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Abstract

Adjustment for confounding sources of expression variation is an important
preprocessing step in large gene expression studies, but the effect of confound
adjustment on co-expression network analysis has not been well-characterized. Here,
we demonstrate that the choice of confound adjustment method can have a
considerable effect on the architecture of the resulting co-expression network. We
compare standard and alternative confound adjustment methods and provide
recommendations for their use in the construction of gene co-expression networks
from bulk tissue RNA-seq datasets.
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Background

Large-scale gene expression studies are often subject to technical and biological
sources of expression variation including effects of batch, sample characteristics, and
environmental factors. Identifying and correcting for these potential confounders is a
crucial step in data preprocessing and can improve researchers’ ability to quantify bio-
logical signals of interest [1, 2]. Confounding factors can be documented sources of ex-
pression variation (known covariates), or derived empirically from the expression
dataset (hidden covariates), and adjusting for these factors has become common prac-
tice in many population-level gene expression studies. While the benefits of confound-
ing factor correction have been well-characterized in analyses of differential expression
and expression quantitative trait locus mapping [2-5], the effects of confounding factor
correction on studies of gene co-expression are less well understood (although see [6,
7]). This is because confounding factors are difficult to distinguish from gene co-
expression, as both variables induce patterns of correlation between genes. In fact, in a
well-controlled study, hidden factors are likely to represent biological patterns of gene
co-expression in the data [8]. Because distinguishing regulatory effects from artifacts is

difficult, researchers have historically performed no data correction or known covariate
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adjustment alone before conducting a co-expression analysis [8—11]. More recently, a
series of alternative confound adjustment methods have been proposed, designed to
correct the expression dataset for confounding factors while retaining patterns of co-
expression [7, 12, 13].

In this study, we evaluate standard and alternative confound adjustment methods in
the construction of gene co-expression networks. Using seven diverse tissue datasets
from the Genotype-Tissue Expression project (GTEx) and CommonMind Consortium
(CMC) [3, 14], we identify co-expression networks after adjustment using six data cor-
rection approaches [1, 7, 12, 13]. To aid researchers in future use of these data correc-
tion methods, we present the global and local structure of networks derived from each
preprocessed dataset, and assess the accuracy of these networks against high-
confidence human gene network references [15-17].

Results and discussion

Our analyses were conducted using GTEx v8 subcutaneous adipose, skeletal muscle,
spleen, small intestine-terminal ileum, heart-left ventricle and whole blood tissue data-
sets, and CommonMind Consortium dorsolateral prefrontal cortex (DLPFC) data, with
sample sizes ranging from 174 to 706 individuals. Each dataset underwent preliminary
preprocessing including between-sample normalization, gene-level filtering, and gene
outlier removal. We applied six data correction procedures to each dataset: (1) no cor-
rection, (2) known covariate adjustment, (3) probabilistic estimation of expression re-
siduals (PEER) [1], (4) confounding factor estimation through independent component
analysis (CONFETI) [12], (5) removal of unwanted variation (RUVCorr) [7], or (6) prin-
cipal component adjustment (PC) [13]. RUVCorr, CONFETI, and PC adjustment are
three alternative data correction approaches designed to identify and remove hidden
confounds while retaining patterns of co-expression in the dataset. We compare these
approaches to one popular standard method of hidden confound adjustment (PEER),
known covariate adjustment, and a baseline uncorrected dataset (see the “Methods”
section). We generated unsigned weighted co-expression networks for each dataset
through calculation of the Pearson correlation between gene pairs, defining an edge as
an absolute correlation coefficient >0.5. We also identified co-expression modules
using three module detection methods (Additional Files 1, 2, 3): weighted gene correl-
ation network analysis (WGCNA), multiscale embedded gene co-expression network
analysis (MEGENA), and independent component analysis (ICA) [18—20].

We assessed the impact of each data correction approach on the architecture of
resulting co-expression networks through calculation of fundamental network statistics,
including node density, clustering coefficients, and standard module properties [21, 22].
None of these measures alone are sufficient to evaluate the accuracy of each co-
expression network following confound adjustment; we report these descriptive statis-
tics to provide an understanding of the size and structure of networks derived from
each data correction approach.

First, we plotted the distribution of gene-gene correlations for 5000 randomly se-
lected genes from each adjusted dataset. Given that only a small proportion of genes in
any random sampling will show functional relationships, we expect the distribution to
be normally distributed and centered around zero [7]. The spread of each distribution
shows the degree to which patterns of correlated expression have been removed from
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Fig. 1 A Distribution of gene-gene correlations for 5000 randomly selected genes in the skeletal muscle
tissue dataset. We observe significant differences in distribution of gene-gene correlations between
adjustment methods across tissues (Pairwise K-S test D = 0.018-0.361, all p < 0.0001). B Box plots showing
module size for each module detection method. There is a significant difference in module size between
adjustment methods for WGCNA, MEGENA, and ICA-derived modules (all Kruskal-Wallis test p < 0.0001). C
Box plots showing the total number of modules detected. p-values are provided in figure for significant
pairwise Tukey HSD tests. D Box plots showing intramodular density across confound adjustment methods
and tissue datasets. Similar to module connectivity, module density measures how tight or cohesive genes
are within a group, and is equal to the mean adjacency of a module [22]. Unlike MEGENA and WGCNA, ICA
is not a clustering module detection method rooted in the pairwise similarity between genes; therefore,
intramodular density was not calculated for ICA-derived modules. Outlier points are omitted for ease of
visualization in panels B and D

the dataset. Across tissues, CONFETI and PEER adjustment result in the highest pro-
portion of null gene-gene correlations, while known covariate adjustment, RUVCorr,
and no data correction result in the lowest proportion of null gene-gene correlations,
indicating that CONFETI and PEER adjustment result in smaller co-expression net-
works with fewer gene-gene relationships than other adjustment methods (Fig. 1A,
Additional File 4: Fig. S2, Additional File 5). Degree distribution and clustering coeffi-
cients also differ between adjustment methods, with genes in CONFETI and PEER-
adjusted networks showing fewer network neighbors and higher clustering coefficients
(Additional File 4: Fig S3-4). We found considerable variation in module size, density,
and total module number between tissue type and data correction method (Fig. 1B-D);

Page 3 of 13



Cote et al. Genome Biology (2022) 23:44 Page 4 of 13

most notably, modules identified from CONFETI and PEER-adjusted data tend to be
smaller and less variable in size (Fig. 1B, Additional File 4: Fig S5). MEGENA modules
identified following known covariate adjustment, RUVCorr, or no data correction dem-
onstrate higher intramodular density (i.e., connectedness) across tissues than other cor-
rection methods. Additionally, WGCNA modules identified after PEER adjustment
tend to be poorly connected, while WGCNA modules identified by CONFETI are par-
ticularly densely connected (Fig. 1C). Similarity of modules identified after each data
correction method is provided in Additional File 4: Figure S6-8. Overall, there is some
overlap among modules identified after known covariate adjustment, RUVCorr, PC,
and no data correction (Jaccard index> 0.5) and less overlap between these and mod-
ules identified using CONFETI and PEER.

Next, we evaluated the sensitivity and specificity of each correction method through
comparison to two high confidence tissue-specific gene network references. First, fol-
lowing Somekh et al. [6], we compared gene-gene co-expression to true positive and
negative gene pairs obtained from an external network resource (the Genome-Scale In-
tegrated Analysis of Networks in Tissues (GIANT) [15]). For each expression dataset
we (1) selected high probability true positive and true negative GIANT gene pairs, (2)
identified coefficients and FDR-adjusted Pearson correlation p-values for the corre-
sponding gene pairs in GTEx or CMC, and (3) compared adjusted p-values against
GIANT network gene pairs to generate receiver operating characteristic curves and cal-
culate the area under the curve (AUROC). RUVCorr, known covariate adjustment, and
no data correction perform similarly on this evaluation metric, while PC, PEER, and
CONFETI adjustment result in lower AUROC scores than unadjusted data (Fig. 2A).
These results are similar when we apply alternative measures of classification perform-
ance (Additional File 4: Fig. S9) and alternative cut-offs for co-expression network con-
struction (Additional File 4: Fig. S10).

We also performed comparative network analysis at the modular level, through
comparison of co-expression modules in this study and tissue-specific transcrip-
tional regulatory circuits derived from transcription factor motifs, promoter, and
enhancer activity information from the FANTOMS5 consortium [16, 23, 24]. Co-
expression modules were tested for enrichment in gene groups under regulation by
the same transcription factor. We summarized the performance of each dataset
using an “aucodds” score [25]. This score represents both the number of target
gene groups with a significant enrichment result, and the extent to which targets
of each regulator are enriched in a given module. Despite substantial variation in
performance across tissues, adjustment using RUVCorr, PC, known covariates, and
no data correction performed similarly on this evaluation metric, while CONFETI
and PEER-adjusted data resulted in poorer overall performance as measured by the
average aucodds score ranking (Fig. 2C, Additional File 4: Fig, S11-12).

Because CONFETI was designed to retain only patterns of co-expression associated
with common genetic variation, we considered that CONFETI is effectively capturing
only genetically regulated co-expression modules in our analysis, leading to poor overall
representation of the reference gene networks. To investigate this, we calculated the
proportion of modules per dataset that showed significant enrichment for (1) shared
TF-targets from Marbach et al. [16] and (2) gene sets from Gene Ontology [26], Reac-
tome [27], and KEGG [28] pathway databases (Additional File 4: Fig. S13). Overall,
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Fig. 2 Comparison of covariate adjustment methods. A Area under the curve (AUROC) scores for performance
evaluation of each adjustment method. B Proportion of edges in each global co-expression network that
represent TF-target gene interactions from the DoRothEA gene set resource. C Aucodds scores for performance
evaluation of each adjustment method per module detection method. Each histogram shows the distribution
of aucodds score rankings by each cut-off-tissue combination (1 = best-performing method, highest aucodds
score), with dashed lines marking the mean rank. D Summary of performance evaluation results. Heatmap
colors reflect the average score of a performance measure across tissues (scaled from 0 to 1). Module
comparison to Marbach et al. resource [16] shows average aucodds score rankings (C). The average scores for
each evaluation measure are provided in their respective cells

modules identified from CONFETI-adjusted data are less represented in the Marbach
et al. reference network and major pathway databases than other correction methods.
Finally, we compared global co-expression networks to DoRothEA, a curated
gene set of TF-target gene relationships derived from literature review, ChIP-seq
data, TF binding site motifs, and gene expression [17]. Because DoRothEA is
tissue-agnostic, and gene-gene relationships from this resource likely have specific
cellular and environmental contexts, we cannot apply performance evaluation mea-
sures like AUROC or AUPR that consider both expected true and false gene-gene
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relationships. Instead, we measured the proportion of gene-gene relationships in
each network involving TF-target gene interactions from this database (Fig. 2B).
Consistent with results in Fig. 1A, known covariate-adjusted, RUVCorr-adjusted,
and baseline unadjusted datasets result in co-expression networks with the highest
proportion of edges with supporting evidence from the DoRothEA resource. This
result is largely robust to choice of cut-off for a co-expression network edge (Add-
itional File 4: Fig. S14).

A summary of performance evaluation results across tissues is provided in Fig. 2D.
This study presents multiple lines of evidence suggesting that CONFETI and PEER ad-
justment may not be appropriate before co-expression network analysis; both result in
particularly sparse networks with weaker representation of high-confidence reference
gene-gene relationships compared to other adjustment methods. This poor perform-
ance of PEER adjustment is consistent with Somekh et al. [6]. PEER adjustment was de-
signed and tested principally to improve sensitivity in differential expression and cis-
eQTL studies, not to optimize co-expression analysis. It is likely that some PEER fac-
tors represent patterns of biological co-expression; therefore, adjusting for these may
reduce researchers’ ability to derive informative co-expression networks. In fact, prior
studies have interpreted PEER factors as gene co-expression and used PEER to study
genotype effects on gene co-regulation [29, 30].

As mentioned previously, CONFETI was designed to retain patterns of co-expression
associated with genotype (i.e., broad impact eQTL). In the original proposal of this
method, CONFETI was effective for simulated datasets in removing confounding fac-
tors while retaining broad impact eQTL, but showed limited success in real datasets,
identifying a few replicating broad impact eQTL. We note this approach was designed
only to account for non-genetic confounding sources of expression variation. In prac-
tice, some confounds that may be of interest to researchers can also show association
with genetic variation, such as cell type proportions [31].

In addition, networks constructed from PC-adjusted datasets show intermediate
performance on two of three evaluation measures, providing evidence that PC ad-
justment may overcorrect the expression dataset. These results contradict Parsana
et al, which suggests improved performance of PC-corrected datasets compared to
known covariate-corrected and baseline unadjusted data. To further explore this,
we evaluated the performance of each adjustment method through calculation of
the false discovery rate of WGCNA co-expression modules, as in Parsana et al.
Despite using different ground truth references, we also observe a reduced FDR for
PC-corrected data for two out of three shared GTEx tissues (Additional File 4: Fig-
ure S15). Because performance measures in the present study consider the rate of
both true positive and negative findings, we also calculated the false negative rate
of WGCNA modules and find an inflated FNR for modules derived from PC-
corrected data. This result demonstrates that the rate of type 1 error will be low
for sparse networks from over-corrected data, highlighting the importance of add-
itional performance metrics that consider both expected true positive and negative
network edges. Also, in this study, we adjusted for the number of principal compo-
nents as suggested by Parsana et al. in the original proposal of this method. We
note however that in some previous co-expression network analyses, adjusting for
fewer principal components (typically <10) effectively removes systematic noise
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from the dataset without overfitting [6, 32, 33], suggesting that the optimal number
of principal components to correct for remains an open question.

Lastly, we found that despite differences in network structure, RUVCorr correction,
known covariate adjustment, and no data correction all performed similarly in this
study. Although we would theoretically expect that correction at least for known tech-
nical factors would improve the accuracy of co-expression networks, there is conflicting
evidence that this is the case in practice [6, 13], and in the present study, no form of
data correction substantially improved the accuracy of co-expression networks as com-
pared to unadjusted data.

Conclusions

This study suggests that choice of covariate adjustment can have considerable effects
on the structure and accuracy of the resulting co-expression network. PEER and CON-
FETI adjustment may overcorrect the expression dataset, removing patterns of bio-
logical co-expression of potential interest, and are not recommended for researchers
interested in comprehensive co-expression network identification. Conversely, RUV-
Corr and known covariate adjustment appear to be suitable methods of preprocessing
before co-expression analysis, as these methods correct for unwanted effects on expres-
sion with no appreciable loss in co-expression signal.

The data correction and module detection methods used in the present study were
tested using gene expression from bulk tissue samples. Further research is needed to
understand whether these methods are effective in cell-type specific or single-cell ex-
pression datasets, as sources of expression heterogeneity and patterns of co-expression
likely differ in these data types [34]. Further work is also needed to understand whether
these results extend to additional methods of global and modular network analysis.

Methods
An illustration of the design of this study is provided in Additional File 4: Fig. S1 .

GTEx datasets

We tested performance of each covariate adjustment method using six tissue data-
sets from the Genotype-Tissue Expression (GTEx) project version 8 release: whole
blood, skeletal muscle, spleen, heart-left ventricle, subcutaneous adipose, and small
intestine-terminal ileum. Gene read counts and TPMs were downloaded from
https://gtexportal.org/home/datasets. The GTEx genome sequencing data were ob-
tained from dbGaP at http://www.ncbi.nlm.nih.gov/gap through accession number
phs000424.v8.p2. Standard RNAseq preprocessing steps were applied to each tissue
dataset as follows: (1) TMM normalization of read counts using edgeR and conversion to
log2CPM values, (2) gene-level filtering based on threshold of > 0.1 TPM in > 20% of sam-
ples and > 6 unnormalized reads in >20% of samples, (3) winsorization of expression
values, setting values in specific samples that deviate >3 standard deviations from other
samples to 3 standard deviation limit. For application of the CONFETI method, GTEx
whole genome sequencing data pruned at R-squared = 0.7 and with MAF > 0.01 was also
provided as input.

Created with BioRender.com
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CMC dataset

Preprocessing of the dorsolateral prefrontal cortex CMC gene expression dataset was
performed largely in accordance with Fromer et al. [8]. This included filtering of lowly
expressed genes (>1 CPM in at least 50% of samples), conditional quantile
normalization, and winsorization of gene counts, setting values in specific samples that
deviate > 3 standard deviations from other samples to 3 standard deviation limit. Sam-
ple outliers were removed based on (1) visual inspection of the first two principal com-
ponents of the full gene expression matrix and (2) interarray correlation, removing
samples with correlation less than 3 standard deviations below mean for the dataset.
For application of the CONFETI method, CMC dosage data imputed to the TOPMed
reference panel, pruned at R-squared = 0.7 and with MAF > 0.01 was also provided as
input.

Covariate adjustment

The following covariate adjustment methods were tested:

1) None: The dataset was not corrected for any known or hidden confounding factor.
2) Known covariates:

GTEx: Information concerning technical factors and sample attributes were down-
loaded from https://gtexportal.org/home/datasets. Covariates with missing information
or zero variance were excluded. We calculated the canonical correlation between
remaining covariates; for highly collinear variables (coefficient > 0.9 for collinear fac-
tors), we selected and retained one variable at random. Next, we calculated the variance
in expression attributable to remaining continuous technical factors using the variance-
Partition package. Lastly, each expression dataset was adjusted for continuous technical
factors that explained > 1% variation in > 10% of genes, as well as genotype-derived
PC1-5, sex, and binned age. A description of covariates adjusted for in each tissue is
provided in Additional File 4: Table S2.

CMC: The dataset was adjusted for technical factors as in Fromer et al. [8]. This in-
cluded adjustment for diagnosis, institution, sex, age of death, postmortem interval,
RNA integrity number (RIN), RIN?, genotype-derived PC1-5, and a clustered library
batch variable.

3) Principal components: It has been proposed that for scale-free networks, i.e., net-
works where the degree distribution follows a power law, patterns of co-expression
are sufficiently sparse that principal components of the expression matrix represent
an effective form of confound correction [13]. As suggested by Parsana et al., the
number of principal components to consider was determined through a permutation-
based approach implemented using the “num.sv” function in the sva package [13].
The number of principal components included in adjustment of each tissue is pro-
vided in Additional File 4: Table S1. Significant principal components were regressed
on each gene using a linear model and expression residuals obtained.

4) PEER: Probabilistic estimation of expression residuals (PEER) is a popular
confound correction method that uses a variant on the traditional factor analysis
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5)

method to infer hidden factors from the gene expression dataset [1, 4]. PEER
factors were obtained using default settings through the peer package. For each
dataset, we adjusted for the number of PEER factors selected to optimize cis-eGene
discovery in the latest quantitative trait locus study by the GTEx Consortium [3]:
15 factors for tissues with < 150 samples, 30 factors for tissues with 150-249 sam-
ples, 45 factors for tissues with 250—-349 samples, and 60 factors for tissues with >
350 samples.

CONEFETL Confounding Factor Estimation Through Independent component
analysis (CONFETI) is designed to adjust for non-genetic confounding factors
while retaining genetically regulated co-expression (i.e., broad impact eQTL) in the
expression dataset [12]. Briefly, factors are derived from the full gene expression
dataset using independent component analysis. Each independent component is
tested for association with genotype in a preliminary broad impact eQTL analysis.
Independent components not associated with genotype are considered non-genetic
confounding factors and are used in construction of a random effects sample co-
variance matrix.

We identified genetic and non-genetic independent components using the confeti

package with default settings. Unadjusted gene expression data for each tissue and

genotype pruned at R-squared = 0.7 were provided as input. The number of independ-

ent components used as confounding factors for each tissue is provided in Additional

File 4: Table S1. Five ancestry PCs were regressed on the expression of each gene in a

linear mixed model using the Irgpr package with non-genetic confounding factors pro-

vided as a sample covariance matrix, and gene expression residuals obtained.

6)

RUVCorr: The removal of unwanted variation (RUV) method is a multivariate
linear model that estimates systematic noise through factor analysis on an
expression matrix of empirically derived negative control genes, i.e., genes in the
data with low expression variation that are not expected to be associated with the
biological signal of interest (co-expression) [7]. In an attempt to mitigate bias in
the case where systematic noise and biological signal of interest are correlated, the
RUV method uses ridge regression to estimate the effect of systematic noise on
expression and regresses this systematic noise from the expression dataset. The
dimensionality of the noise (k) is chosen by the researcher through visual
inspection of plots of the distribution of negative and positive control genes in each
dataset. A subset of 2000 genes were used as empirically derived negative controls
while sodium channel genes, major histocompatibility complex genes, and genes
that encode for the protein component of the ribosome were used as positive
controls (Additional File 4: Fig. S16-22, positive control gene groups provided in
Additional File 6). The ridge parameter (v) is chosen through visual inspection of
relative log expression plots (Additional File 4: Fig. S23-24). Optimal parameters
will reduce the correlation between random genes, retain correlation between posi-
tive control genes, and best retain gene expression variances in the dataset. RUV
correction was applied to each dataset using the RUVcorr package, and expression
residuals obtained. Choice of RUV parameters for each tissue is provided in
Additional File 4: Table S1.

Page 9 of 13
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Co-expression module detection

The following module detection methods were used:

1)

WGCNA: Each dataset was transformed to a soft-thresholding power p to approxi-
mate scale-free topology (choice of power parameter provided in Additional File 7),
followed by construction of an unsigned network with a minimum module size of
10 genes. Modules were merged if correlation of their module eigengenes exceeded
a Pearson correlation coefficient of 0.75.

MEGENA: MEGENA module detection was performed using all default settings.
ICA: The R fastICA algorithm was applied to each expression dataset using the
logcosh function for neg-entropy approximation [20]. The number of independent
components extracted equaled the number of components that estimated 95% of
the variance as calculated by PCA. Inclusion of a gene in an ICA module was de-
termined through false discovery rate (FDR) calculation of source signal weights as
in Rotival et al. [35]. FDR estimation was performed using the R fdrtool package
[36], and genes with an adjusted p-value < 0.0001 were added to a module. Mod-
ules with fewer than 10 genes were excluded from this study, to be consistent with
the minimum module size of 10 genes for WGCNA and MEGENA.

Gene set enrichment

We tested modules derived from CONFETI-adjusted data for enrichment in gene sets

from the Gene Ontology, KEGG, and Reactome databases using the gprofiler2 R pack-

age v0.2.0. Over-representation of gene sets in each co-expression module was tested

using the hypergeometric test, with a custom background defined as the number of

genes expressed in each tissue dataset.

Comparative network analysis

We used the following methods to compare our co-expression network results to exter-

nal references:

1)

2)

AUROC measure: First, we compared our co-expression network results to high
probability true positive and negative gene pairs from the GIANT interface. To ob-
tain high probability gene pairs, for each tissue-specific GIANT network, we fil-
tered for genes present in each expression dataset, ranked the network by posterior
probability, and kept the top 5000 and bottom 5000 gene pairs as true positive and
negative gene pairs, respectively. After filtering, the selected true positive and nega-
tive gene pairs represent roughly the top 0.004% and bottom 0.004% of interactions
for each reference network. Finally, we calculated the Pearson correlation coeffi-
cient and FDR-adjusted p-values for the corresponding gene pairs in the expression
dataset and compared the adjusted p-values against GIANT network gene pairs to
generate receiver operating characteristic curves and calculate the area under the
curve (AUROC).

Aucodds measure: Next, we tested our identified co-expression modules for enrich-
ment of targets of a shared transcription factor. Using the Marbach et al. regulatory
networks as a reference dataset [16], each gene module was tested for enrichment
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in target gene groups at various cut-off weights for a true regulator-target gene re-
lationship through a Fisher’s exact test. For each Fisher’s exact test, the background
genome size was defined as the number of expressed genes in that particular GTEx
expression dataset. For each significant enrichment result (Holm-adjusted p < 0.1),
we obtained the maximum odds ratio for every regulator across modules. Finally,
the performance of each network was summarized through calculation of an
“aucodds score” [25]. The aucodds score is the area under the curve formed by the
proportion of regulators with an odds ratio greater than a certain cut-off and the
log10 odds ratio cut-off within the OR interval of 1-1000.

3) Proportion of edges with evidence in DoRothEA database: We compared global co-
expression networks to the DoRothEA resource [17]. The human reference data-
base was downloaded using the dorothea R package v.1.4.1 and filtered to exclude
TE-target gene pairs inferred only from gene expression. Then, we measured the
proportion of edges in each network involving TF-target gene interactions from
this database.
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