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Abstract 

Background:  Multiplexing of samples in single-cell RNA-seq studies allows a signifi-
cant reduction of the experimental costs, straightforward identification of doublets, 
increased cell throughput, and reduction of sample-specific batch effects. Recently 
published multiplexing techniques using oligo-conjugated antibodies or -lipids allow 
barcoding sample-specific cells, a process called “hashing.”

Results:  Here, we compare the hashing performance of TotalSeq-A and -C antibodies, 
custom synthesized lipids and MULTI-seq lipid hashes in four cell lines, both for single-
cell RNA-seq and single-nucleus RNA-seq. We also compare TotalSeq-B antibodies with 
CellPlex reagents (10x Genomics) on human PBMCs and TotalSeq-B with different lipids 
on primary mouse tissues. Hashing efficiency was evaluated using the intrinsic genetic 
variation of the cell lines and mouse strains. Antibody hashing was further evaluated 
on clinical samples using PBMCs from healthy and SARS-CoV-2 infected patients, where 
we demonstrate a more affordable approach for large single-cell sequencing clinical 
studies, while simultaneously reducing batch effects.

Conclusions:  Benchmarking of different hashing strategies and computational 
pipelines indicates that correct demultiplexing can be achieved with both lipid- and 
antibody-hashed human cells and nuclei, with MULTISeqDemux as the preferred 
demultiplexing function and antibody-based hashing as the most efficient protocol 
on cells. On nuclei datasets, lipid hashing delivers the best results. Lipid hashing also 
outperforms antibodies on cells isolated from mouse brain. However, antibodies dem-
onstrate better results on tissues like spleen or lung.
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Background
Recent advances in single-cell and single-nucleus RNA sequencing (scRNA-seq and 
snRNA-seq) have had an unprecedented impact on our understanding of heterog-
enous cell populations [1–6]. Current scRNA-seq experiments make it possible to 
routinely assay many thousands of cells at once, with recent datasets reporting hun-
dreds of thousands to millions of cells [2, 6, 7]. In standard single-cell workflows, 
individual samples need to be processed in parallel, which limits the throughput, 
increases reagent costs and has the potential to introduce batch effects. Recently, 
several approaches for multiplexing have been described, including the use of pre-
existing genetic diversity [8] or by introducing sample-specific barcodes using oligo-
labeled antibodies [9], oligo-labeled lipid anchors [10], chemical labeling with oligos 
[11], or genetic cell labeling [12]. Multiplexing samples by labeling cells or nuclei 
with sample-specific barcodes before pooling and single-cell compartmentaliza-
tion, a technique called “hashing,” allows for accurate detection of two (doublets) or 
more (multiplets) cells originating from different samples but captured in the same 
compartment, which inevitably occurs in standard single-cell workflows. Therefore, 
implementing a barcoding multiplexing paradigm allows users to drastically increase 
the number of cells or nuclei loaded per reaction, which consequently decreases per-
cell library preparation cost.

The development of oligo-labeled antibodies directed against cell surface proteins 
for sample multiplexing, is a direct evolution from the Abseq [13], REAP-seq [14], and 
CITE-seq [15] protocols. One of the most widely used methods to date for detection 
of the cell epitome is by using the TotalSeq antibodies from Biolegend in combination 
with the scRNA-seq technologies from 10x Genomics. There are several types of Total-
Seq antibodies to be used for cell labeling, including TotalSeq-A antibodies that con-
tain a poly-A sequence mimicking a natural mRNA. These are designed to work with 
any sequencing platform that relies on poly-dT oligonucleotides as the mRNA capture 
method, while TotalSeq-B and TotalSeq-C antibodies contain a capture sequences that 
are compatible with the 10x Genomics 3’ scRNA-seq (v3 or v3.1) and 5’ scRNA-seq 
workflows, respectively. For human samples, the pre-mixed TotalSeq hashtag reagents 
recognize cell surface markers CD298 and β2-microglobulin. The success of using anti-
bodies for hashing depends on the ubiquitous expression of these target antigens, which 
can be problematic for some samples or species [16, 17], limiting the sample-agnostic, 
universal application of this method. An elegant way to overcome this limitation is the 
use of lipid anchors that are antigen independent and insert universally into the cell or 
nucleus membrane, irrespective of sample type [10]. Both antibody-based and lipid-
based methods are simple, straightforward and generally applicable to a wide range of 
single cell applications and platforms, while genetic cell labeling and chemical labeling 
with oligonucleotides can be more challenging. It is still unclear which method is most 
accurate in separating samples based on the inserted hashtags. In terms of labour inten-
sity both hashing methods are comparable.

In this study, we compared antibody-based and lipid-based sample barcoding methods 
by multiplexing four distinct human cancer cell lines. By exploiting the intrinsic genetic 
variations of these cell lines, demultiplexing by genetic diversity serves as a “ground 
truth” and allows determining the hashing accuracy of each method.
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Single-cell suspensions are most commonly prepared from fresh tissues, which is a 
major roadblock for analysing clinical samples, archived materials and tissues such as 
the brain, for which cells cannot be readily extracted [5, 18, 19]. To overcome these 
limitations, single-nuclei can be extracted and analysed similarly to a standard single-
cell workflow [20]. Therefore, we included nuclei samples in our comparison of hash-
ing methods. We also evaluated antibody and lipid hashing on different mouse tissues. 
Finally, we evaluated hashing accuracy of human PBMCs using TotalSeq-A, -B antibod-
ies and CellPlex reagents, which can be very relevant for single-cell sequencing in clini-
cal studies.

Results
Cell hashing using antibodies and lipids accurately demultiplexes majority of cells

We first compared antibody-based and lipid-based hashing techniques by pooling four 
hashed cancer cell lines (MCF7, PC3, DU145, and MDA-MB-231) into a single 10x 
Chromium run followed by a single analysis pipeline (Fig. 1) for each type of hashing. 
The hashing accuracy or Overall Classification Accuracy (OCA) was calculated as the 
overlap between cell line annotation using Seurat (MULTISeqDemux and HTODemux 
functions) or GMM-Demux [21], and freemuxlet as a reference annotation as follows: 
the OCA equals the number of all matching singlets (e.g., a given cell i annotated as one 
cell line/strain by both Seurat and freemuxlet), plus a number of matching non-singlets 
(mostly multiplets),divided by the number of all cells (Fig. 1).

Importantly, the tested demultiplexing functions from Seurat use antibody- or lipid-
derived hashtag oligo (HTO) expression data for cell line annotation, while freemuxlet 
uses transcriptome data and a Bayes Factors approach to evaluate the likelihood of a 
hashed droplet being a doublet and estimation of its cell line origin. Freemuxlet exploits 
a similar algorithm as demuxlet [8], but does not require externally genotyped data 
(popscle package).

One of the first characteristics evaluated for all types of hashing techniques in our 
study was the level of detection of each HTO. When comparing the unnormalized, log-
transformed HTO counts of each antibody- or lipid-derived hashtag oligo on a heat-
map, we observed a distinct barcode for each of the four cell line clusters. Each cell 
cluster expresses an intrinsic gene marker relevant to each cell line (Additional file 1: 
Fig. S1). These findings are corroborated when each cluster is identified based on inher-
ent genetic variation using freemuxlet (Fig. 2B), clearly separating the four cell lines and 
doublets. We also evaluated sample multiplexing on the same cells using 5’ scRNA-seq 
chemistry and compatible TotalSeq-C hashing antibodies (Fig.  2, 2nd column). Cells 
demultiplexed using MULTISeqDemux had a very high concordance (OCA 0.96 for 
TotalSeq-A and TotalSeq-C hashing) with freemuxlet-based annotation (Figs.  1 and 
2C). The custom lipid (LMO) and MULTI-Seq lipid hashing techniques demonstrated 
0.68 and 0.84 classification accuracy, respectively (Figs. 1 and 2C). The MULTISeqDe-
mux function annotated 1.1%, 1.8%, 21%, and 7% of cells in TotalSeq-A, TotalSeq-C, 
custom lipid (LMO), and MULTI-Seq lipid experiments respectively, as “Negatives” 
(Fig.  2C), which have a background expression for each hashtag according to the 
algorithm of the MULTISeqDemux function [10]. We observed ~2 times less unique 
molecular identifiers (UMIs) and ~3 times less genes per cell in “Negatives” compared 
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to singlets in the case of antibody hashing (no statistical tests performed) (Additional 
file 1: Fig. S2). Although a number of hashtag reads per cell is normalized across all the 
compared conditions here, it is noticeable that lower classification accuracy when using 
lipids compared to TotalSeq antibodies coincides with higher number of cells in the 
lipid hashing samples (Fig. 1). Nevertheless, the repeated TotalSeq-A experiment with 
an increased number of cells (17611) still demonstrated better classification accuracy 
(0.91) even when compared to the MULTI-Seq lipid hashing (0.84, 16,827 cells) (Fig. 1). 
Remarkably, the number of “Negatives” was relatively higher in DU145 cells hashed 
with both types of lipid hashes (custom and MULTI-seq) (Fig. 2C), which is in line with 
the relatively low hashtag level of detection in this cell line (Fig. 2A). This observation 
might point to a potentially lower affinity of the tested lipids with DU145 cells. When 
we compared doublet annotation by freemuxlet and MULTISeqDemux, we noticed 
that 2.4%, 6.3%, 37.9%, and 19.1% of freemuxlet-annotated doublets in TotalSeq-A, 
TotalSeq-C, custom lipid (LMO), and MULTI-Seq lipid experiments respectively, were 
recognized as singlets by the MULTISeqDemux function (Additional file 1: Table S1). 
We observed some variation across different hashing techniques in doublet annotation 
by different doublet detection tools including also scrublet and doubletFinder (Addi-
tional file 1: Fig. S3, S4, S5).

When comparing the correct assignment of cells by the MULTISeqDemux function 
with their attributed genotypes, the percentage of hashtag swapping (fraction of each 
hashtag found among singlets in non-labeled cell lines) varied considerably between 

Fig. 2  Antibody hashing on cells demonstrates better accuracy than lipid hashing. Each column 
represents a separate hashing method. A Hashtag-derived oligo (HTO) matrices were generated using 
CellRanger, followed by log-transformation and visualised on heatmaps. B Cell annotation (4 cell lines) 
was performed using freemuxlet (gene expression) and visualized on the gene expression UMAP plots. 
C MULTISeqDemux-annotated cells (HTO signal) were matched with the freemuxlet-annotated cells. 
Classification accuracy of every hashing method reported for each cell line
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technologies with the lowest average value of ~ 0,1% mislabeled cells in both TotalSeq-A 
and TotalSeq-C hashing experiments, 0.89% mislabeled cells in the MULTI-Seq LMO 
hashing, and 2.68% in the custom LMO hashing experiment (Additional file 1: Table S2).

Regarding the performance of the demultiplexing functions from Seurat, we noticed 
that the MULTISeqDemux function (autoTresh =T) overall correctly deconvolves more 
cells than the HTODemux function (with default parameters) or GMM-Demux (Fig. 1).

Additional to the comparison of different hashing techniques on cells, we also esti-
mated the level of expression of CD298 and β2-microglobulin in different human cells 
(mainly cancer cell lines) using flow cytometry. Both antigens are targeted by human 
TotalSeq -A and -C hashing antibodies, and for their detection, we used flow cytom-
etry antibodies with the same clones. All the tested 17 human cell types including 
PBMCs, HEK293A, and THP-1 cells express both antigens, potentially enabling anti-
body-based hashing on these cells (Additional file 1: Fig. S7). To conclude, the Total-
seq -A and -C hashing antibodies can provide good hashing capabilities for a range of 
human sample types.

Lipid (CMO)‑based hashing outperforms antibody hashing on nuclei

For each of the four cell lines, we extracted the nuclei to compare the antibody-based 
and lipid-based hashing efficiency. Nuclei hashing using lipids (cholesterol-modified 
oligos or CMO) and TotalSeq-A antibodies demonstrated overall lower signal-to-noise 
ratio of hashtag expression compared to TotalSeq antibody cell hashing (Fig.  2A vs 
Fig.  3A). Nevertheless, the nuclei hashed with cholesterol oligos followed by demulti-
plexing using MULTISeqDemux demonstrated 0.84 OCA (concordance with the refer-
ence annotation by freemuxlet) or 0.74 when using the HTODemux function (Fig. 1). 
TotalSeq-A-based nuclei hashing was less accurate (0.51 for MULTISeqDemux and 0.54 
for HTODemux function), mainly due to a high number of nuclei recognized as “Nega-
tives” (cells with a background signal for each hashtag) by the demultiplexing functions 
used for this benchmarking study (Fig. 3C). It was especially prominent in the MCF7 cell 
cluster (Fig. 3C, 2nd column). However, it was possible to improve the hashing efficiency 
by adjusting parameters of the demultiplexing functions. For example, changing the 
“positive.quantile” parameter in the HTODemux function from a default value of 0.99 to 
0.9, increased the classification accuracy of the TotalSeq antibody nuclei dataset by more 
than 10% (from 0.54 to 0.65) (Additional file  1: Fig.  6). We also observed that a large 
number of negatives in the MCF7 cluster (Fig.  3C) can be explained by an issue with 
the “hashtag 1” antibodies, since when other cells (DU145) were stained with antibodies 
from the same vial in a repeated experiment, many DU145 cells were also recognized as 
“Negatives” by Seurat (Fig. 3B, C, 3rd column). Importantly, CMO nuclei hashing still 
outperformed the TotalSeq A nuclei hashing (0.84 % vs 0.65 %), when hashtag 1 (DU145) 
was excluded from the hashing efficiency calculation and compared to CMO nuclei 
hashing on three cell lines.

Interestingly, the tested hashing techniques on nuclei were characterised by an oppo-
site pattern compared to cell hashing with respect to the background expression for each 
hashtag (reflected in the number of detected “Negatives”). Accordingly, the MULTI-
SeqDemux function annotated more droplets (33%) as “Negatives” in antibody nuclei 
hashing compared to the CMO nuclei hashing experiment (8.4% droplets detected as 
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negatives) (Fig. 3C, 2nd column vs 3C, 1st column). This contrasts with the hashing of 
cells, where antibody hashing delivered less “Negatives” compared to the lipid hashing 
(Fig. 2C vs Fig. 3C).

The mislabeling hashtag rate for the nuclei samples varied from 0.89% of swapped 
labels among singlets for CMO technique to ~ 4% for TotalSeq-A nuclei hashing (Addi-
tional file 1: Table S2).

We also wanted to compare gene expression-related metrics in samples from the 
hashing experiments of this study and other non-hashed samples on the single cell line 
normalized to the same sequencing depth. We did not observe major differences in the 
number of genes and UMIs per nucleus when comparing MCF7 nuclei from hashing 
(antibody and lipid) and non-hashed experiments (Additional file 1: Fig. S9). The same 
conclusion was valid for all the tested hashing techniques on MCF7 cells (Additional 
file 1: Fig. S10).

In general, opposite to the cell hashing, we observed better hashing results on nuclei 
when using lipid-based hashing (CMO) compared to the antibody (TotalSeq-A) nuclei 
hashing.

Antibody hashing can be successfully applied on clinical PBMC samples

In the context of the COVID-19 virus pandemic, we also tested TotalSeq-A antibody 
hashing on PBMCs from healthy individuals and SARS-CoV-2 patients in the frame of 
a COVID-19 clinical study (NCT04326920). All samples additionally contained a large 

Fig. 3  Lipid hashing (CMO) outperforms antibody hashing on nuclei. Each column represents a separate 
hashing method or a replicate. A Hashtag-derived oligo (HTO) matrices were generated using CellRanger, 
followed by log-transformation and visualised on heatmaps. B Nuclei annotation (4 cell lines) was 
performed using freemuxlet (gene expression) and visualized on the gene expression UMAP plots. C 
MULTISeqDemux-annotated nuclei (HTO signal) were matched with the freemuxlet-annotated nuclei. 
Classification accuracy of every hashing method reported for each cell line



Page 8 of 21Mylka et al. Genome Biology           (2022) 23:55 

277 antibody CITE-seq (TotalSeq-A antibodies) panel, thus making this PBMC hashing 
evaluation even more relevant for other multiomics scRNA-seq experiments. The overall 
classification accuracy (OCA) for the pool of PBMCs from 3 healthy patients according 
to MULTISeqDemux (autoTresh = T) function was 0.82. For the pool of 3 SARS-CoV-2 
patients, it was 0.84. (Fig.  1). Cell clustering analysis demonstrated a presence of all 
major cell types (T/NK cells, B cells, DCs/monocytes etc.) across 3 individuals in both 
pools, with no big variation of hashing accuracy across the main cell types (Fig. 4C, 1st 
and 2nd columns). Remarkably, cell clusters grouped as “Other”, that contain other cell 
types including potentially dying T-, B-, NK- cells or monocytes (indicated by a higher 
percentage of mitochondrial genes), had lower hashing accuracy (Fig. 4C).

The MULTISeqDemux function annotated 5.2% and 6.3% cells as “Negatives” in anti-
body hashing of healthy and diseased samples, respectively (Fig. 4B). According to free-
muxlet, the hashtag mislabeling rate was 4.76% of swapped singlet labels for healthy 
sample and 1.53% for SARS-CoV-2 sample (Additional file 1: Table S2).

Next, we also evaluated the TotalSeq-B and CellPlex (a multiplexing solution from 
10x Genomics) hashing on human PBMCs. Since these 2 samples were not part of the 
abovementioned COVID-19 study, we opted here for another labeling protocol (so 
called “pre-sort labeling”); labeling with antibodies or lipids followed by only one wash 

Fig. 4  Hashing of human PBMCs including SARS-CoV-2 clinical samples. Each column represents a 
separate hashing method or a condition (e.g., SARS-CoV-2, 2nd column). “Pre-sort labeling”—labeling 
with hashing reagents followed by one wash and live/dead sorting with subsequent loading of the cells 
on a 10x Genomics chip. Other samples undergone “classical” hashing -labeling followed by 3 washes and 
loading on a chip. A Hashtag-derived oligo (HTO) matrices were generated using CellRanger, followed 
by log-transformation and visualised on heatmaps. B MULTISeqDemux-annotated cells (HTO signal) were 
matched with the freemuxlet-annotated cells (gene data from 3 individuals) and visualized on the gene 
expression UMAP plots. Classification accuracy of every hashing method reported for each individual. 
C Annotation of major cell types performed using gene expression data and clustering. Classification 
accuracy of every hashing method reported for each cell type with SD values representing variation across 3 
individuals. % mito—percentage of mitochondrial genes for each cell type
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and subsequent live/dead cell sorting (FACS). This resulted in a very high OCA: 0.96 for 
TotalSeq-B antibodies and 0.93 for CellPlex hashes (Fig. 4, 3rd and 4th columns). It is 
also important to mention that the CellPlex cDNA libraries are only compatible with the 
10x Genomics dual sample indexing (i5 and i7). Therefore, this type of sample indexing 
was used for the TotalSeq-B and CellPlex hashing here, in contrast to all other cDNA 
libraries in our study where single sample 10x Genomics indexing (i7) was used.

Antibody and lipid hashing of primary mouse tissues

scRNA-seq experiments on primary tissues are usually less straightforward when com-
pared to cell lines or PBMCs due to the preceding tissue dissociation steps. In our study 
we evaluated antibody and lipid hashing of several mouse tissues derived from different 
mice strains using multiple dissociation protocols and labeling strategies.

First, we evaluated TotalSeq-B antibodies, custom and MULTISeq LMO hashing on 
the brain (adapted Miltenyi Biotech Neural Tissue Dissociation kit), spleen, lung, and 
skin cells where we applied “pre-sort labeling.” We observed that the OCA for brain cells 
was higher when using lipid hashing: 0.87 when using custom LMOs, 0.85 with MULTI-
Seq lipids, and only 0.38 with antibodies. The antibody hashing resulted in many “Nega-
tives” assigned to mostly non-microglia/macrophage cells (C1qa-negative cells) (data 
not shown).

We could isolate only a few skin cells in this experiment which demonstrated 0.64, 0.5 
and 0.58 OCA for antibody, custom LMO and MULTISeq lipid hashing, respectively. 
We also learned from this experiment that freemuxlet is not able to separate cells origi-
nating from closely related mice strains: C57BL6J and C57BL6N. Thus, we report here a 
common OCA for the spleen and lung. Nevertheless, we could see that antibody hash-
ing (0.88 OCA) outperforms lipid hashing (0.68 OCA for custom and 0.75 for MULTI-
Seq) on the lung and spleen cells (Fig. 5B). We then confirmed this result for antibody 
hashing in another experiment where the spleen and lung cells were isolated from dis-
tinct mice strains: 129SVEvs7 and C57BL6J. The spleen hashing resulted in OCA 0.92 
and lung antibody hashing - 0.84. Here we also evaluated a rather classical “post-sort 
labeling” hashing strategy where sorted live cells were labeled with antibodies followed 
by 2 washes (OCA 0.92 and 0.8 for the spleen and lung, respectively). Unfortunately, 
the brain cells were contaminated with blood during isolation in this experiment. As a 
result, the MULTISeqDemux function annotated basically all brain cells as “Negatives” 
in the “pre-sort labeling” condition (Additional file 1: Fig. S11, 1st column). In the “post-
sort labeling” sample, the OCA for brain cells was only 0.30 (Additional file 1: Fig. S11, 
2nd column), which is even lower than in the “pre-sort” labeling condition of the previ-
ous experiment where it was 0.38 for antibody brain cell hashing (Fig. 5).

Next, we decided to evaluate antibody and lipid hashing on brain cells using another 
isolation protocol which also includes transcardial perfusion to prevent blood contami-
nation [4]. In this case, lipid hashing (custom lipids) also demonstrated better hashing 
accuracy than antibodies (OCA 0.73 vs 0.48) (Fig.  6). Here, we also applied hashing 
before live/dead cell sorting (“pre-sort labeling” protocol). Regarding the cells that 
could not be assigned to any hashtag (“Negatives”), even in the lipid hashing sample, 
these were the cells mostly belonging to cell clusters that express markers of ependymal 
cells (Msx1, Krt181, etc) [22]. The cells which were mostly successfully demultiplexed 
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when using lipid hashing are microglia/macrophages (Tmem119/C1qa positive cells) [4] 
(Fig. 6D, E).

Discussion
Correct sample demultiplexing after hashing depends on several factors: the hash-
ing strategy itself (antibodies versus lipids), which subsequently can depend on the 
cell surface antigen repertoire in case of antibody hashing or biochemical/biophysical 
properties of membranes in case of lipid hashing. Also, this accuracy depends on the 
demultiplexing methods that can be subsequently influenced by other parameters (cell 
number, cells or nuclei, sequencing depth, etc.). In order to accurately determine the 
efficiency of demultiplexing, we hashed different cell lines that carry intrinsic genetic 
variations, which serve as a ground truth control. Importantly, for one of the hashing 
datasets, we compared two reference demultiplexing tools: freemuxlet which was used 
in this study, and the genotyping data-dependent tool demuxlet [8]. The cell deconvo-
lution of the “TotalSeq-A cells rep1” sample using HTODemux demultiplexing func-
tion demonstrated a 0.94 OCA (overall classification accuracy) when compared with 
freemuxlet, and 0.95 when compared with demuxlet as a reference. Our comparison 

Fig. 5  Antibody and lipid hashing of mice brain, spleen, lung, and skin cells. Each column represents 
a separate hashing method. “Pre-sort labeling”—labeling with hashing reagents followed by one wash 
and live/dead sorting with subsequent loading of the cells on a 10x Genomics chip. A Hashtag-derived 
oligo (HTO) matrices were generated using CellRanger, followed by log-transformation and visualised 
on heatmaps. B Cell annotation (4 mice strains) was performed using freemuxlet (gene expression) and 
visualized on the gene expression UMAP plots. C MULTISeqDemux-annotated cells, (HTO signal) were 
matched with the freemuxlet-annotated cells. Classification accuracy of every hashing method reported for 
each tissue
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demonstrates that even without external genotyping data (SNPs), required for demux-
let, it is possible to deconvolve different cells using a similar algorithm (freemuxlet). 
Although it is possible to demultiplex samples using only freemuxlet when pooling cells 
from different patients or from distinct mouse strains, the tool fails to separate strains 
such as C57BL6N and C57BL6J for example. We also noticed that “doublet vs singlet” 
classification by freemuxlet was not always consistent with the annotation by Doublet-
Finder [23] or Scrublet, the commonly used tools for computational doublet prediction 
[24]. For some data sets freemuxlet was underestimating the number of doublets. Addi-
tionally, the doublets annotated by HTO- and MULTISeqDemux were also not always 
aligned with the output of DoubletFinder and Scrublet. These findings are in accord-
ance with the observation of a relatively high disagreement between DoubletFinder, 
Scrublet, and demuxlet [25]. This can be partially explained by the reliance on differ-
ent data modalities that can lead to a certain bias in detection of heterotypic or homo-
typic doublets. For instance, the functions incorporated in Seurat (e.g., HTO-Demux, 

Fig. 6  Antibody and lipid hashing of mice brain cells. Each column represents a separate hashing method. 
“Pre-sort labeling”—labeling with hashing reagents followed by one wash and live/dead sorting with 
subsequent loading of the cells on a 10x Genomics chip. A Hashtag-derived oligo (HTO) matrices were 
generated using CellRanger, followed by log-transformation and visualised on heatmaps. B Cell annotation 
(3 mice strains) was performed using freemuxlet (gene expression) and visualized on the gene expression 
UMAP plots. C MULTISeqDemux-annotated cells (HTO signal) were matched with the freemuxlet-annotated 
cells. Classification accuracy of every hashing method reported for each strain (brain cells). D Gene-cell 
matrices were generated using CellRanger, followed by log-transformation of gene UMI counts and cell 
clustering (gene expression, PCA reduction) using Seurat. The marker gene UMI counts were visualised in 
blue color on the gene expression UMAP plots for antibody hashing and lipid hashing (E)
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MULTISeqDemux) predict doublets based on the hashtag signal (in particular combina-
tions of different hashtags), while other tools (e.g., DoubletFinder) use the gene expres-
sion data and can detect doublets formed by transcriptionally distinct cells [9, 23]. Thus, 
it is worthwhile to consult both types of methods (gene expression- and HTO-based) 
while keeping in mind a theoretical multiplet rate (~0.8% for every 1000 captured cells 
on a 10x Genomics chip, CG000206 Rev D). Overall, this limitation in correct doublet 
prediction might diminish demultiplexing accuracy and requires further optimization. 
The impaired doublet annotation due to increased multiplet rate together with a failure 
to assign hashtags to a number of cells (“negatives”) might explain the lower hashing effi-
ciency in the samples with higher number of cells loaded/captured on chip. For example, 
the captured cell number in the repeated TotalSeq-A experiment (rep2) was increased 
by 48%, while the number of doublets (detected by freemuxlet) and negatives (assigned 
by MULTISeqDemux) increased by 125% and 325%, respectively. An important param-
eter “signal-to-noise ratio” [22] was kept in this comparison on the same level by labeling 
equal number of cells with the same quantity of hashing antibodies.

It is important to mention that our comparison of different hashing strategies was 
applied to cells from filtered gene-cell matrices as produced by CellRanger v3 without 
further outlier filtering (e.g., based on mitochondrial gene expression). We could see in 
our PBMC dataset that in terms of cell calling, this filtered matrix contains almost the 
same number of cells as a “raw” matrix after filtering out all droplets with less than 200 
UMIs (gene expression) and all droplets expressing one gene in less than 3 droplets. We 
observed that the tested demultiplexing functions from Seurat assigned some cells with 
relatively low number of genes and UMIs to the group “negatives”. Hence, not surpris-
ingly, the hashing efficiency can be improved by filtering out the cell outliers. For exam-
ple, correct PBMC annotation (healthy control patients) was improved from 0.84 to 0.89 
after filtering out 2660 from 14635 cells using the “scater” Bioconductor package (iden-
tifying outliers based on the number of genes and UMIs per cell). On the other hand, a 
stringent filtering might cause a loss of biologically relevant cell subtypes. Thus, optimi-
zation of the sample demultiplexing should be performed in parallel with a deeper bio-
logical sample analysis. For evaluation of TotalSeq-B antibodies and CellPlex on PBMCs, 
we opted for a different protocol where labeled cells were sorted (live/dead) before load-
ing on a chip. This “pre-sort labeling” might have contributed to a higher classification 
accuracy compared to the classical hashing protocol (labeling without sorting). It is in 
line with another observation that in PBMC clusters with a higher percentage of mito-
chondrial genes, hashing accuracy was lower.

We can conclude that the type of hashing strategy must be chosen based on the hashtag 
antigen expression, since it is known that some cells might not express both antigens tar-
geted by available TotalSeq hashing antibodies. For instance, CD45 and MHC I antigens 
(targeted by mouse hashing antibodies from BioLegend) are not or lowly expressed in 
mouse C3 and B16-BL6 melanoma cells (Additional file 1: Fig. S8). However, a relatively 
lower affinity of certain cells towards different types of lipid hashes can be also observed. 
Nevertheless, lipid-based hashing might be a preferred strategy for multiplexing of sam-
ples with a low or unknown expression of hashing antigens (CD45 and MHC I), pro-
vided the sample demultiplexing on a computational level is well optimized. That is what 
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we see in a rather complex tissue such as mouse brain, where lipid hashing outperforms 
antibody hashing. The effect of tissue dissociation on epitope representation can also 
contribute to this observation in case of antibody hashing. Nevertheless, if working only 
with for instance brain macrophages (i.e., microglia), the antibody hashing can still be 
used. The antibody hashing however seems to be a preferred strategy when working with 
tissues like the spleen or lung where tissue dissociation is more straightforward.

In the present study on human cancer cell lines, the antibody-based hashing when tar-
geting cells overall performed better than the lipid-based hashing. When labeling nuclei 
from the same cell lines, cholesterol-based hashes (CMO) demonstrated better hashing 
efficiency compared to the antibody-based labeling (TotalSeq-A). This result can be par-
tially explained by the potential detrimental effect of the lysis buffer (Nuclei EZ Lysis 
Buffer) used for nuclei isolation on the nuclei surface proteins. The comparison of Total-
Seq -A-based cell hashing with TotalSeq-C cell hashing compatible with 3’ and 5’ gene 
10x Genomics sequencing, respectively, demonstrates similarly good hashing efficiency. 
When comparing TotalSeq-B hashing antibodies with CellPlex (hashing lipids from 10x 
Genomics) on PBMCs, both methods demonstrate very high hashing accuracy—0.96 for 
antibodies and 0.93 for CellPlex. Alternatively, other antibody-based hashing methods 
are also available on the market, e.g., hashing antibodies from BD Biosciences compat-
ible with the BD Rhapsody platform for scRNA-seq experiments.

With respect to analysis algorithms, we observed that the MULTISeqDemux function 
with autoTresh =T parameter originally tailored for lipid-based hashing [10] performs 
even better than HTODemux function and only slightly better than the GMM-Demux 
function on a vast majority of tested data sets (Additional file 1: Fig. S12).

Conclusions
Overall, we can conclude that both lipid- and antibody-based hashing strategies can be 
successfully applied on human cells, nuclei, and on cells form mouse tissues to reduce 
costs and batch effects of scRNA-seq experiments. Our comparison indicates that MUL-
TISeqDemux is the preferred demultiplexing function, antibody-based hashing is the 
most efficient protocol on human cell lines, PBMCs, and lipid hashing delivers the best 
results on nuclei. On mice tissues, this depends on the tissue, e.g., lipids work better on 
the brain and antibodies better on the lung and spleen (Fig. 7). We also demonstrate that 
antibody hashing in combination with large CITE-seq panels can be successfully applied 
on PBMCs from healthy individuals and SARS-CoV-2 patients.

Methods
Cell culture

MCF7, PC3, DU145, and MDA-MB-231 cells were ordered from ATCC via LGC 
Standards and maintained according to standard procedures in RPMI-1640 (Gibco, 
#21875034), F-12K (LGCstandards, ATCC 30-2004), EMEM (LGCstandards, ATCC 
30-2003), and DMEM: F-12 (LGCstandards, ATCC 30-2006) medium, respectively, 
supplemented with 10% fetal bovine serum (Gibco, #10082147) and 1% penicillin/
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streptomycin (100 U/ml and 100 μg/ml, respectively, Gibco, #15140122) at 37°C with 
5% CO2. RPMI-1640 medium used to culture the MCF7 cells was additionally supple-
mented with 0.01 mg/ml human recombinant insulin (Sigma Aldrich, #I3536). The cells 
had undergone regular tests for mycoplasma contamination during the study.

Single‑cell dissociation

To prepare single-cell solutions of the cultured cell lines, the culture medium was 
removed, and the cells were washed with 1X PBS. Afterwards, the cells were trypsi-
nized (0.05% trypsin-EDTA, Gibco, # 25300054) and pelleted at 200 x g for 5min. The 
cells were resuspended in 2 ml of culture medium, gently mixed with 8 ml of 1X PBS 
and put on ice. Afterwards, the cells were pelleted at 200 x g for 5min on 4°C and 
resuspended in 1 ml 1X PBS with 0.04% BSA. Cells were passed through a 40-μm cell 
strainer (Corning, # CLS431750-50EA) and counted with a LUNA FL counter, using 1 
μl of acridine orange and propidium iodide dye (F23001, Westburg).

Single nuclei dissociation

Single nuclei suspensions were prepared using a modified nuclei isolation protocol 
from 10x Genomics (demonstrated protocol: isolation of nuclei from single-cell sus-
pensions, #CG000124, revD). We replaced the original lysis buffer with Nuclei EZ 
Prep buffer (Sigma Aldrich, # NUC101-1KT) with a total lysis time of 5 min and pro-
ceeded according to the referenced protocol. Loss of cell viability as a proxy for nuclei 
extraction quality and the number of nuclei were assessed with a LUNA FL counter, 
using 1 μl of acridine orange and propidium iodide dye (F23001, Westburg).

Fig. 7  Preferable hashing techniques according to our study. TotalSeq antibody hashing is a preferred 
method for multiplexing different human cell lines, PBMCs, mice spleen, lung, and skin cells. Lipid-modified 
oligos are better on mice brain cells. The CMO hashing method yields the best results when nuclei are the 
input sample. CMO cholesterol-modified oligos
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Mice primary tissue processing

Brain

For the mice (8 weeks old BALB/cJ) brain cell isolation, the Miltenyi Biotech Neural 
Tissue Dissociation kit (130-092-628) was used without perfusion according to manu-
facturer’s guideline.

Alternatively the following brain cell isolation protocol was used as described [4]: 
8-week-old mice (BALB/cJ, C57BL/6N and DBA/2J) were deeply anesthetized and per-
fused transcardially with 20 ml of ice-cold phosphate-buffered saline (PBS). Mice were 
decapitated, and the brains were divided in two hemispheres and collected in 1 mL ice-
cold Roswell Park Memorial Institute (RPMI) 1640 medium (Gibco). The brains were 
cut into small pieces (1–2 mm) after which enzyme mix was added (30 U ml−1 DNAse 
I (Roche), 10 U ml−1 collagenase type I (Worthington), and 400 U ml−1 collagenase 
type IV (Worthington) diluted in 1X Hanks’ buffered salt solution (Gibco)). The brains 
were incubated for 20 min at 37°C and resuspended with a 1-mL pipet every 10 min. 
The solutions of three hemispheres per condition were pooled and filtered twice over 
a 100-μm nylon filter and centrifuged. The pellet was resuspended in 5 ml 70% stand-
ard isotonic percoll (SIP, GE Healthcare) diluted in 1X Hanks’ buffered salt solution and 
carefully overlaid with 5 ml of 37% SIP, followed by a 5-ml layer of 30% SIP, forming a 
three-layered density gradient (centrifuged at 800g, 4°C, 30 min without acceleration/
braking). The 70/37% interphase containing immune cells was collected, centrifuged, 
pooled per condition, and resuspended in fluorescent activated cell sorter (FACS) buffer 
(2 mM EDTA (Duchefa) and 2% heat-inactivated fetal calf serum (Gibco) dissolved in 1X 
Hanks’ buffered salt solution). The duration of the entire dissociation process was 4 h.

Lung, spleen, and skin

Eight-week-old mice (C57BL6/J and C57BL6/N in the 1st experiment, C57BL6/J and 
129SVEvs7 in the 2nd experiment) were used. Single-cell suspensions were prepared by 
digestion in 100μg/mL Liberase TL (Cat 05401020001, Roche, Germany) and 100μg/mL 
DNase I (11284932001, Roche, Germany) for 30 min at 37°C before passing through a 
100-μm cell strainer. The spleens were rinsed with ice-cold PBS and mashed into small 
pieces using a plunger of a 10-mL syringe on top of a sterile 100-μm cell strainer mesh in 
a Petri dish containing 2-ml ice-cold RPMI. Red blood cells in the lung and spleen single-
cell suspensions were lysed using ammonium chloride lysis buffer (10 mM KHCO3, 155 
mM NH4Cl, 0,1 mM EDTA in MilliQ water). Single-cell suspensions were washed with 
1x dPBS before incubation with antibodies. The skin cells were isolated as described 
here [26].

Antibody hashing

Cell and nuclei labeling were performed according to an adapted BioLegend cell hashing 
protocol (TotalSeq™-A Antibodies and Cell Hashing with 10x Single Cell 3’ Reagent Kit 
v3 3.1 Protocol, Biolegend). Briefly, cells were then incubated for 10 min with Fc recep-
tor block (PN 422301, TruStain FcX, BioLegend) to block nonspecific antibody binding. 
Subsequently, cells were incubated with mixtures of barcoded antibodies for 30 min at 
4°C. In the TotalSeq-A experiment, MCF7, PC3, DU145, and MDA-MB-231 cells were 
labeled with 0.1 μg TotalSeq-A0251, -A0252, -A0253, and –A0254, respectively. For 
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TotalSeq-C hashing, MCF7, PC3, DU145, and MDA-MB-231 cells were labeled with 0.1 
μg TotalSeq-C0251, -C0252, -C0253, and –C0255, respectively. For both TotalSeq-A and 
TotalSeq-C experiments, 200 000 cells of each cell line were labeled with the antibodies 
in 100 μl PBS containing 1% BSA. After labeling, cells were washed 3 times by resuspen-
sion in 1.4 ml PBS containing 1% BSA, followed by centrifugation (200g 5 min at 4°C). 
After the final wash, cells were resuspended in PBS containing 0.04% BSA and equal 
amounts of labeled MCF7, PC3, DU145, and MDA-MB-231 cells were pooled before 
loading onto the 10x Chromium Single-Cell B Chip (PN# 2000060) in case of TotalSeq-
A hashing or onto the 10x Chromium chip A (PN# 2000019), because of the TotalSeq-C 
antibody compatibility with 5’ 10x chemistry (Chromium Single Cell Immune Profiling).

Nuclei were labeled with oligo-tagged anti-nucleoporin antibodies (#Mab414, BioLe-
gend) (Sup. Table 1). MCF7, PC3, DU145, and MDA-MB-231 nuclei (840 000 of each 
line) were labeled with 0.5 μg TotalSeq-A0456, -A0457, -A0458, and –A0459, respec-
tively, in 2% BSA solution with 0.02% Tween-20, 10mM Tris, 146mM NaCl, 1mM CaCl2, 
and 21mM MgCl2 [27]. After the last wash, nuclei were resuspended in the same labeling 
buffer as above with lower concentration of BSA (1%) and pooled prior to loading on 
chip B from 10x Genomics.

The DNA library preparation was performed according to the manufacturers guide-
lines: CG000186 Rev A protocol for 5’ 10x Genomics chemistry and CG000185 Rev B 
protocol for 3’ 10x Genomics (v3 chemistry).

Lipid hashing

Based on the MULTI-seq work, Lipid Modified Oligonucleotides (LMO) were used for 
cell hashing, and Cholesterol Modified Oligos (CMOs) were used for nuclei hashing. 
Labeling of nuclei was done with CMO because of the inefficacy of the LMOs to label 
nuclei in the presence of BSA. BSA specifically sequesters LMO and quenches LMO 
labeling [10].

In this work, we have evaluated and compared the performance of commercially avail-
able oligos (custom LMOs purchased from Integrated DNA Technologies) with the 
LMOs used in the MULTI-seq work [10]. Due to the commercial unavailability, LMOs 
with lower carbon chain length (C18; Stearyl modification) were used instead of the lig-
noceric acid modified oligonucleotides (C22), described in the MULTI-seq manuscript.

The MULTI-seq lipid anchor and co-anchor were a kind gift from Christopher S. 
McGinnis at UCSF. The labeling of MCF7, PC3, DU145, and MDA-MB-231 cells was 
performed as previously described [10]. Briefly, for each cell line, 500k dissociated cells 
were washed and resuspended in PBS and incubated with 200 nM 1:1 molar ratio of the 
anchor and unique barcode oligonucleotides for 5 min on ice. Afterwards, each sample 
was incubated with 180nM of co-anchor in PBS on ice for 5min, followed by addition of 
1% BSA in PBS to reduce off-target labeling when pooling. Cells were washed two times 
in 1% BSA in PBS after which all samples were pooled, filtered through a 40-μm cell 
strainer (Corning, # CLS431750-50EA), counted and loaded onto a single reaction of a 
10x Chromium chip B.

The anchor and co-anchor of the commercial LMOs are available through Inte-
grated DNA technologies. Also, the anchor and co-anchor of the CMOs were conju-
gated to cholesterol at the 3′ or 5′ ends via a triethylene glycol (TEG) linker and are also 
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commercially available from Integrated DNA Technologies (Additional file 1: Table S4). 
The labeling workflow for the commercially available LMOs and CMOs are identical to 
the MULTI-seq protocol [10].

For the mice samples, tissues from different strains were dissociated and 0.4–0.6 M 
cells were labeled with antibodies (0.5 μg) or lipids (200 nM) as described above. Then 
cells were washed once (pre-sort labeling protocol) and live cells sorted (BD Aria II, 85 
ul nozzle, DAPI staining) for the subsequent cell pooling and 10x Genomics runs. Alter-
natively, cells were labeled (same amount of antibodies or lipids as above) after sorting 
(0.3–0.4M cells) and washed 2–3 times before pooling and loading on 10x chips (post-
sort labeling).

Sequencing

The generated libraries were pooled targeting 85% mRNA and 15% hashtag oligo (HTO) 
and paired-end sequenced on individual lanes on a HiSeq4000 or NovaSeq 6000 (Illu-
mina) instruments, using the following read lengths: 28 bp Read1, 8 bp I7 Index, and 91 
bp Read2.

PBMC sample preparation and single‑cell sequencing

PBMCs from 3 healthy control individuals and 3 SARS-CoV-2 patients (in a framework 
of the clinical study NCT04326920) were isolated as follows. Whole blood separation 
was performed by bringing whole blood, diluted with PBS 7.2 (ThermoFisher Scientific, 
# 20012027), in a Leucosep™ tube, (Greiner Bio-One, # 227290), prefilled with 15 mL 
Lymphoprep™ (Stemcell technologies, # 07851), and followed by a centrifugation step 
of 30 min at 400g (acceleration 5, brake 3). After isolation, the PBMCs were washed 
twice with PBS 7.2 and centrifuged at 350g during 10 min at 4°C. Isolated PBMCs were 
counted, cryopreserved in 1mL FCS/10%DMSO, and stored in liquid nitrogen. After 
the thawing as described in the PBMC sample preparation protocol from 10x Genomics 
(CG00039, Rev C), cells were labeled according to the adapted CITE-seq protocol [15]. 
In brief, 1 x 10^6 PBMCs were spun down and resuspended in 25 μl CITEseq antibody 
cocktail (TotalSeq™-A Antibodies, BioLegend) containing among others one hashing 
antibody per each sample (0.025μg). After a 30-min incubation on ice, cells were washed 
3 times, pooled together (3 healthy donors resulting in sample one and 3 SARS-CoV-2 
patients resulting in sample two), and resuspended in PBS+0.04% BSA at a final con-
centration of 1000 cells/μl. Cells were counted using automated counter LUNA FLTM 
(Logos Biosystems). Cellular suspensions (target recovery of 10000 cells) were loaded 
on a 10x Genomics NextGEM Single-Cell Instrument, chip G (# 2000177) to generate 
single-cell Gel Bead-in-EMulsion (GEMs). Single-cell RNA-Seq libraries were prepared 
using GemCode Single-Cell V3.1 (NextGEM) 3′Gel Bead and Library Kit (10x Genom-
ics) according to the manufacturer’s instructions. Sequencing libraries were sequenced 
with Illumina NovaSeq S4 flow cell with custom sequencing metrics (single-indexed 
sequencing run, 28/8/0/98 cycles for R1/i7/i5/R2).

For the CellPlex vs TotalSeq-B evaluation, commercial frozen PBMCs from 3 differ-
ent healthy donors (SER-PBMC-F, tebu-bio) were used according to the 10x Genomics 
PBMC sample preparation protocol CG00039 Rev C. 0.5 x 10^6 PBMCs for CellPlex 
were labeled according to the 10x Genomics CG00391 Rev A protocol. The same number 



Page 18 of 21Mylka et al. Genome Biology           (2022) 23:55 

of PBMCs were incubated for 10 min with Fc receptor block (PN 422301, TruStain FcX, 
BioLegend) and then incubated with 0.2 μg of TotalSeq-B0258 or -B0259, or -B0260 for 
30 min at 4°C. The cells were washed once and live-sorted on BD Aria II instrument with 
85 μm nozzle (DAPI staining). Afterwards, cells were collected and processed according 
to 10x Genomics CG000390 Rev B protocol. Generated dual index cDNA libraries were 
sequenced with 10x Genomics dual indexing metrics: 28/10/10/90 cycles for R1/i7/i5/R2 
on NovaSeq instrument.

Single‑cell data processing

Mapping

The raw sequencing data were demultiplexed and further converted into a single-
cell level gene counts matrix with Cell Ranger 3.1.0 with default parameters (https://​
github.​com/​10xGe​nomics/​cellr​anger). Only the number of expected cells was adapted 
in accordance with the number of targeted (captured) cells in each experiment. The 
mRNA reads were mapped to the human reference genome (assembly hg38 build 95) 
with the reads allowed to map to both exonic and intronic regions. For every type of 
hashing strategy, a specific Feature Reference File was generated and used as input for 
Cell Ranger. Filtered count matrices were used for downstream analysis. CellPlex and 
TotalSeq-B PBMC samples from dual index libraries were mapped with cellranger ver-
sion 6.1.1. Mouse samples were mapped to GRCm38 genome.

Freemuxlet‑based demultiplexing

The deconvolution of the four cell lines was determined by a genotype-free tool free-
muxlet which is an extension of demuxlet [8]. Both tools are from the popscle (commit 
7b141e3) software available at https://​github.​com/​statg​en/​popsc​le/. To reduce computa-
tion time, the input bam file was sorted to contain only reads that (i) overlap with the 
SNPs in the VCF file and (ii) have a cell barcode listed in the cell barcode list. Code is 
available at https://​github.​com/​aerts​lab/​popsc​le_​helper_​tools. The filtered bam file was 
further used with the popscle dsc-pileup tool to pileup the reads and corresponding base 
quality for each overlapping SNPs and each barcode. The reference vcf file was assem-
bled from the 1000 Genomes Project GRCh38 genetic variants data [28] adapted to the 
index used for mapping and the variant allele frequency > 0.9 and <0.1. were discarded. 
Next, freemuxlet with default parameters was used to determine sample identity and 
identify doublets. For the mouse samples VCF file from the “Mouse Genomes Project” 
was used (https://​www.​sanger.​ac.​uk/​data/​mouse-​genom​es-​proje​ct/).

Sample demultiplexing and clustering

To assign hashing tags for each cell, two strategies implemented in Seurat 3.1.4 pack-
age [29, 30] in R version 3.6.0 were evaluated on the filtered feature-barcode matrix 
generated by CellRanger: (i) HTODemux function with default parameters and (ii) 
incorporated into Seurat MULTIseqDemux function [10] with argument autoThresh 
= TRUE. Subsequent clustering and visualization of the data sets was performed in R 
using Seurat version 3.1.4 functions as described in the “Demultiplexing with hashtag 
oligos (HTOs)” vignette available at (https://​satij​alab.​org/​seurat/​v3.1/​hashi​ng_​vigne​
tte.​html). The hashing accuracy was calculated as the overlap between cells annotated 

https://github.com/10XGenomics/cellranger
https://github.com/10XGenomics/cellranger
https://github.com/statgen/popscle/
https://github.com/aertslab/popscle_helper_tools
https://www.sanger.ac.uk/data/mouse-genomes-project/
https://satijalab.org/seurat/v3.1/hashing_vignette.html
https://satijalab.org/seurat/v3.1/hashing_vignette.html
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using MULTISeqDemux, HTODemux functions, or GMM-Demux (https://​github.​com/​
CHPGe​netics/​GMM-​Demux) and freemuxlet as a ground truth.

Doublet identification

Doublet cell detection was performed using DoubletFinder (v2.0.1) [23] with the 10% 
as expected doublet rate and the following parameters: PCs=1:25, pN=0.25, pK= the 
highest value on BCmvn plot (find.pK function); Scrublet (v 0.1.3) and freemuxlet with 
default parameters, and Seurat (MULTISeqDemux (autoTresh=T) and HTODemux 
(default parameters) functions). The functions incorporated in Seurat predict doublets 
based on hashtag signal, while other tools use transcriptome data for this.
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