record-keeping can be variable
depending on laboratory organizational structure and personnel training [20]. PEGR
was architected to include an integrated inventory management system that seamlessly
tracks all aspects of an experiment’s metadata. To reduce incorrect and faulty informa-
tion from being uploaded into PEGR, approved inventory entries (ItemType) can be pre-
defined by administrative users (Fig. 2A). Metadata fields such as name, vendor, catalog

Fig. 2  Inventory management system. A Browser shot of PEGR Admin console showing an example
ItemType list. CSV files can be generated from existing lab management platforms such as iLab and
Quartzy. B Browser shot of PEGR Admin console showing an example ItemTypeCategory list. C Example of
instantiating a new ItemType in PEGR under the “Inventory” interface. Boxes and arrows from red to blue to
green, highlight the steps taken in order, showing the links and windows that appear for generating a new
barcode. QR barcode sizes are set in the web interface and are compatible with most label printers

Page 5 of 19Shao et al. Genome Biology (2022) 23:99 	

number, and lot number can be added to each ItemType to help guide the initial deploy-
ment and match LIMS fields available for import.

PEGR was designed to provide maximum flexibility for an assay workflow. Custom
fields can be defined for a specific item type in the admin console. Given the wide range
of possible reagents and variables a lab may choose to track, PEGR provides a simple
CSV upload form which allows an administrative user to upload a list of all inventory
item types and the related aspects of inventory metadata that a laboratory desires to
track (Fig. 2A). This provides compatibility with common laboratory management sys-
tems such as Agilent iLab and Quartzy which possess CSV export functionality of their
tracked inventory [25, 26]. To prevent disorganization resulting from tracking all pos-
sible inventory items in a laboratory, ItemType’s are grouped into an ItemTypeCategory
(Fig. 2B). This structure allows for the intuitive organization of the full spectrum of a
laboratory’s inventory. The item types in the ItemTypeCategory list are defined through
the web interface and provide the ability to dynamically assign and re-assign ItemTypes
as the needs of the laboratory change.

The “Inventory” tab on the main PEGR navigation bar is the primary interface for
tracking all instances of ItemTypes in a laboratory. New instances of ItemTypes can be
created and old instances can be marked “inactive” by regular users (e.g., technicians,
graduate students) as reagent stockpiles are finished (Fig. 2C). To reduce the “activa-
tion energy” required for adopting and maintaining in-depth tracking of reagent cata-
log numbers, specific lot numbers, aliquot dates, etc., PEGR leverages an easy-to-use
QR barcode scanning application (“Barcode Scanner” app by ZXing) on Android devices
that updates the PEGR backend database system in real-time [33]. The barcode scanner
can be activated directly from a webpage in PEGR, and the result is returned to PEGR via
a callback URL. Materials received by the lab that already have an attached barcode can
be scanned from the Android devices and the appropriate metadata is recorded along
with a time stamp. Purchased reagents and client samples with no existing barcode can
be assigned a new barcode generated by PEGR. The barcode is shown in both text and
2D QR image in PEGR. PEGR’s barcode system also integrates with existing label print-
ers which allows for the 2D image to be printed in different sizes to accommodate the
physical dimensions of the inventory.

Experimental protocol versioning and integration with inventory management

PEGR provides a protocol assembly and management module. While the traditional
method of protocol management for most wet laboratories is a physical paper binder
containing common buffer recipes and basic experimental procedures, there are cloud-
based approaches for experimental protocol management such as OpenWetware
(https://​openw​etware.​org) and Protocol-Online (http://​www.​proto​col-​online.​org/). In
contrast to these approaches, PEGR’s protocol management system directly links its
laboratory inventory metainformation with tracked and version-controlled experimental
protocols (Fig. 3A).

Defining the exact ItemType input and output for each protocol is crucial for PEGR
to properly track laboratory metadata across an experiment. When new experiments
are initialized, the user is required to follow the predefined protocol and record the
items used during an experimental setup. It is required that all the item types defined

https://openwetware.org
http://www.protocol-online.org/

Page 6 of 19Shao et al. Genome Biology (2022) 23:99

in the protocol be linked to an item instance before the user can move on to the next
step. The process of defining a new protocol in PEGR is possible through two distinct
options under PEGR’s “Protocol” tab. The first method of generating a new protocol is
directly through the PEGR user interface. A simple webform links to PEGR’s ItemType
database and allows for the creation of protocols ranging from simple buffer recipes to
highly complex multi-stage assays such as ChIP-seq using a controlled reagent vocabu-
lary (Fig. 3B). The other method of protocol initialization uses a CSV file upload similar

Fig. 3  Protocol management system. A Browser shot of PEGR “Protocols” interface. Default view displays
protocols that have been approved by an administrator. Personal (nonapproved) protocols are available
under “My Protocols”. B Browser shot of PEGR webform to create a new protocol. PEGR inventory database
autocompletes fields where possible in Shared Item Types (input) and End Product Type (output) fields. C A
CSV webform to upload protocols in bulk to the PEGR “Protocol” interface. A template guide appears to assist
upload. D Traced samples are defined in a “Lab Protocol” and represent a sample that undergoes changes to
its state (e.g., cell pellet into purified DNA). E “ProtocolGroup” is accessible through the Admin console and
provides a webform and CSV option for defining new ProtocolGroups based on approved protocols

Page 7 of 19Shao et al. Genome Biology (2022) 23:99 	

to the one used by the ItemType tab (Fig. 3C). This allows for bulk upload of multiple
protocols, a convenient feature for adding in a large number of novel assays.

The minimum requirements for creating a new protocol include a protocol name, ver-
sion number, and a protocol description. Users are encouraged to also upload a protocol
file in PDF format that is stored by PEGR for users to download and print. When creat-
ing a new protocol, a user selects starting and ending materials for the protocol. These
fields are within an enforced list of all ItemTypes defined in PEGR. It uses autocomplete
to assist in creation. In the case of a simple buffer protocol, the individual components of
the protocol are the input ItemTypes (i.e., 5M NaCl, 500 mM EDTA) and the end prod-
uct is the final buffer (e.g., NaCl 250 Wash Buffer). In the case of a protocol such as PCR,
the “Traced Sample” field is also used to track a sample’s state entering and exiting a pro-
tocol stage. The concept of a “Traced Sample” allows PEGR to link a final sample across
multiple protocols that the sample may participate in (Fig. 3D).

Similar to how ItemTypeCategory is used to organize the wide variety of ItemTypes
in the “Inventory,” Protocol Groups are used to consolidate and organize the variety
of protocols that often compose an experiment (Fig. 3E). Protocol Groups contain any
number of protocols (e.g., ChIP reaction and DNA end repair) in an ordered set. This
enforces both experimental organizations and provides flexibility for a user to gener-
ate a new Protocol Group (e.g., ChIP-seq v2) by re-using previously defined protocols
in combination with new protocols. ProtocolGroup’s are initialized through the Admin
console. This design consideration requires a ProtocolGroup to be thoroughly vetted by
a PEGR administrator (i.e., Principal investigator, lab manager) before it can be accessed
and used by the entire group. While users are still able to construct and initialize any
individual Protocol they desire, this produces an intentional pause-point in developing
novel assays which requires users (i.e., graduate students) to reflect on their experimen-
tal design and discuss with a relevant senior scientist.

Tracking experimental metadata as it is generated

PEGR provides a section to record experiment metadata under the “Experiment” tab.
In designing a section devoted to capturing experiment metadata, we considered that
an experiment involves (a) inventory, (b) a protocol, (c) an input sample along with con-
trols, and (d) a resulting product. The PEGR “Experiment” interface is designed to track
and maintain the relational links between reagents (i.e., “Inventory”), protocols (i.e.,
“Protocol”), and the resulting end products (i.e., “Samples”). A new experiment can be
initiated directly from the web interface (Fig. 4A). A new experiment can be assembled
by combining any number of previously defined protocols into any desired organiza-
tional structure (Fig. 4B). Alternatively, a user can initialize a new experiment based on a
Protocol Group (Fig. 4C). This provides an easy mechanism for quickly assembling com-
mon laboratory protocols and assays in a structured and well-defined manner.

Once an experiment is initialized in PEGR, the experimental metadata and status
can be updated directly through the web interface. Starting a simple experiment (e.g.,
creating a wash buffer) allows users to add relevant inventory metadata to PEGR using
a wizard-style guide that walks users through adding reagents and all their associated
metadata that have previously been stored in PEGR inventory (Fig. 4D). While this can
all be performed directly through the web interface, PEGR leverages a QR barcoding

Page 8 of 19Shao et al. Genome Biology (2022) 23:99

system, similar to the inventory system, to allow users to progress through experimental
stages and collect their metadata in real-time using a hand-held Android device. This
information includes but is not limited to Protocol ID, Reagent ID, Equipment ID, Tech
ID, date, etc. Thus, each scanned item is linked to each experiment as associated meta-
data. Although we display the functionality of the webform for visualization purposes,

Fig. 4  Experiment management system. A Browser shot of PEGR’s “Experiment” interface showing all tracked
experiment records. The red box and arrow display the new webform that appears when a user initializes
a new experiment B The black circle indicates the effect of selection custom protocol construction which
pulls from PEGR’s approved protocol database with autocomplete. C The black circle indicates the effect
of selecting a Protocol Group which automatically loads and manages the requirements for the entire
experiment. D Starting the experiment (red boxes and arrow) produces a webform for users to add relevant
inventory metadata to PEGR. The transition of colored boxes (orange, yellow, green, and blue) displays
the workflow for adding inventory metainformation to an experiment. E For experiments tracking traced
samples, an additional interface (red box and red arrow) appears on the webform which allows users to
search PEGR’s database for existing compatible reagents (i.e., cell pellet) to add to the experiment

Page 9 of 19Shao et al. Genome Biology (2022) 23:99 	

the QR barcode scanner is the recommended method for linking experimental meta-
data in PEGR. In cases where the inventory item has never been previously instantiated
within PEGR, a web-interface allows the user to define a new QR barcode and instance
of the inventory item.

A typical lab process is to generate common laboratory reagent stocks (e.g., wash buff-
ers) that are used multiple times across many different downstream experiments. How-
ever, more complicated experimental setups like ChIP-seq, involve a “traced” sample
which moves through multiple sequential experiments and combines with different rea-
gents as it transitions through product states (e.g., sonicated chromatin converts to DNA
library). A “traced” sample typically begins as a “BioSample” in PEGR. The “BioSample”
is assigned a unique “Sample” ID within the PEGR database the moment it is added to
an Experiment. This provides a clear delineation in the creation of new Samples in PEGR
and helps to prevent users from initializing any number of theoretical Samples that are
unlinked to any Experiment. This functionality mirrors the best practices of a standard
laboratory notebook. As lab notebooks are not designed to record proposed experi-
ments, but only provides the record of a performed Experiment, this logic is consistent
with standard biochemical wet-bench practices. Importantly in the case of traced sam-
ples, PEGR can display all the states that a sample has transitioned through allowing for
full experimental history tracking. A traced sample can be added to an experiment using
either the web-interface or the QR barcode system (Fig. 4E). Importantly, PEGR allows
multiple samples to be attached to a single protocol. This enables the operator to process
multiple samples in a batch while only needing to enter the related information once
(e.g., when performing ChIP-seq on 8 samples in parallel).

Sequencing and automated bioinformatic workflows

PEGR provides a section to record metadata for DNA sequencing and bioinformatic
data processing. Samples processed in parallel through PEGR’s “Experiment” module
are natively grouped as “cohorts.” Cohorts are typically generated by a researcher when
addressing specific questions within a scientific project. The biochemical end for these
(epi)genomic cohorts is typically high-throughput sequencing (or other detection sys-
tems) and downstream data analysis. As the throughput of DNA sequencers contin-
ues to expand, the available sequencing bandwidth for any given sequencing run will
often exceed the needs of a cohort of samples. As a result, multiple cohorts are often
sequenced together in a single sequencing run. These multiplexed samples may originate
from different scientific projects (Fig. 5A). Reciprocally, one or more cohorts comprise
a Project, to which cohorts may be added over time. Therefore, we define a “sequencing
cohort” as the group of samples that belong to the sample project and a specific sequenc-
ing run.

PEGR provides substantial integration with common Illumina platforms. It imple-
ments a real-time workflow tracking and quality control dashboard through integration
with external bioinformatics systems, such as the Galaxy platform (Fig. 5B) [21]. Gal-
axy workflows designed to communicate with PEGR contain simple XML wrappers for
Python scripts which send a JSON file to PEGR RESTful API in a standard HTTP POST
request. The JSON file contains a variety of information tracked by PEGR, and one criti-
cal element is the History ID from Galaxy. This allows PEGR to connect reproducible

Page 10 of 19Shao et al. Genome Biology (2022) 23:99

bioinformatic Galaxy workflows with the biochemical records stored and managed by
PEGR [34].

As the output data from each analysis step returns to PEGR at the completion of each
step, the status of the workflow is updated in real-time (Fig. 5C). The status of each anal-
ysis step being tracked is represented by a square. If the script completes successfully
and passes the preliminary validation, the square will be colored in green. A script that

Fig. 5  Sequencing run tracking and bioinformatics in PEGR. A Browser shot of PEGR Sequencing run
interface displaying multiple sequencing runs at various stages of completion and their associated projects
and sequencing cohorts. B Example Galaxy workflow to communicate with PEGR. Galaxy tools POST
relevant sample metadata using PEGR’s RESTful API to PEGR. If an error is detected in the Galaxy workflow,
this information is also communicated to PEGR and visualized with a distinct color. C Browser shot of PEGR’s
workflow tracking and quality control dashboard. Sample information and hyperlinks to individual sample
metadata is on the left, the Galaxy workflow status in the middle, and sequencing quality control statistics
(e.g., read depth, mapping %) is viewable on the right

Page 11 of 19Shao et al. Genome Biology (2022) 23:99 	

results in one or more error messages has its square colored red. Clicking on the square
renders the error messages in detail. API calls with “permission denied” have their square
colored orange, and analysis steps with missing datasets have their square colored blue.
For analysis steps that have not communicated back to PEGR, the square remains gray.
If all squares become green, it indicates that the entire workflow has completed success-
fully. Note that bioinformatic workflows may vary for different sample types, and they
may include different sets of analysis steps. To accommodate different workflows, PEGR
defines a configuration for each workflow that lists all the analysis steps to be tracked.
The workflow tracking panel is dynamically rendered according to this configuration.

In addition to tracking the workflow-specific metadata (e.g., peak-calling completes
successfully, MEME failed), PEGR also tracks assay-independent quality control metrics
such as total reads per sample, adapter dimers, mapped reads, uniquely mapped reads,
and PCR-duplication level (Fig. 5C). Through the web interface, the administrator may
define the acceptable range for each field indicated at the header, and fields that have val-
ues outside the acceptable ranges are colored in red. This combination of statistics gives
users an overview of the quality of the sequencing experiment. The thresholds for what
constitutes an acceptable result are user-specified through the web-frontend of PEGR.
After reviewing the statistics, Admins can indicate if the sample has passed the qual-
ity control check and been “verified.” If the statistics indicates that errors may exist in
the sequencing result (e.g., incorrect adapter index assignment), the authorized user can
“delete” the sample directly on this page.

The workflow tracking and quality control dashboard can become quite wide as there
is no upper limit to the number of scripts (i.e., columns) that may be tracked in PEGR.
Users can hide columns by clicking the “−” sign on the header. The columns can be
restored by clicking the “+” sign at the top. Multiple bioinformatics workflows can be
applied to the samples in a single sequencing run or even a single sample. In this case,
PEGR will display separate tabs for each workflow.

Reporting, visualization, and data dissemination

The Reporting module of PEGR is an interface to report, visualize, and disseminate the
data it stores. PEGR provides a “Project” interface to organize sequencing cohorts and
individual samples in a reporting and visualization dashboard (Fig. 6A). The project
dashboard provides links to the dynamically generated reports of entire cohorts of sam-
ples or individual samples (Fig. 6B). This interface also provides a mechanism for grant-
ing project permissions to the various users of PEGR. This allows PEGR to provide its
stored sample metainformation to external collaborators while limiting their ability to
access all data within PEGR that may not apply to a specific shared project.

When selecting an individual sample in PEGR, users are presented with a custom
report that contains all affiliated metadata with that sample (Fig. 6C). Understanding
that compliance can be difficult to achieve in certain settings, PEGR does not require
a complete metadata trail for data visualization and will only display the data that it
has. In addition to providing the biochemical sample metadata, PEGR will also display
the results of the bioinformatic Galaxy workflows live-streamed directly from Galaxy
(Fig. 6D). As a key feature, PEGR does not duplicate raw or processed data files in

Page 12 of 19Shao et al. Genome Biology (2022) 23:99

Galaxy. PEGR only stores the relevant metadata needed to point to sequencing data-
sets and downstream analysis stored on Galaxy (i.e., Galaxy HistoryID). This design
choice allows PEGR to track millions of sample details with a single CPU server. The
current version of PEGR used by the Cornell EpiGenomics Core tracks ~70 Tb of
Galaxy-generated analyses using less than 10 Gb of hard disk space.

Fig. 6  PEGR project organization and data dissemination. A Browser shot of the PEGR “Project” interface
displaying the user’s affiliated projects and the sequencing cohorts associated with each project. The
red box and arrow show the transition to the individual project page. B Browser shot of example PEGR
project displaying affiliated users, associated experiments, sequencing cohorts, and samples. The red box
and arrow show the transition to the individual sample page from the affiliated project. C Browser shot of
example sample in PEGR displaying all known metainformation and details of experiments performed with
this sample. The black arrow represents the live communication with the Galaxy webserver hosting the
bioinformation analyses of the sample. D Data hosted on Galaxy is dynamically displayed in the same PEGR
web frame that reports on sample metadata to link the bioinformatics back to the experimental metadata

Page 13 of 19Shao et al. Genome Biology (2022) 23:99 	

Discussion
PEGR is a management platform for epigenomic and genomic research pipelines. It
supports scientific data management by tracking samples from the very first step of
sample preparation to the end of bioinformatics analysis and data reporting, thus
supporting the FAIR principles and the reproducibility goals of the Galaxy platform
[29, 35]. PEGR links people, samples, protocols, sequencers, and bioinformatics com-
putation together, and facilitates research on genome regulation. The ability to visu-
alize the downstream analyses of samples of interest within the same frame as the
biochemical information helps users to better interpret and understand the results of
their experiments.

One of the primary challenges of genomic research is how to make different
experimental assays and subsequent bioinformatic analysis reproducible and avail-
able through different organizations. To tackle this challenge, we developed PEGR
to provide a flexible system that maintains scientific rigor. PEGR provides a continu-
ously tracked link from the original reagent preparation all the way through to the
final downstream bioinformatic processing and figure generation. To date, PEGR has
been used to support the publication of over a dozen papers comprising thousands of
unique experiments across a range of distinct assays (e.g., ChIP-exo, RNA-seq, PIP-
seq) [31, 32, 36–38]. PEGR is adaptable to manage and organize common genomic
assays with support for tracking any metainformation deemed of value by an admin-
istrator of PEGR. Through PEGR’s RESTful API, analysis results can be accepted from
any client (e.g., Galaxy and Pegasus) and the workflow tracking dashboard is config-
urable to track any number of distinct informatic workflows. The RESTful API also
provides a mechanism by which PEGR can be queried remotely to output its stored
metadata to any other desired system.

Conclusions
Future PEGR development will focus on supporting additional bioinformatic work-
flows and genomic assays. The current supplied bioinformatic analysis processing
workflow is hard-coded to the Illumina sequencing platform. Future upgrades that
can be made to PEGR include providing compatibility with non-Illumina sequenc-
ing pipelines (e.g., PacBio, Oxford Nanopore) and enhancing the sample submis-
sion process using the native web interface. Our long-term goals include enhancing
role security to provide compliance with the EU GDPR, NY SHIELD, and Califor-
nia CCPA privacy laws for storing de-identified patient meta-information. We also
believe that given the prominence of many internationally funded Galaxy instances
(e.g., https://​usega​laxy.​org/, https://​usega​laxy.​eu/), a key future upgrade will be to
enable multiple PEGR instances to communicate with multiple Galaxy instances in
a full many-to-many relationship. This will enable researchers to directly benefit
from well-funded bioinformatic rigor and reproducibility initiatives by reducing
the overhead required for smaller groups to run their own Galaxy instances. These
upgrades and more provide a clear path forward for providing rigorous and repro-
ducible research across the biochemical and biomedical fields.

https://usegalaxy.org/
https://usegalaxy.eu/

Page 14 of 19Shao et al. Genome Biology (2022) 23:99

Methods
Architecture

The software stack used in the development of PEGR includes OpenJDK 11.0.12,
Grails 4.0.11, and MariaDB 10.5.5. PEGR is built on Grails, a high productivity web
application framework for JVM [39]. Grails follows the “coding by convention” para-
digm, and provides mechanisms such as injection, templating, and scaffolding, which
makes the development much more efficient. The architecture of PEGR follows the
Model-View-Controller (MVC) pattern [14]. The model layer contains 75 domain
classes that are mapped to the database. In support of open-source software, we chose
MariaDB to host PEGR’s database. The database is a relational database that contains
normalized tables for various information, including users (Additional file 1: Fig. S1A),
projects (Additional file 1: Fig. S1B), sample details (e.g., strain, antibody, target, and
growth media) (Additional file 1: Fig. S1C), sequencing run details (Additional file 1:
Fig. S1D), and bioinformatics analysis (Additional file 1: Fig. S1E). Data in the database
are queried and persisted through Grails’ object relational mapping (GORM). During
development, the database schema often needs to be updated to meet stakeholder’s
requirements, e.g., adding or removing a table or a column. In this situation, we follow
the code-first approach, that is, we first change the involved domain classes, run Grails
database migration plugin, and the database will be automatically updated. This will
guarantee synchronization between the codes and the database schema.

The controllers generate responses to clients’ requests. For HTML requests, the con-
trollers will delegate them to the views where data will be presented. Inside views, PEGR
heavily utilizes JavaScript, Bootstrap library, and AJAX to improve user experience. It
adopts the responsive web design and provides consistent data presentation across desk-
tops, tablets, and mobile devices. In addition, REST-compliant (RESTful) APIs are made
available that allow external applications to query data from and send data to PEGR. In
response to an API request, the controllers will render the data in JSON format. Note
that the business logic in the controller can become complicated. For example, it may
involve nontrivial data manipulation and decision-making. In such cases, it will push the
business logic to a separate layer, called “service,” leaving the controllers relatively light
weighted. The separation of models, controllers, views, and services confines different
logic concerns to their own layer and makes it possible to reuse shared components. This
enables the application to be easily developed, tested, and maintained.

System requirements

PEGR is an extremely lightweight software platform. A production PEGR system
tracking ~30,000 unique experiments across >500 sequencing runs serves multiple
concurrent users with no detectable delays on a CentOS 7 server with 1 CPU, 8 Gb of
RAM, and 200 Gb of hard disk space. By keeping all data analysis in a remote Galaxy
webserver, data duplication and the file system footprint are kept to a minimum.

PEGR Guide

A quick-start on installing PEGR is provided on GitHub https://​github.​com/​seqco​de/​pegr,
and additional tutorials on how to configure PEGR and deploy it to production are provided

https://github.com/seqcode/pegr

Page 15 of 19Shao et al. Genome Biology (2022) 23:99 	

on GitHub Wiki https://​github.​com/​seqco​de/​pegr/​wiki. Once PEGR is running, users can
find the tutorial under the “Guide” tab of the PEGR interface which details the various
extended capabilities of PEGR (Additional file 1: Fig. S2A).

RESTful API

For advanced users, PEGR provides a RESTful API for users to query and download
the sequencing data and analysis results. Similar to the web interface, users can query
samples based on sample ID, strain, antibody, target or run ID, and PEGR will return
the qualified samples along with their major statistics and the links to the sequencing
datasets such as the BAM files. The multiple ways that PEGR provides for report-
ing and visualization make it easy to share and further utilize the sequencing data.
Guidance on how to interact with PEGR and what API commands are available are
detailed at “Bioinformatics API” under the PEGR Guide tab (Additional file 1: Fig.
S2B). This guide provides sample code and examples on how to connect to PEGR’s
APIs in several common programming languages (Java, Python).

Orchestrating bioinformatics

Since an Illumina sequencer deposits data to a pre-defined designated repository, a
cron job can be set up on the PEGR-hosting server to probe the sequencer to check
on the status of the new sequencing run. Once PEGR detects the completion of the
sequencing run, it will match the sequencing output data with the information stored in
its database and initiate a bioinformatics workflow. PEGR creates a set of files that con-
tain the sequencing run information, e.g., the sequencing run ID, the path to the raw
sequencing data repository, sample ID, the library index attached to a sample (a way to
biologically identify each sample in a sequencing run), and the reference genomes to
align the samples to. PEGR supports the alignment of samples to more than one refer-
ence genome (e.g., hg19 and hg38) and tracks the results of multiple alignments.

External clients, e.g., bioinformatics scripts or a workflow management tool such
as Galaxy [21], can then sync with the relevant sample metainformation (i.e., genome
build) and process the samples through all selected workflows. A typical processing
workflow for ChIP-seq is comprised of a series of analysis steps, including raw data
transformation, sequence alignment against reference genomes, peak-calling, and
motif discovery. Since PEGR is charged with hosting all the metadata and final report-
ing, the output data needs to be communicated back to PEGR. We developed a REST-
ful API in PEGR to accept POST requests that contain the output data generated from
the bioinformatics workflow (Fig. 5B). Each API call corresponds to a single analysis
step in the workflow. When an analysis step finishes, its output data will be posted to
PEGR immediately. The benefits of sending results immediately instead of gathering all
the results at the end of the workflow in a batch include that (1) we can track the status
of the workflow run in real-time and (2) in the event that an analysis step failed (e.g.,
cluster error, networking issues), we can resume the workflow from the break point.

The data sent through the API needs to be constructed in a JSON format and the
fields accepted are listed in Table 1. The field “userEmail” identifies the author of the

https://github.com/seqcode/pegr/wiki

Page 16 of 19Shao et al. Genome Biology (2022) 23:99

analysis in workflow management tool and is also used to authenticate the user in
combination with the API key. The fields “run” and “sample” are used to match the
analysis to the sequencing run and the sample already submitted to and stored in
PEGR, and “genome” is the reference genome that the sample is aligned to in this
analysis. The analysis workflow and step are labeled by the corresponding “work-
flowId” and “workflowStepId.” There could be multiple workflow runs on the same
sample and each analysis step sends its results separately, therefore, we need the field
“historyId” to uniquely map analysis steps to each workflow run. The software and
its version used in the step are recorded in the field “toolId.” In bioinformatics, many
of the tools achieve the same functionality. Therefore, we also record “toolCategory”
to facilitate reporting and future comparison. The “parameter” field is formatted as
a dictionary with each input parameter name of the tool as the key in the dictionary
and the value of the parameter as the value in the dictionary. The storage of all the
parameters, along with the software and version used, helps with reproducibility and
potential extension in the future. The output of the steps ranges from simple statis-
tics (e.g., % read alignment to reference genome) to more complicated datasets (e.g.,
MEME motif results). The former is sent in the “statistics” field. As for the large data-
sets, the path to the dataset file and the file type are sent in the “datasets” field. Both
“statistics” and “datasets” are formatted as a list of dictionaries.

There can be various downstream analyses following the core bioinformatics work-
flow. And results from those downstream analyses can be posted to PEGR through the
same API and linked to its upstream alignment using the field “alignmentId.” The client
may also send a “note” to PEGR, such as warning or error messages.

In order to maximize flexibility and interoperability with other software platforms,
PEGR is also capable of hosting links to external platforms. These tables are accessible
under the Guide tab in PEGR (Additional file 1: Fig. S2B). The genome build table in the

Table 1  PEGR API fields that accept analysis results

Field Format Example

userEmail String “xxx@​xxx.​xxx”

run Long 123

sample Long 10023

genome String “sacCer3”

historyId String 99afe35e5e550d2c

history_url String https://​xxx.​xxx/​view?​id=​99afe​35e5e​550d2c

alignmentId Long 12345

workflowId String “b7p9d3k629e985d6”

workflowStepId String “d42c9e9785b96e77”

statsToolId String “bam_to_scidx_output_stats”

toolId String “toolshed.g2.bx.psu.edu/repos/iuc/bam_to_scidx/
bam_to_scidx/1.0.1”

toolCategory String “output_bamToScidx”

parameters {“parameterName”: “parameterValue”} {“dbkey”:”sacCer3”,“require_proper_mate_pairing”:0}

statistics [{“statisticsName”: “statisticsValue”}] [{“genomeCoverage”:0.0206}]

datasets [{“type”:“xxx”,“id”:“xxx”,“uri”:“xxx”}] [{“type”:“scidx”,“id”:“a39ec9e14951b012”,“uri”:“https://​xxx.​
xxx/​datas​ets/​9e149​51 a39ec b012”}]

toolStderr String “some error”

xxx@xxx.xxx
https://xxx.xxx/view?id=99afe35e5e550d2c
https://xxx.xxx/datasets/9e14951
https://xxx.xxx/datasets/9e14951

Page 17 of 19Shao et al. Genome Biology (2022) 23:99 	

pegrDB links to the external source of the genome (e.g., UCSC, SGD). In order to further
support bioinformatic reproducibility outside of the Galaxy platform, PEGR also tracks
common reference features (gene coordinates, protein binding locations, origins of rep-
lication) which can be hosted on GitHub.

Security and privacy

PEGR leverages Spring Security to control the access to the application [40]. Spring
Security is a framework that provides authentication, authorization, and other security
features for enterprise applications. For authentication, PEGR uses four mechanisms:
“daoAuthenticationProvider,” “preAuthenticatedAuthenticationProvider,” “anonymou-
sAuthenticationProvider,” and “rememberMeAuthenticationProvider.” Through the “dao-
AuthenticationProvider,” users can log in to PEGR using their registered username and
password. The “preAuthenticatedAuthenticationProvider” works with external identity
hosts so that users do not have to create an additional password with PEGR. It supports
both header-based and attribute-based authentication, e.g., CoSign (http://​weblo​gin.​org)
and Shibboleth (https://​www.​shibb​oleth.​net) Single Sign-on. The “anonymousAuthenti-
cationProvider” denies access to the application from unauthorized users except for the
login page. and the “rememberMeAuthenticationProvider” stores the login information
in a cookie and allows for automatic login for an extended period.

PEGR authorizes data access through a number of security layers. Primarily, PEGR
implements role-based access control which is mostly implemented through URL inter-
cept. It assigns a role group to each user, and users in a specific role group can only
access the URLs authorized for that role group. For example, a user who is assigned to
the “Admin” role group will have access to all the URLs, including those for the Admin
console, and be able to update all the samples and projects. In contrast, users in the
“Member” role group cannot access certain URLs, e.g., those for the Admin console.
“Members” do have “read” access to all projects where they have been assigned, includ-
ing the “Inventory,” “Lab Protocols,” “Experiments,” “Sequencing Runs,” and “Samples.”
Members do not have “write” access to those objects unless they have a specific “project
role” (see below) or ownership to an inventory item or protocol. A user cannot access
any part of PEGR until their ID is assigned to a role group. By default, users are initially
added to the “Guest” role group with the most restricted access in the PEGR platform,
only able to view unprotected information.

Additionally, more granular access controls are defined for each project and sam-
ple through controller interceptors. The controller interceptors apply certain logics
across a group of controller actions, and they are executed before the related control-
ler actions are invoked. For example, users can be added to a project with different
roles, (e.g., “owner”, “participant”, or “guest”). While all users linked to the project
can view the project summary and all the samples in the project, only the owners and
participants of the project have the ability to add (or remove) samples to (or from)
the project and edit the samples that belong to the sample. And only the owners of
the project can edit the project’s information, such as project name, project descrip-
tion, and funding source.

http://weblogin.org
https://www.shibboleth.net

Page 18 of 19Shao et al. Genome Biology (2022) 23:99

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13059-​022-​02671-5.

Additional file 1. Integrated supplementary figures S1 and S2.

Additional file 2. Review history.

Acknowledgements
The authors thank Greg Von Kuster, Bongsoo Park, Geoffrey Billy, Belinda Giardine, Abeer Almutairy, Hedgie Jo, and Pierce
Chafflin for their user testing and feedback, code base tests, development code contributions, and helpful discussions
and feedback to this project. Computations for this research were performed on the Pennsylvania State University’s
Institute for Computational and Sciences’ ROAR supercomputer (Galaxy, RRID:SCR_006281).

Peer review information
Kevin Pang was the primary editor of this article and managed its editorial process and peer review in collaboration with
the rest of the editorial team.

Review history
The review history is available as Additional file 2.

Authors’ contributions
D.S. is the software engineer who built the computational platform. IT infrastructure architecture and database schema
design were provided by G.D.K., S.M., and W.K.M.L.. B.F.P., S.M., and W.K.M.L. provided design specifications and biochemi-
cal expertise. A.N. and P.K. architected the current Galaxy workflow communication system. D.S. and W.K.M.L. co-wrote
the manuscript. The authors read and approved the final manuscript.

Authors’ information
Twitter handles: @GrettaKellogg (Gretta D Kellogg); @prashkuntala (Prashant K Kuntala); @mahonylab (Shaun Mahony); @
ThePughLab (B. Franklin Pugh); @WilliamKMLai (William KM Lai).

Funding
This work was supported by the US National Institutes of Health (NIH) grants 5R01-ES013768 and 3R01-GM125722-03S1
for funding the development and dissemination of PEGR. The authors acknowledge the support of the Institute for
Computational and Data Sciences at the Pennsylvania State University through ICDS Seed Grants to Dr. B. Franklin Pugh
and Dr. William KM Lai.

Availability of data and materials
The PEGR software is publicly available at https://​github.​com/​seqco​de/​pegr [41]. A Docker image of PEGR is also avail-
able on Docker Hub: https://​hub.​docker.​com/​repos​itory/​docker/​dshao/​pegr.The PEGR-Galaxy communication scripts are
available at https://​github.​com/​CEGRc​ode/​pegr-​galaxy_​tools and the PEGR NGS pipeline scripts are available at https://​
github.​com/​CEGRc​ode/​pegr-​ngs_​pipel​ine under the MIT license. A release of the PEGR source code (v0.3.1) is available
on Zenodo: https://​doi.​org/​10.​5281/​zenodo.​64017​88 [42]. When PEGR software is used as the platform providing the
data, it can be cited using the RRID:SCR_021861.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA 16802, USA. 2 Cornell
Institute of Biotechnology, Cornell University, Ithaca, NY 14850, USA. 3 Department of Biochemistry & Molecular Biology,
Pennsylvania State University, University Park, PA 16802, USA. 4 Department of Molecular Biology and Genetics, Cornell
University, Ithaca, NY 14850, USA. 5 Department of Computational Biology, Cornell University, Ithaca, NY 14850, USA.

Received: 26 July 2021 Accepted: 7 April 2022

References
	1.	 Baker M. Reproducibility crisis: blame it on the antibodies. Nature. 2015;521:274–6.
	2.	 Resnik DB, Shamoo AE. Reproducibility and research integrity. Account Res. 2017;24:116–23.
	3.	 Plesser HE. Reproducibility vs. replicability: a brief history of a confused terminology. Front Neuroinform. 2017;11:76.
	4.	 Hunter P. The reproducibility “crisis”: reaction to replication crisis should not stifle innovation. EMBO Rep. 2017;18:1493–6.

https://doi.org/10.1186/s13059-022-02671-5
https://github.com/seqcode/pegr
https://hub.docker.com/repository/docker/dshao/pegr
https://github.com/CEGRcode/pegr-galaxy_tools
https://github.com/CEGRcode/pegr-ngs_pipeline
https://github.com/CEGRcode/pegr-ngs_pipeline
https://doi.org/10.5281/zenodo.6401788

Page 19 of 19Shao et al. Genome Biology (2022) 23:99 	

	5.	 Stupple A, Singerman D, Celi LA. The reproducibility crisis in the age of digital medicine. NPJ Digit Med. 2019;2:2.
	6.	 Kukurba KR, Montgomery SB. RNA sequencing and analysis. Cold Spring Harb Protoc. 2015;2015:951–69.
	7.	 Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. ATAC-seq: a method for assaying chromatin accessibility genome-wide.

Curr Protoc Mol Biol. 2015;109:21.29.21–9.
	8.	 Rossi MJ, Lai WKM, Pugh BF. Simplified ChIP-exo assays. Nat Commun. 2018;9:2842.
	9.	 Yardimci GG, Ozadam H, Sauria MEG, Ursu O, Yan KK, Yang T, et al. Measuring the reproducibility and quality of Hi-C data.

Genome Biol. 2019;20:57.
	10.	 ENCODE. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.
	11.	 GTEx. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45:580–5.
	12.	 Roadmap Epigenomics C, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. Integrative analysis of 111 reference

human epigenomes. Nature. 2015;518:317–30.
	13.	 Papageorgiou L, Eleni P, Raftopoulou S, Mantaiou M, Megalooikonomou V, Vlachakis D. Genomic big data hitting the

storage bottleneck. EMBnet J. 2018;24:e910.
	14.	 Reuter JA, Spacek DV, Snyder MP. High-throughput sequencing technologies. Mol Cell. 2015;58:586–97.
	15.	 Devailly G, Mantsoki A, Michoel T, Joshi A. Variable reproducibility in genome-scale public data: a case study using

ENCODE ChIP sequencing resource. FEBS Lett. 2015;589:3866–70.
	16.	 Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli F, Batzoglou S, et al. ChIP-seq guidelines and practices of the

ENCODE and modENCODE consortia. Genome Res. 2012;22:1813–31.
	17.	 Kanwal S, Khan FZ, Lonie A, Sinnott RO. Investigating reproducibility and tracking provenance - a genomic workflow

case study. BMC Bioinformatics. 2017;18:337.
	18.	 Howard BR. Control of variability. ILAR J. 2002;43:194–201.
	19.	 Bakay M, Chen YW, Borup R, Zhao P, Nagaraju K, Hoffman EP. Sources of variability and effect of experimental approach

on expression profiling data interpretation. BMC Bioinformatics. 2002;3:4.
	20.	 Pain E. How to keep a lab notebook: Science; 2019.
	21.	 Goecks J, Nekrutenko A, Taylor J, Galaxy T. Galaxy: a comprehensive approach for supporting accessible, reproducible,

and transparent computational research in the life sciences. Genome Biol. 2010;11:R86.
	22.	 Deelman E, Vahi K, Juve G, Rynge M, Callaghan S, Maechling P, et al. Pegasus, a workflow management system for sci-

ence automation. Future Gener Comput Syst. 2015;46:17–35.
	23.	 Scholtalbers J, Rossler J, Sorn P, de Graaf J, Boisguerin V, Castle J, et al. Galaxy LIMS for next-generation sequencing.

Bioinformatics. 2013;29:1233–4.
	24.	 Skobelev DO, Zaytseva TM, Kozlov AD, Perepelitsa VL, Makarova AS. Laboratory information management systems in the

work of the analytic laboratory. Meas Tech. 2011;53:1182–9.
	25.	 Quartzy. https://​www.​quart​zy.​com/. Accessed 14 Apr 2022.
	26.	 Agilent iLab. https://​www.​agile​nt.​com/​en/​servi​ce/​labor​atory-​servi​ces/​lab-​opera​tions-​manag​ement. Accessed 14 Apr

2022.
	27.	 BCPlatforms. https://​www.​bcpla​tforms.​com/. Accessed 14 Apr 2022.
	28.	 Illumina Basespace. https://​bases​pace.​illum​ina.​com/. Accessed 14 Apr 2022.
	29.	 Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, et al. The FAIR Guiding Principles for scientific

data management and stewardship. Sci Data. 2016;3:160018.
	30.	 Shao D, Kellogg G, Mahony S, Lai W, Pugh B. PEGR: a management platform for ChIP-based next generation sequencing

pipelines, ACM international conference proceeding series; 2020. p. 285–92.
	31.	 Rossi MJ, Kuntala PK, Lai WKM, Yamada N, Badjatia N, Mittal C, et al. A high-resolution protein architecture of the budding

yeast genome. Nature. 2021;592:309–14.
	32.	 Lai WKM, Mariani L, Rothschild G, Smith ER, Venters BJ, Blanda TR, et al. A ChIP-exo screen of 887 Protein Capture Rea-

gents Program transcription factor antibodies in human cells. Genome Res. 2021;31(9):1663–79. https://​doi.​org/​10.​1101/​
gr.​275472.​121.

	33.	 Owen S, Switkin D, Team Zx: Barcode scanner. 2019.
	34.	 Gruning B, Chilton J, Koster J, Dale R, Soranzo N, van den Beek M, et al. Practical computational reproducibility in the life

sciences. Cell Syst. 2018;6:631–5.
	35.	 Blankenberg D, Von Kuster G, Bouvier E, Baker D, Afgan E, Stoler N, et al. Dissemination of scientific software with Galaxy

ToolShed. Genome Biol. 2014;15:403.
	36.	 Krietenstein N, Wal M, Watanabe S, Park B, Peterson CL, Pugh BF, et al. Genomic nucleosome organization reconstituted

with pure proteins. Cell. 2016;167:709–721.e712.
	37.	 Lai WK, Pugh BF. Genome-wide uniformity of human ‘open’ pre-initiation complexes. Genome Res. 2017;27:15–26.
	38.	 Badjatia N, Rossi MJ, Bataille AR, Mittal C, Lai WKM, Pugh BF. Acute stress drives global repression through two independ-

ent RNA polymerase II stalling events in Saccharomyces. Cell Rep. 2021;34:108640.
	39.	 Smith G, Ledbrook P. Grails in action. 2nd ed: Manning; 2014.
	40.	 Scarioni C. Pro Spring Security: APress; 2013.
	41.	 Shao D, Kellogg G, Nematbakhsh A, Kuntala P, Mahony S, Pugh B, et al. PEGR: a flexible management platform for repro-

ducible epigenomic and genomic research: Github; 2022. https://​github.​com/​seqco​de/​pegr
	42.	 Shao D, Kellogg G, Nematbakhsh A, Kuntala P, Mahony S, Pugh B, et al. PEGR: a flexible management platform for

reproducible epigenomic and genomic research: Zenodo; 2022. https://​doi.​org/​10.​5281/​zenodo.​64017​88.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://www.quartzy.com/
https://www.agilent.com/en/service/laboratory-services/lab-operations-management
https://www.bcplatforms.com/
https://basespace.illumina.com/
https://doi.org/10.1101/gr.275472.121
https://doi.org/10.1101/gr.275472.121
https://github.com/seqcode/pegr
https://doi.org/10.5281/zenodo.6401788

	PEGR: a flexible management platform for reproducible epigenomic and genomic research
	Abstract
	Background
	Results
	Overview
	Inventory management
	Experimental protocol versioning and integration with inventory management
	Tracking experimental metadata as it is generated
	Sequencing and automated bioinformatic workflows
	Reporting, visualization, and data dissemination

	Discussion
	Conclusions
	Methods
	Architecture
	System requirements
	PEGR Guide
	RESTful API
	Orchestrating bioinformatics
	Security and privacy

	Acknowledgements
	References

