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Abstract

Chromatin conformation capture (3C)-based technologies have enabled the accurate
detection of topological genomic interactions, and the adoption of ChIP techniques
to 3C-based protocols makes it possible to identify long-range interactions. To
analyze these large and complex datasets, computational methods are undergoing
rapid and expansive evolution. Thus, a thorough evaluation of these analytical
pipelines is necessary to identify which commonly used algorithms and processing
pipelines need to be improved. Here we present a comprehensive benchmark
framework, Bacon, to evaluate the performance of several computational methods.
Finally, we provide practical recommendations for users working with HiChIP and/or
ChIA-PET analyses.
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Background

There is sufficient evidence that genomic organization, whereby protein complexes
contribute to the formation of long-range physical contacts between distal regulatory
elements, plays an important role in dictating gene expression patterns [1, 2]. Many
regulatory elements dictate target gene transcription over large genomic distances (up
to millions of base pairs), making it a great challenge to detect which regulatory
elements control which genes [3]. The development of chromosome conformation cap-
ture (3C)-based technologies [4—10] now makes it possible to detect such long-range
genomic interactions at high resolution. Moreover, these technologies have uncovered
new principles of genome organization, including the discovery of topologically
associated domains (TADs) or contact domains [11, 12], genome compartments, and
interactions that physically link the regulatory elements of the genome [13], like
enhancer-promoter interactions [14—16]. Chromatin interaction analysis by paired-end
tag sequencing (ChIA-PET) is a technique which combines ChIP, 3C, and next-
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generation sequencing, allowing the identification of long-range contacts bound by a
transcription factor or chromatin mark of interest [17]. The recently developed long-
reads ChIA-PET [18] protocol provides better resolution and requires lower chromatin
input than traditional ChIA-PET. HiChIP [19] and PLAC-seq [20] were both developed
to improve the efficiency and sensitivity of ChIA-PET through the implementation of
transposase-mediated library construction. However, it is a challenge to interpret
targeted conformation capture data quantitatively, owing to the high prevalence of
sequenced ligation junctions formed from uninformative close-range contacts. More-
over, the data analysis is complicated by the relative inefficiency of chromatin
immunoprecipitation-based methods, which often lead to low library complexity.
Therefore, robust and efficient computational methods are required to remove the
biases associated with these molecular protocols and more accurately quantify chroma-
tin contacts.

The ChIA-PET Tool [21] first proposed a general pipeline for processing of ChIA-
PET data, including linker trimming, read alignment, loop detection, and significance
estimation. The ChIA-PET Tool uses a hypergeometric (HG) distribution to count
loops, and the HG model assumes that the random pairing chance of two anchor re-
gions increases as the sequencing depth of the two anchor regions increases. Several
subsequent methods were mostly based on this underlying procedure with only slight
modifications. ChiaSig [22] improved the model by employing a non-central HG distri-
bution, and the model added an additional factor, the distance between two anchor re-
gions. The Model-based Interaction Calling from ChIA-PET (MICC) uses a Bayesian
mixture model to systematically remove random ligation and random collision noise
[23]. Another popular computational pipeline, mango [24], uses a binomial model to
detect statistically significant interactions for ChIA-PET data, and also corrects for
major sources of ChIA-PET data bias, including differential peak enrichment and gen-
omic proximity. ChIA-PET2 [25] took a Bayesian mixture model to provide a flexible
pipeline for analyzing different types of ChIA-PET data, and it also supports allele-
specific analyses. ChIA-PET Tool V3 [26] is an updated version of the ChIA-PET Tool,
which processes short-read and long-read ChIA-PET data with multithreads. A recently
developed method ChIAPoP [27] uses positive Poisson to distinguish the significant
interactions from noisy ChIA-PET data. Hichipper [28] employs a background model
to identify loops, which incorporates the effect of restriction enzyme site bias. MAPS
[29] adopted a zero-truncated Poisson regression framework to explicitly remove the
biases of HiChIP/PLAC-seq data, and then identifies the chromatin interactions by the
normalized contact frequencies. FitHiChIP [30] leverages the non-uniform coverage
and genomic distance scaling of contact counts to compute the significance of esti-
mated loops. Also, HICCUPS is a loop caller developed for Hi-C data, which also can
be used to call HiChIP loops [31].

All the computational methods mentioned above are peak-based and tend to inte-
grate the popular peak calling algorithm MACS2 [32] or similar pipelines to facilitate
the positioning of loop anchors. However, given the protocol differences, many of the
peak-based computational methods cannot be applied to ChIA-PET and HiChIP data
simultaneously. Accordingly, cluster-based methods were developed to fit both types of
datasets. cLoops [33] was based on the clustering algorithm ¢cDBSCAN, which takes
Paired-End Tags (PETs) and analyzes them directly by a permuted local background to
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estimate significance. A similar computational pipeline, CID [34], discovers chromatin
interactions with an unbiased clustering approach that identifies loop anchors by split-
ting the PET groups iteratively. Recently, several benchmarking studies on Hi-C
methods have been published [35-37]; however, computational benchmarking for
targeted chromatin conformation capture-specific methodologies are lacking.

With this in mind, we present a comprehensive benchmark framework, Bacon, to
evaluate the performance of targeted chromatin conformation capture-specific
methodologies. Due to the intrinsic biases that exist for targeted conformation data, we
systematically characterized the differences between two closely related technologies
(ChIA-PET and HiChIP) and built the Bacon framework based on the established dis-
tinctions. In this study, we benchmarked 12 computational pipelines using 22 experi-
mental datasets and 6 simulations. Finally, Bacon provides practical guidance for users
and aids in the rational development of improved pipelines for developers.

Results

Data characteristics of ChlIA-PET and HiChIP

HiChIP and ChIA-PET both produce similar information about protein-specific topo-
logical interactions and are interpreted in much the same way. However, the two proto-
cols differ greatly in how they capture this information. One important distinction
between the two is that HiChIP incorporates restriction endonucleases to fragment the
genome, while ChIA-PET traditionally relies upon sonication. And while this difference
has been taken into account by some computational pipelines [28], a full
characterization of the differences and similarities that exist between HiChIP and
ChIA-PET is lacking. To characterize the read properties of HiChIP and ChIA-PET li-
braries, we compared their alignments with publicly available ChIP-seq data (for the
processing of ChIP-seq data, see “Methods”). Principal component analysis (PCA)
showed that the ChIP-seq, ChIA-PET, and HiChIP replicates clustered together into
their respective experimental groups (Fig. 1A, B) (for PCA analysis, see “Methods”).
Notably, mESC-Smcl HiChIP data was heavily impacted by restriction enzyme treat-
ment, as the read distribution of mESC-Smc1 HiChIP presented restriction enzyme cut
site bias. Correspondingly, mESC-Smc1 HiChIP reads were sparse in positions without
Mbol restriction sites (Additional file 1: Fig. SIA). To compare the bias of these two
methodologies in a quantitative manner, we called peaks for 20 ChIP-seq, 10 ChIA-
PET, and 12 HiChIP datasets separately, and then calculated the distribution of Mbol
restriction enzyme motifs near peaks. We found the count distribution of restriction
enzyme sites also showed more enzyme sites located within HiChIP peaks (Fig. 1C).
Overall, 58.9% of HiChIP peaks overlapped with Mbol restriction enzyme sites (Fig.
1D-F), which was much greater than the 22.9% observed for ChIA-PET.

An important control for evaluating HiChIP and ChIA-PET experiments is a favor-
able overlap with ChIP-seq data. We next performed differential analysis between 10
ChIA-PET, 12 HiChIP, and 20 ChIP-seq datasets (See “Methods”). A total of 5046
peaks that differed significantly between ChIA-PET and ChIP-seq were identified, and
3549 of these were ChIA-PET enriched (Fig. 1G). Conversely, 29,136 peaks differed
between ChIP-seq and HiChIP datasets, among these, 26,222 were HiChIP-specific
(Fig. 1H). We then looked at the peaks in each dataset had in common with ChIP-seq



Tang et al. Genome Biology (2022) 23:30

-

PCA analysis for different types of reads PCA analysis for different types of reads Counts of Mbol restriction enzyme
in MESC-Smc1 datasets in K562-H3K27ac datasets sites within peaks across all datasets
L L :
Tep1 W HIChIP peaks (12 datasets)
0e P 04 . : B
vept 2
0.2 4 g 0.2 [ ) - 8
et s
e H
001 F oo Kssz Hokorac | g
H\Ch\Pree:;s w
S0 O . -sex oo [
HiChlIP reads rep’ Tepd. rept
T T T T T T T T T T 0 5-10 10-20
-0.40-0.35-0.30-0.25-0.20 -0.40-0.35-0.30-0.25-0.20 Distribution of counts
Overlap between HiChIP peaks and Mbol Res. sites Overlap between ChIP-seq peaks and Mbol Res. sites Overlap between ChIA-PET peaks and Mbol Res. sites
782,602 30,588 41,669
(58.90%) (25.11%) (22.97%)
HiChIP peaks in 12 datasets ~ Mbol Res. sites ChlIP-seq peaks in 20 datasets Mbol Res. sites ChIA-PET peaks in 10 datasets Mbol Res. sites
(1,328,697) (7,227,576) (121,819) (7,227,576) (181,408) (7,227,576)
5,046 differential ChIA-PET peaks 29,136 differential HiChIP peaks
x
20 ChiP-seq | i 10ChIA-PET 20ChiPseqi | 12 HIChIP datasets g 50
datasets ! H datasets datasets | i 8
H £ 40
*1 2
T T g
35 3 £ 304
z z 5
a 2 2
e e £ 20
i . {2 =
S H S 2
' : : 5 10 -
. . §
0 H o 01 (o)
x B ] 5 5 101 5 10 ChIA-PET HiChIP
Log, fold change in peaks(ChIA-PET/ChIP-seq) Log, fold change in peaks(HiChIP/ChIP-seq) (10 datasets) (12 datasets)
Fig. 1 Data characteristics of ChIA-PET and HiChIP. A PCA plot for replicates of mESC-Smc1 ChlIP-seq,
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and found that 41.6% of ChIA-PET peaks overlapped with ChIP-seq peaks compared to
10% overlap of ChIP-seq with HiChIP peaks (Fig. 1I). Hence, HiChIP data generates
more loops with elevated sensitivity compared to ChIA-PET; however, HiChIP pro-
duces data with a strong restriction enzyme site bias and a lower overall agreement
with ChIP-seq data than ChIA-PET.

A benchmark framework for targeted chromatin conformation capture-specific methods

In the current work, we developed Bacon, a computational benchmark framework that
enables the characterization of the analysis steps for targeted chromatin conformation
capture data, and the evaluation of the performance of different computational
methods. Bacon addresses three fundamental processing steps for ChIA-PET and
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HiChIP datasets, including pre-processing, loop calling, and the detection of significant
interactions (Fig. 2A and Additional file 1: Fig. S2). Our framework also provides an
evaluation of 12 different computational methods (Additional file 1: Table S1). Further,
Bacon integrates 28 ChIA-PET and HiChIP datasets for testing (22 experimental, and 6
simulated datasets) (Fig. 2B and Additional file 2: Table S6) and gathers gold standard
interactions from the GEUVADIS Project [38], GTEx Project [39], CRISPRi perturb-
ation screening [40], and ENCODE [41] for evaluating accuracy (Fig. 2C).

Bacon uses the Uniquely Valid Rate (UV Rate) (for the calculation of UV Rate, see
“Methods”) to evaluate the quality of wet-lab experiments, and the pre-processing ef-
fectiveness of each computational method. For loop calling, Bacon evaluates the reli-
ability of anchors, as well as the accuracy of loops. The two state-of-the-art strategies
to identify HiChIP and ChIA-PET loops are peak-based and cluster-based methods. In
general, the peak-based methods start with peak calling by implementing MACS2 or
other peak calling algorithms. Bacon utilizes peak co-occupancy (PC) (for the calcula-
tion of PC, see “Methods”) to evaluate the reliability of anchors identified by the peak-
based methods. Cluster-based methods typically use the read density or the distance
within two paired-end tags (PETs) to identify loops. Bacon evaluates the enrichment
levels of cluster-based anchors using an enrichment score (ES) (for the calculation of
ES, see “Methods”). The accuracy of loops (ACC) is evaluated through the comparison
of each output to a gold standard loop set (for the collection of gold standard loops
and calculation of ACC, see “Methods”).

To detect statistically significant genomic interactions, different strategies are applied
by the current computational methods. Bacon validates the functionality of significant
loops by calculating the activation rate (AR) (see “Methods”), which estimates the epi-
genetic functionality of loops through the incorporation of several active histone
markers, such as H3K27ac, H3K4mel, and H3K4me3.
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o
 Z Raw sequencing file (.fastq) v &% + 5
o Linker Trimming Read alignment = 2
g v e : Quality Control B K
8 Read alignment Pped G i
9o Unpaired =
2 7 Redundant v C
T i PCR Assignment to . " .- .
L Restriction Fragment { _ Genetic interactions { CRISPR/Cas9 perturbation
‘ Unique valid pairs ‘
(.BEDPE)
( AL \ 1
i . GEUVADIS/GTEXx Project

Peak-based Clustering-based Peak-based

Reliability

Peak calling Peak calling
@
§_ Segment PET ¢ PC / ES +\
E Self-ligation filtering * Biase removal pr—— 7
T PET clustering ¢ ACC
L2 PET grouping PET grouping
l Detected Iulops (.BEDPE) I
‘ Functionality i
Detecting significance } - \ Gold standard loop

Significant loops (.BEDPE)

Fig. 2 The schema of Bacon. A Overview of approach. The processing steps are connected by arrows, blue
squares indicate the categories of low-quality PETs to be filtered, and UV Rate, PC/ES, ACC, and AR are the
evaluation metrics employed by Bacon to estimate the performance of different methods. B The testing
datasets integrated by Bacon. C Schematic displaying how gold standard loop sets were gathered to
evaluate the accuracy of different methodologies
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Evaluating the reliability of loop anchors

To evaluate the pre-processing steps required for any given method, Bacon calculates
the UV Rate to estimate the percentage of valid PETs which uniquely map to the refer-
ence genome. Bacon considered 0 mismatched and 1 mismatched base pair during
linker trimming for ChIA-PET2(CPT2) and ChIAPoP, mango incorporates a fixed set-
ting, and for ChIA-PET Tool V3 (CPTv.3) Bacon used the default linker alignment
score (Additional file 1: Table S2 and Fig. S3). The alignment score (MAPQ) was set to
30 to filter out the high-quality PETs. Among all the ChIA-PET datasets we evaluated,
CPTv.3 generated the highest UV Rate, followed by mango (Fig. 3A). For HiChIP ana-
lysis, only HiC-Pro and MAPS include data pre-processing, and MAPS achieved a
higher UV Rate than HiC-Pro (Fig. 3B). HiC-Pro was developed to analyze Hi-C data
and as part of its’ two-step alignment process removes dumped pairs, dangling ends,
and self-circles. This effectively decreases the total number of unique valid PET output
from HiC-Pro, at least partially explaining its reduced UV Rate when compared to
MAPS which incorporates these categories of pairs. Moreover, the UV Rate of HiChIP
data ranged from 43.28 to 59.18%, which was greater than the UV Rate output from
ChIA-PET data (3.23-22.95%) (Fig. 3C). These results suggest that the sensitivity of
HiChlIP is greater than ChIA-PET, which is consistent with previous studies [19, 42].

Within the framework of Bacon, loops are called from different peak-based and
cluster-based methods separately. In accordance with the results of Fig. 3C, the number
of loops detected from HiChIP data was greater than for ChIA-PET (Fig. 3D). Among
the peak-based methods we compared, MAPS supported the input of reference peaks
(high-quality ChIP-seq peaks) to facilitate loop detection and remove noise. Utilizing a
conserved strategy, MAPS retains not only the pairs with both ends overlapping a refer-
ence peak, but also the pairs with only one end overlapping. Hence, the number of
loops called by MAPS ranked first among all the pipelines we evaluated. A HiChIP-
specific software package known as Hichipper supports three types of inputs: reference
peaks, only self- and dangling peaks, and all HiChIP peaks (Additional file 1: Fig. S4).
We compared all the various settings for Hichipper and found that HiChIP (All peaks)
and the combination of all replicates as input produced the greatest number of signifi-
cant loops with this pipeline (Fig. 3D). Currently, there are very few cluster-based
methods available. Only CID [34] and cLoops packages [33] are applicable for perform-
ing both HiChIP and ChIA-PET analysis, so we chose these to evaluate with Bacon.
The results showed that both algorithms generated more loops when applied to HiChIP
data compared to ChIA-PET datasets. The analysis of cluster-based results also indi-
cated that CID produced more loops than cLoops (Additional file 1: Fig. S5).

To evaluate the reliability of peak-based loop anchors, Bacon calculates peak co-
occupancy (PC) to estimate the overlapping percentage between loop anchors and
ChIP-seq peaks. The results of PC analysis showed that ChIAPoP achieved the highest
occupancy with published ChIP-seq peaks across all of the ChIA-PET analytical
methods, and Hichipper(+chip) achieved the best among all of the HiChIP analytical
methods followed by MAPS and FitHiChIP (Fig. 3E), since these three methods took
ChIP-seq peaks as input to detect loops. In addition, peak intensity analysis of loop an-
chors showed that ChIAPoP and Hichipper(+chip) achieved higher peak intensity
values than all the other methods (Additional file 1: Fig. S8). To investigate whether PC
was impacted by the length of the anchor or the size of peak, we performed Pearson’s
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correlation analysis between PC and the length of anchor/the size of peak; however, the
results did not show significant correlations (Fig. 3F,G).

To estimate the reliability of cluster-based loop anchors, we developed Bacon to cal-
culate the enrichment score (ES) for the loop anchors generated by CID and cLoops.
ES was calculated via a site-by-site evaluation, which indicates whether the observed
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enriched site is significantly enriched, and the global ES reflects the average accuracy of
the loops from the whole genome. Overall, we found that cLoops achieved a higher glo-
bal ES than CID for the datasets we evaluated, indicating cLoops can detect more
highly enriched (strong) loops; however, there still exists the possibility that CID is
more sensitive in identifying true-weak loops (Fig. 3H and Additional file 1: Fig. S6-S7).

To investigate the differences between peak-based anchors and cluster-based anchors,
we combined the loop anchors detected by all the peak-based methods of mESC-Smcl
ChIA-PET/HiChIP datasets, and also combined the loop anchors detected by the
cluster-based methods. The adjacent loop anchors within each set were merged and
duplicates were removed. The overlapping results showed that 30.7% of peak-based
anchors overlapped with ChIP-seq peaks, while only 7.6% of cluster-based anchors
overlapped with ChIP-seq peaks, and 87.6% of the cluster-based anchors were specific
(Fig. 3I). We next annotated the ChIP-seq peaks, the overlapping anchors derived from
each of the three specific loop sets, and cluster-specific anchors. The annotations indi-
cated that cluster-specific anchors were less enriched at promoters (Fig. 3]), which sug-
gests that cluster-based methods detect more loops within non-coding regions in the
datasets we analyzed.

To further investigate the properties of the different loops called by these methods,
we chose ChIAPoP as the representative ChIA-PET peak-based method and compared
the ChIAPoP-specific loops, cLoops-specific loops, and CID-specific loops with active
and inactive histone mark ChIP-seq data. The results showed that ChIAPoP produces
more active chromatin-enriched peaks with higher H3K27ac signal than cLoops and
CID, while cLoops and CID output loops with more inactive H3K27me3-enriched pro-
files (Additional file 1: Fig. S9A) in the dataset we analyzed. For the analysis of HiChIP,
we chose Hichipper(+chip) as representative, and the comparisons showed similar re-
sults to what was observed for ChIA-PET (Additional file 1: Fig. S9B).

Evaluating the accuracy of loops

To evaluate the loops generated by different methods in a quantitative manner, we
gathered cell type-specific long-range contacts from our gold standard loop sets. To en-
sure the fairness of comparison, we generated three gold standard loop sets for each
testing dataset (for the gathering of gold standard loop set, see “Methods”). Accuracy
(ACC) was calculated for True Positive (TP), False Positive (FP), True Negative (TN),
and False Negative (FN) metrics (for the calculation of ACC, see “Methods”), for better
comparison and visualization, we re-scaled ACC from 0 to 1.

For the ACC evaluation results of ChIA-PET datasets, ChIAPoP outperformed the
other ChIA-PET analytical methods with high scaled-ACC (> 0.95) in all datasets. For
HiChIP methods, FitHiChIP and Hichipper(+chip) performed better than the others,
which achieved the high scaled-ACC (> 0.95) in 8 and 7 datasets (Fig. 4) (for raw ACC,
see Additional file 3: Table S7, and Additional file 4: Table S8).

Although there were more HiChIP loops than ChIA-PET loops (Fig. 3D), the ACC of
loops was independent of the number of loops (Additional file 1: Fig. SI0A). The ACC
of ChIA-PET loops was higher than that of HiChIP loops across all the testing datasets
(Additional file 1: Fig. S10B). To investigate what impacted the results of ACC, we cal-
culated Pearson’s correlation coefficient for ACC and three other evaluation metrics.
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The results suggested that UV Rate barely correlated with ACC (Additional file 1: Fig.
S$10C), while PC and ES were positively correlated with ACC (Additional file 1: Fig.
S10D and S10E).

Functionality of statistically significant loops
To remove noise and improve the accuracy of detected loops, we next wanted to apply
a variety of statistical methods to the final loop outputs produced by each analytical
method. Current analysis packages employ different strategies to identify the signifi-
cance of loops, for example, ChiaSig facilitated non-central hypergeometric (NCHG)
distribution [22], and mango employs corrected p values to account for multiple hy-
pothesis testing [24]. Since CID can only call loops, as suggested by Guo et al. [34], we
utilized the MICC tool [23] to identify the significance of CID loops. FitHiChIP pro-
vides two types of background model (loose L or stringent S) to correct biases, here
represented by FitHiChIP-L and FitHiChIP-S.

To compare the significant loops fairly, we firstly counted the number of significant
loops with at least 3 PETs from ChIA-PET, at least 8 PETs with HiChIP data, and then
set a p value threshold of 0.05 (false discovery rate (FDR) of 0.05 if accessible for the
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method). To determine the properties and to detect the functionality of these signifi-
cant loops, we utilized candidate enhancer-like and promoter-like signatures from EN-
CODE [41] to annotate loops. Next, H3K27ac, H3K4mel, H3K4me3, and H3K27me3
ChIP-seq datasets were used to calculate the activation rate (AR) of enhancer-mediated
loops (for the calculation of AR, see “Methods”), for better comparison and
visualization, we re-scaled AR from O to 1. We then determined the AR of each individ-
ual method and found that ChIAPoP obtained the best AR in 12 ChIA-PET datasets,
and Hichipper(+chip) obtained the highest AR for 8 of the HiChIP datasets, FitHiChIP-
S achieved the highest AR for 5 of the HiChIP datasets (Fig. 5A, B).

To more rigorously assess the functional significance of the output loops from each
analytical pipeline, we overlapped the detected loops with large-scale CRISPRi perturb-
ation screening data obtained from K562 cells [40]. We found that ChIAPoP achieved
the highest overlapping percentage in ChIA-PET (Fig. 5C), and Hichipper(+chip) per-
formed best in HiChIP datasets, followed by FitHiChIP-S (Fig. 5D). Further, we interro-
gated the well-studied MYC locus with K562-H3K27ac ChIA-PET data, and we found
that most methods detected contacts that overlapped with a set of previously validated
MYC enhancers [43]. Notably, ChIAPoP loops contacted more CRISPRi MYC
enhancers than the other methods, such as MYC-enhancer5, MYC-enhancer6, and
MYC-enhancer7 (Fig. 5E). Secondly, we evaluated K562-H3K27ac HiChIP data against
another set of CRISPRi validated loops [40], and we found that there were four
methods detecting loops near the SEMA7A locus; however, only Hichipper(+chip)
identified loops between this CRIPSRi-validated distal enhancer and the SEMA7A pro-
moter region (Fig. 5F).

Discussion

The emergence of 3C-based techniques has enabled the accurate detection of 3D
genomic interactions. Importantly, 3D genomic contacts are highly dynamic given the
variability of chromosome structure [44, 45]. In addition, 3C protocols take an average
view of the chromatin interactions from a population of cells, and the limitations of
penetrance may lead to the low availability of appreciable contacts, which hinders the
interpretation of biological function. The adoption of ChIP techniques makes it pos-
sible to identify rare interactions mediated by a protein of interest, which are often un-
detectable by other 3C-based methods. Currently, it is a challenge to interpret targeted
conformation capture data quantitatively. Moreover, low levels of ChIP enrichment
often reduce the complexity of HiChIP and ChIA-PET libraries. Given these challenges,
we developed Bacon, a benchmark framework to facilitate the comparison of computa-
tional methods and provide practical guidance for users and suggestions for the rational
design of new analytical pipelines.

To provide practical guidance for users, we considered different conditions, different
analysis strategies, and the performance of each tool (Fig. 6). The mean UV Rate, PC/
ES, scaled-ACC, and scaled-AR in all datasets were calculated and then annotated
based on how well they performed across multiple data sets. We also recorded the run-
ning time for each loop calling method across different datasets (Additional file 1:
Table S4-S5). For ChIA-PET analysis, ChIAPoP outperformed the others in reliability,
accuracy and detecting activation; however, ChIAPoP required more running time than
the other peak-based methods, and cannot be applied to datasets generated by long-
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read ChIA-PET protocols. For the HiChIP analytical methods, FitHiChIP-S and Hichip-
per(+chip) outperformed the others in PC, ACC, AR, and running time. However, both
FitHiChIP and Hichipper only accept the valid pairs output from HiC-Pro to call loops,
so if users want to perform the analysis procedure without switching methods, then
MAPS is the only choice. We noticed that although cluster-based methods (CID and
cLoops) can be applied to both ChIA-PET and HiChIP datasets, the ACC and AR
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metrics did not stand out, and these two methods also took more running time than
the peak-based methods.

Here we provided several suggestions for the future development analytical pipe-
lines for both HiChIP and ChIA-PET analysis. Importantly, more flexible parame-
ters should be considered, such that future chemistries, sequencing read lengths,
and other experiment-specific factors can be appropriately accounted for. We
found that the methods we analyzed integrated different alignment tools, and the
key mapping parameters were fixed by most pipelines. However, for different
lengths of raw sequencing data, the alignment settings should be adjustable to
achieve optimal results. Additionally, more reasonable self-ligation cutoffs should
be set, such that the reads being input for loop calling are completely valid. Self-
ligation PETSs are filtered out prior to calling loops, and the cutoff between a read
PET being designated as a self-ligation product versus inter-ligation product ranges
from 5 to 12kb [21, 33]. While most methods simply set the cutoff as a fixed
value or asked users to set it themselves, the cutoff should be defined in a more
rational way, such as being based on the distribution model of PET lengths. What
is more, the available replicates should be rationally used to correct background
and enhance the results, such as Hichipper employed a combinatory strategy to
merge all the replicates to detect loops, which achieved the highest reproducibility
in all HiChIP datasets (Additional file 1: Fig. S11).
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The recently developed long-read ChIA-PET [18] protocols provide better resolution
and require lower chromatin input than ChIA-PET. The only publicly available long-
read ChIA-PET data is from Tang et al. [46] which does not match any available
HiChIP conditions. Thus, we were only able to compare long-read ChIA-PET data with
standard ChIA-PET data. Within all the ChIA-PET analytical methods, only CPT2 [25]
and CPTv.3 [26] supported the raw data analysis of long-read ChIA-PET data; thus, we
compared the performance of the latest approach ChIA-PIPE [47] with CPT2 and
CPTv.3. The results showed that ChIA-PIPE performed slightly better than CPT2 and
CPTv.3 in all the long-read ChIA-PET datasets (Additional file 1: Table S3). Overall,
there still lacks more powerful tools suitable for the long-read ChIA-PET protocol.

Finally, we believe that the next generation of computational tools for analyzing
protein-directed 3D chromatin topology should boost sensitivity to account for weak or
dynamic interactions. Inherited from the processing pipelines of ChIP-based tech-
niques, peak calling was the most frequently used strategy to detect the enrichment of
PETs. Since peak calling results rely highly on ChIP enrichment, some weak or dy-
namic interactions are likely to go undetected [34]. Cluster-based methods rely on the
relative read densities rather than the absolute values, making more locally enriched
loops standout compared to peak-based methodologies. Thus, cluster-based methods
offer a viable solution to detect more dynamic topological interactions [34]. However,
this sensitivity comes at the expense accuracy. How to balance the detection of dy-
namic loops while maintaining the accurate detection of strong loops remains a chal-
lenge which needs to be addressed. A rational approach to the development of such an
analytical pipeline would be a mixed model, where the accuracy of the top-performing
peak-based approaches and the sensitivity of the cluster-based pipelines are combined.
A number of considerations have to be made for such a mixed model, but ultimately it
needs to limit noise, boost signal, and output an accurate representation of the factor-
enriched 3D genome. Firstly, noise has to be reduced. Both ChIAPoP and Hichipper(+
chip) reduced noise more effectively than other pipelines. ChIAPoP cleverly incorpo-
rates into their model the use of chimeric reads, in addition to sequencing depth and
inter-anchor distance, for estimating noise. And the addition of ChIP-seq data to
Hichipper also dramatically improves noise reduction. Both strategies incorporated to-
gether within a statistical framework could theoretically aid in the noise reduction ne-
cessary for the generation of a mixed peak- and cluster-based model.

Conclusion

Currently, many computational methods and packages are available to analyze HiChIP
and ChIA-PET datasets. However, it is challenging to compare the performance of
these different computational pipelines without the use of uniform gold standard data-
sets and evaluation metrics. With this in mind, we developed a comprehensive bench-
mark framework, Bacon, to evaluate the performance of different computational
methods and provide practical recommendations to fit different analysis requirements.
We investigated the diverse characteristics of ChIA-PET and HiChIP datasets, and de-
ployed Bacon to benchmark 12 computational methods comprehensively. The evalu-
ation results indicated that ChIAPoP outperformed the others in reliability and
accuracy for ChIA-PET analysis, while FitHiChIP-S and Hichipper(+chip) outper-
formed the other available methods for HiChIP analysis. However, these methods still
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presented different deficiencies, and no single method stood out in every analytical
aspect. Overall, the lessons learned from our evaluation of these analytical tools can be
leveraged to improve the design of future computational pipelines.

Methods

Calculation of Uniquely mapped Valid Rate (UV Rate)

Different linker trimming strategies and alignment tools were used by different ChIA-
PET and HiChIP analytical methods to pre-process the raw reads. In the pre-
processing step of Bacon, we tried 0 and 1 mismatch for ChIAPoP and ChIA-PET2.
And for ChIA-PETv.3, we used the default linker alignment score to trim linkers. For
alignment, the minimum mapping rate (MAPQ) was set 30, and the duplicates were fil-
tered by Picard. The Uniquely mapped Valid (UV) PETs were retained, and UV Rate
was defined as the number of UV PETs divided by the number of total PETs. Although
we set the same filtering threshold for different methods, the different fixed settings
specific to each method impacted the UV Rate.

Gathering of gold standard loop sets

The candidate long-range interactions of K562-POLR2A, MCF7-ESR1, K562-H3K27ac,
K562-H3K4mel, K562-H3K4me2, and K562-H3K4me3 were downloaded from
ENCODE (ENCSR0O00BZY, ENCSR000BZZ, ENCSROO0FDG, ENCSRO00FDD, ENCS
ROOOFDE, ENCSROOOFDF) [41], and the candidate long-range interactions of mESC-
Smcl, mESC-YY1, K562-CTCF, K562-YY1, HeLa-S3-CTCF, PAEC-LSS, PAEC-ST,
mESC-FGEFR1, erythroblast-Gatal, mESC-KIf4, BMDM-H3K4me3, mESC-H3K27me3,
AML12-H3K9me3 were downloaded from GEO under accession number of GSE59395
[48], GSE57911 [49], GSE39495 [41], GSE99519 [50], GSE137849 [51], GSE153013
[52], GSE153013 [52], GSE153884 [53], GSE112717 [54], GSE113339 [55], GSE159629
[56], GSE160656 [57], and GSE141113 [58].

The GEUVADIS eQTL data was downloaded from ftp://ftp.ebi.ac.uk/pub/databases/
microarray/data/ex periment/GEUV/E-GEUV-1/analysis_results/. The GTEx eQTL
data of transformed lymphocytes was downloaded from https://www.gtexportal.org/
home/datasets. For the variants and gene pairs of eQTLs data, we extracted the gen-
omic loci of variants then extended to 5kb length from both ends and extracted the
genomic coordinates of genes from GENCODE v19 annotation. The verified Enhancer-
gene pairs in K562 with CRISPR/Cas9 perturbations were downloaded from the study
of Gasperini et al. [40].

Then we intersected the verified contacts (eQTLs and CRISPR/Cas9 perturbations
pairs) with the candidate loops downloaded from ENCODE and GEO and counted the
coverage for both anchors of candidate loops, and the gold standard loop sets were
constructed by selected the candidate loops covered by verified contacts significantly (p
value< 0.05 and FDR < 0.05). For mESC-Smcl, mESC-Yyl, mESC-Fgfrl, erythroblast-
Gatal, mESC-KIf4, BMDM-H3K4me3, mESC-H3K27me3, and AML12-H3K9me3, no
publicly available eQTLs or CRISPR/Cas9 validated data existed for the calling of gold
standard loops. To generate gold standard murine loops, we used the ChIP-seq peaks
of corresponding cell line and antibody (GSE22562 [59], GSE31785 [60], GSE65698
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[61], GSE112717 [54], GSE113429 [55], GSE23619 [62], GSE162739 [63], GSE143886
[64]) to count the coverage for both anchors, then calculated the significance.

Generation of Hi-C loops with strong signals

For the cell lines of K562, GM12878, mESC, MCF7, HeLa-S3, and AML12, the com-
pressed binary (.hic) files were downloaded from https://bcm.app.box.com/v/aidenlab/
folder/11234760671, and GSE134621 [64]. Then HiCCUPS [31] was used to call loops
for .hic files with the resolution of 1 Mb, and KR (Knight-Ruiz) balancing mode was
used to normalize the data, the loops with strong signals were defined as FDR < 0.01
and observed counts > 5. For BMDMs, erythroblast, and PAEC, the Hi-C interactions
were downloaded from GEO under accession number of GSE109965 [65], GSE168176
[66], and GSE152900, then we filtered the interactions with a threshold of 5.

Calculation of accuracy (ACC)

To evaluate the accuracy of different computational methods, we regarded gold stand-
ard loops as “true” loops, the “false” loops were constructed with the same number as
“true” loops. We firstly constructed the potential false loops set by selecting the gen-
omic location avoiding TSS regions of genes and enhancer-like regions from ENCODE,
which excluded all potential enhancer-promoter loops. Then we excluded the eQTL
containing loops, CRISPR/Cas9 validated loops, and strong Hi-C loop signals from the
potential false loops set. Since the number of potential false loops was much greater
than the “true” loops, we then randomly selected the same number of false loops from
the potential loop set. To eliminate the effect of randomness, we repeated the selection
three times, thus we had 3 “false loops” files for each true loops file. Then we defined
true positive (TP) as the number of detected loops which intersected with gold stand-
ard loops, false positive (FP) as the number of detected loops intersected with “false”
loops, true negative (TN) as the number of “false” loops NOT intersected with detected
loops, and false negative (FN) as the number of gold standard loops NOT intersected
with detected loops. Since there were three “false” loop files for each true loop file, we
calculated the mean of three FPs as the final FP value to calculate accuracy. The accur-
acy (ACC) was calculated as follows:

TP + TN

ACC =
TP + TN + FP + FN

Simulation of ChlA-PET and HiChIP data

To test the performance of computational methods in the simulation datasets with dif-
ferent ChIP antibodies, we generated anchor pairs for ChIA-PET and HiChIP, accord-
ing to the different data characteristics between these two types of data. For ChIA-PET
anchor pairs, a Poisson model was used as described previously [22]. Firstly, the chro-
mosomes were segmented into bins of 5000 bp, the loci of segmented points were re-
corded and used to construct a potential contact pairs matrix, then we simulated the
interaction between genomic loci i and j as n;~Pois(;), the expectation 1; = 145 with
6= |i-j|, a represented the number of anchors used for simulation, and the inter-
action frequencies depend on the genomic distance strongly. The HiChIP anchor pairs
were generated with Hi-C data as described by Bhattacharyya [30]. Firstly, we set the
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bin size (5000 bp) to extract Hi-C pairs as HiChIP anchor pairs. Secondly, the published
ChIP-seq data publicly available for each antibody was used to simulate the ChIP en-
richment, we then calculated ChIP-seq read coverage for the generated anchor pairs.
Next, we set the coverage threshold as 50% to filter the final simulated valid pairs.
Opverall, we used three different ChIP antibodies to simulate the ChIA-PET and HiChIP
data. Finally, we then tested the performances of different methods with these simu-
lated datasets.

Processing of ChIA-PET, HiChIP and ChIP-seq peaks

We gathered 10 ChIA-PET and 12 HiChIP raw datasets (for the accession number, see
https://csuligroup.com/Bacon), and the public ChIP-seq data were derived from NCBI
with number GSE22562 [59], GSE31785 [60], GSE65698 [61], GSE112717 [54],
GSE113429 [55], GSE23619 [62], GSE162739 [63], and GSE143886 [64]. The raw reads
were aligned to mm10 or hgl9 reference genome by bowtie2 [67] with default parame-
ters. For track visualizing, the uniquely mapped reads were fed into the “bamCoverage”
function of deeptools [68] with “—binSize 10 —normalizeUsing RPGC —effectiveGen-
omeSize 2150570000” to convert the bam alignment into bigwig. For detecting peak re-
gions, MACS2 [32] was utilized to call peaks with “-q 0.01 -B —SPMR —keep-dup all.”
Then the peaks from different datasets were merged by Bedtools with at least 80%
length overlap, and we counted reads from all the datasets over these peaks

individually.

Calculation of peak co-occupancy (PC)

The uniquely mapped alignment files of ChIA-PET and HiChIP were obtained in the
pre-processing step of Bacon, which were used to call loops by different computational
methods. Bacon extracted the anchors from called loops, then the anchors with a mini-
mum 90% of length overlapped with each other were merged. The public ChIP-seq
peak was used as target set to detect overlaps with different anchor sets, all the anchors
that had at least 1 bp overlap with the ChIP-seq peaks were gathered into a candidate
set A, the total number of anchors in loop set was represented by N, and the number
of anchors in A was represented by N,4. The length of anchor i was represented by
L(a;).The peak overlapped with anchor i was P;, and the length of this peak was L(p;),
overlapping length between anchor i and ChIP-seq peak was represented by L(o;). If
there were more than one peak overlapped with the anchor, the peak with longest over-
lapping length was selected. The PC was calculated as follows:

L(Oi) L(Oi) }
Lp;) L(a:)

NN, max{

PC =
¢ N

PCA and differential analysis for ChIP-seq, ChIA-PET and HiChIP

Given that ChIP-seq, HiChIP, and ChIA-PET all rely on chromatin immunoprecipita-
tion, they should display similar binding profiles when comparisons are being made for
a single protein of interest. We implemented DiffBind [69] to perform PCA analysis
and to give a deeper insight into how these experimental groups were associated. The
alignment files derived from ChIP-seq, ChIA-PET, and HiChIP replicates were filtered
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using Samtools [70] with minimum MAPQ 30. Picard was then used to remove dupli-
cates, and the filtered bam files were prepared as the input to function “dba,” then a
binding matrix with scores was calculated based on read counts for every sample with
function “dba.count.” The data were normalized based on sequencing depth with
default setting of function “dba.normalize,” then the function “dba.plotPCA” was used
to see how well the samples cluster with one another.

Before running the differential analysis, we used “DownsampleSam” function of
Picard with “P = 0.2” to downsample the alignment files. “dba.contrast” function with
default mode to model the data, as well as specify the comparisons we are interested in
like ChIP-seq vs ChIA-PET and ChIP-seq vs HiChIP. Then “dba.analyze” function was
used to perform the differential analysis, and the p value < 0.05 and log2(fold change) >
1 was used as the threshold of significance to detect differential peaks for one of the
antibody. We repeated the differential analysis for ChIP-seq vs ChIA-PET and ChIP-
seq vs HiChIP on every antibody, then all the differential peaks were aggregated.

Calculation of enrichment score (ES)

ES was used to evaluate the enrichment level of loops identified by the cluster-based
methods. Bacon defined ES on the assumption that the true enriched loci should be
surrounded by relative low enriched PETs, which means the enrichment of anchor
location was the local maximum. The genomic coordinates of two anchors were repre-
sented by si, el, s2, and e2, and Bacon firstly calculated the average length of two
anchors, [, = #, in which [, =el -s1, [, =e2 - s2. P, was defined as the number of
PETSs in genomic region x. The enriched number of PETs within the neighbor region

of loop i was represented by P..
P, = Min (Pil—lm + Py, Py, + P22+1m)

The PET count of loop i was defined as C', and ES of loop i was calculated as
follows:

g =€
If the value of ES; less than 1, indicating the enrichment of neighbor region was
higher than the enrichment of loop anchor, loop i was thought to be an invalid loop.
Thus, the higher the ES;, the more reliable the loop.
To estimate the enrichment level of all the loops in a genome-wide fashion, Bacon
calculated the global ES,

N
> i C

ESg = =1
Zi:lP;

kX

in which, « is a coefficient to adjust the enrichment of low PET coverage regions

caused by uneven sequencing depth. The PET coverage of whole genome was cal-

culated by C = LN/G, C is for coverage, G is the length of genome, L is the length

of PET, N is the number of PETs, C; is the PET coverage of j chromosome, and «
o

is calculated by x = C -
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Estimating resolution level of loops

We firstly calculated the distance between two anchor regions, and the loops were
segregated into three types according to the range of distance d: d < 10 kb, 10 kb < d <
100 kb, and 100 kb < d < 1 Mb. The number of loops in each type divided by the total
number of loops was the resolution level in this range, and the resolution level was
then plotted as heatmap.

Activation rate (AR) of significant loops

The significant loops were firstly filtered with at least 3 PETs of ChIA-PET data, at
least 8 PETs of HiChIP data, and the p value threshold was set as 0.05, false discovery
rate (FDR) threshold was 0.05 if accessible for the method. The candidate enhancer-
like and promoter-like signatures files were downloaded from ENCODE, and the
anchors of filtered loops were extracted to overlay with the enhancer-like and
promoter-like elements, then the percentages of E-E/E-P/P-P loops were counted. Then
the ChIP-seq peaks of active histone markers (H3K27ac, H3K4mel, H3K4me3),
ATAC-seq peaks, and repressive histone marker (H3K27me3) were collected to overlap
with the E-E/E-P/P-P loops. The overlapping length between anchors and peaks were
calculated by Bedtools [71]; if the overlapping length of activate peaks is larger than
that of inactive peaks, the loop was thought to be active. Otherwise, the loop was
thought to be inactive. If there is no active or repressive peak overlying, or the active
overlapping length is equal to the inactive overlapping length, the loop was classified to
other type. The percentage of active loops was defined as activation rate (AR). The an-
notation of loops and the calculation of AR were implemented by homemade scripts
(see Bacon webpage).
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