
METHOD Open Access

A deep generative model for multi-view
profiling of single-cell RNA-seq and ATAC-
seq data
Gaoyang Li1†, Shaliu Fu2,3†, Shuguang Wang2,3, Chenyu Zhu2,3, Bin Duan2,3, Chen Tang2,3, Xiaohan Chen2,3,
Guohui Chuai2,3, Ping Wang1* and Qi Liu2,3*

* Correspondence: wangp@tongji.
edu.cn; qiliu@tongji.edu.cn
†Gaoyang Li and Shaliu Fu
contributed equally to this work.
1Tongji University Cancer Center,
Shanghai Tenth People’s Hospital of
Tongji University, Tongji University,
Shanghai 200092, China
2Translational Medical Center for
Stem Cell Therapy and Institute for
Regenerative Medicine, Shanghai
East Hospital, Bioinformatics
Department, School of Life Sciences
and Technology, Tongji University,
Shanghai, China
Full list of author information is
available at the end of the article

Abstract

Here, we present a multi-modal deep generative model, the single-cell Multi-View
Profiler (scMVP), which is designed for handling sequencing data that simultaneously
measure gene expression and chromatin accessibility in the same cell, including
SNARE-seq, sci-CAR, Paired-seq, SHARE-seq, and Multiome from 10X Genomics.
scMVP generates common latent representations for dimensionality reduction, cell
clustering, and developmental trajectory inference and generates separate
imputations for differential analysis and cis-regulatory element identification. scMVP
can help mitigate data sparsity issues with imputation and accurately identify cell
groups for different joint profiling techniques with common latent embedding, and
we demonstrate its advantages on several realistic datasets.

Background
Cis-regulatory elements (CREs), which are bound by combinations of transcription fac-

tors, drive cell-type-specific and time-dependent regulation of gene expression.

Genome-wide mapping of CREs and their activity patterns across cells and tissues can

provide insights into the mechanisms of gene regulation. As CREs are mostly located

in open chromatin regions, epigenomic sequencing technologies such as DNase-seq [1,

2] and ATAC-seq [3] have been developed to detect open chromatin regions and

measure chromatin accessibility in tissues and cells. The advancement of single-cell

technologies, such as scRNA-seq [4, 5] and scATAC-seq [6, 7], provides powerful tools

to uncover complex and dynamic gene regulatory networks during tissue development

across different cell types.

Recently, several joint profiling methods that allow simultaneous measurement of

gene expression and chromatin accessibility in the same cell, such as SNARE-seq [8],

sci-CAR [9], Paired-seq [10], and SHARE-seq [11] have provided accurate matching of

chromatin accessibility landscape to gene expression profiles. Moreover, 10X Genom-

ics recently developed a “multiome” approach. This new joint profiling platform would
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probably extend the rapid generation and wide application of single-cell multi-modal

data. Although great advances have made in this field, these joint profiling technologies

suffer from low throughput and data sparsity. These problems impede data interpret-

ation and limit their application in data integration and downstream analysis like cell

clustering and CRE identification. Currently, several analysis methods support data in-

tegration from different modalities 12–14 and CRE interaction analysis based on either

scRNA-seq [12] or scATAC-seq [13, 14] data. However, these methods cannot address

the obstacle of extreme data sparsity in joint profiling technologies and use only a frac-

tion of differentially expressed genes and differentially accessible elements in CRE

interaction analysis [9]. Also, previous integration algorithms cannot address divergence

among the heterogeneous multi-omic data, as the discrete ATAC-seq data for hundred

thousands of open chromatin regions and the continuous RNA-seq data for thousands

of genes. To address these issues, several algorithms based on statistical framework [15,

16] or deep generative framework [17, 18] provided different approaches for compre-

hensive integration of both paired and unpaired single-cell datasets. More recently,

Seurat released a beta version v4.0 for integrative multimodal analysis of joint modality

single-cell datasets using weighted nearest neighbour (WNN) analysis [19], which is ap-

plied to 10X Genomics multiome datasets. Another work tested the application of mul-

tiple neural networks for integrative multimodal integration analysis, which used

different joint strategies in different datasets [20], but lacked of available tools or code

for real application to multi-modal datasets.

Deep generative models have been widely applied for modeling the high-dimension

data, such as singe-cell sequencing data [17, 18]. Among those deep generative models,

the variational autoencoder (VAE), which uses a recognition module as encoder and a

generative module as decoder to learn the latent distribution of input data. The VAE

model maximizes the similarity between generated data from decoder and input data

while minimizing the Kullback-Leibeler divergence of the prior distribution of latent

embedding and its true posterior distribution produced by the inference (encoder) net-

work. The standard VAE model uses a multivariable Gaussian distribution as prior for

the latent variables, which is hard to fit for sparse data with complex distribution. Re-

placing Gaussian distribution with Gaussian Mixture Model (GMM) as the prior has

been applied in a recent developed method SCALE for unsupervised clustering and

realistic samples generation for scATAC-seq datasets [14]. Recent tools as MultiVI [18]

and Cobolt [17] utilize symmetric multimodal VAE model for joint modality single-cell

dataset. However, for the multi-modal data integration, the encoder-produced latent

embedding can capture the common semantic feature across modalities while decoder-

generated data still preserve the modal-specific biological information, which require

the similarity between integrated modalities. For joint profiling datasets with extreme

data sparsity and random noise in either omic of dataset, the inconsistency of multi-

omics joint embedding will largely confuse the biological variation in cell latent embed-

ding and exceedingly smooth the generated data from continuous distribution of gen-

erative model, impeding the explanation and downstream application of joint latent

embedding. In addition, self-attention-based embedding models, such as Transformer

and BERT, show high performance on extreme sparse NLP tasks [21] and sequence or

structured tasks like protein-structured prediction [22], indicating their potential in

capturing the weak correlation from high-dimensional high-sparsity biological data.
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Here, we propose a non-symmetric deep generative model, the single-cell Multi-View

Profiler (scMVP), which is designed for comprehensive handling sequencing data that

simultaneously measure gene expression and chromatin accessibility in the same cell,

including SNARE-seq [8], sci-CAR [9], Paired-seq [10], SHARE-seq [11], and 10X Mul-

tiome. scMVP automatically learns the common latent representation for scRNA-seq

and scATAC-seq data through a clustering consistency-constrained multi-view vari-

ational auto-encoder model (VAE), and imputes each single layer data from the com-

mon latent embedding of the multi-omic data through layer-specific data generation

process, including transformer’s self-attention-based scATAC generation channel and

mask attention-based scRNA generating channel. scMVP is designed specifically to ad-

dress the two main challenges in joint profiling of scRNA-seq and scATAC-seq, i.e., (1)

how to overcome the difficulties in processing a highly sparse data matrix, as the se-

quencing data throughput of the joint profiling methods is only one-tenth to one-fifth

the throughput of single modality scRNA-seq or scATAC-seq data; (2) how to jointly

utilize two omic data for downstream single-cell analyses, such as cell denoising, cell

clustering, cellular trajectory inference, and CRE prediction rather than conventional

independent analysis of scRNA and scATAC followed by integration or anchoring the

two omics data between similar cell clusters. Compared to other tools which utilize

neural networks for embedding scRNA-seq datasets [23–27] and multi-modal datasets

[15–18], scMVP provides an efficient deep generation model for joint profiling of mul-

tiple omic measurements of the same single-cell and enables simultaneous multi-modal

analysis of data normalization, clustering, joint embedding, visualization, trajectory in-

ference, and CRE prediction for joint profiling sequencing data.

Results
The scMVP model

To fully utilize the joint profiling data from the same cell, we developed scMVP, which

integrated scRNA and scATAC data into a common low-dimensional latent space for

cell embedding, clustering, and imputation (Fig. 1a).

The basic idea of scMVP is to introduce a Gaussian mixture model (GMM) prior to

derive the common latent embedding by maximizing the likelihood of the joint gener-

ation probability of the multi-omic data, which is implemented as a multi-modal asym-

metric GMM-VAE model with two extra clustering consistency modules to align each

imputed omics and preserve the common semantic information, and used to impute

missing data, cluster cell groups, assemble multiple modalities, and construct a devel-

opmental lineage.

First, scMVP takes raw count of scRNA-seq and term frequency–inverse document

frequency (TF-IDF) transformed scATAC-seq as input [28]. To auto-learn a common

latent distribution of the joint scRNA-seq and scATAC-seq profiling, scMVP utilizes

GMM as the prior distribution of latent embedding z for the multi-view VAE model,

that is, the observed scRNA gene expression x and TF-IDF transformed scATAC chro-

matin accessibility y in each cell modeled as a sample drawn from a negative binomial

(NB) distribution p(x| z, c) and a zero-inflated Poisson (ZIP) distribution p(y| z, c), con-

ditioned on the common latent embedding z and cell type c, one of predefined K com-

ponents of GMM. scMVP uses a two-channel Decoder neural network transforming
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the common latent embedding z into the parameters of NB and ZIP distribution, with

a cell type c guided attention module to capture the potential correlation between the

scRNA and scATAC data within same cell (see Fig 1a and method). Then, the gener-

ated scRNA and scATAC data are denoised and imputed by the mean of the corre-

sponding output distribution, respectively, while the embedded common latent code z

can be used for a series of downstream analysis, e.g., visualization, trajectory analysis,

and which is inferenced through a variational process by maximizing the variational

evidence lower bound (ELBO), that is, Lelboðx; yÞ ¼ Eqðz;cjx;yÞ½ log pðx;y;z;cÞ
qðz;cjx;yÞ�: scMVP esti-

mates the distribution parameters of the q(z, c| x, y) according to another joint Encoder

neural network, e.g., the mean μz and variance σz for z = μc + σcI, I~N(0, 1) using a

Fig. 1 Overview of the scMVP framework. a Given the scRNA-seq genes expression counts and TF-IDF
transformed scATAC-seq chromatin accessibility peaks profile of each cell as input, scMVP learns the optimal
joint embedding for downstream analysis with a multi-view deep generative model. Two independent
channels of attention-based networks are utilized to the backbone of the encoder model to adapt inputs of
the different modalities, including canonical mask attention subnetwork for scRNA and transformer derived
self-attention for TF-IDF transformed scATAC, and then joint together to derive the posterior distribution
parameters of common latent embedding z following a Gaussian mixture model prior. Next, the imputed
scRNA and scATAC profiles are reconstructed by an attention based two-channels decoder network, which
shares similar network structure with the encoder network. And an auxiliary attention module with input of
cluster probability of common latent embedding z (denoted as p(c| z)) in the prior distribution is utilized to
weight each decoder channel of the imputed scRNA and scATAC profile. Here, the imputed RNA and ATAC
are produced by the mean value of Gamma distribution for scRNA data and the Poisson distribution for
scATAC data, respectively. To guarantee the embedding consistency between the original and imputed
data, two single-channel encoders are used to embed the imputed RNA and ATAC separately to minimize
the KL divergence between common latent embedding z and each imputed embedding. b ARI metrics of
clustering accuracy along with the varying of latent embedding dimensions in a range from 2 to 20. c
Running times for training models on the resampling SHARE-seq cell line datasets with a set of 8000 genes
and 23,000 peaks. scMVP, scVI, WNN, and cisTopic are tested on a server with one 10-core Intel Xeon E5-
2680 with 32 GB RAM and one NVIDIA 1080TI GPU with 11 GB RAM
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reparameterization trick for the gradient back-propagation. To better capture the fea-

ture correlations intra-omic and extract the biological intrinsic semantic embedding of

inter-omics, we introduce the multi-heads self-attention-based transformer encoder

and decoder modules for ATAC sub-network branch and mask attention-based en-

coder and decoder modules for RNA sub-network branch (see Fig. 1a and method).

scMVP introduces the multi-heads self-attention module to capture the local long-

distance correlation from sparse and high-dimension scATAC profile of joint dataset,

and the mask attention to focus on the local semantic region of cells. Next, scMVP uses

a cycle-GAN like auxiliary network module for consistency of latent embedding distri-

bution between imputed and raw joint profiling data, and this auxiliary network mod-

ule will enforce the latent embedding contain the common biological semantics as cell

clusters across modalities rather than a simple alignment in canonical VAE and per-

verse the reversibility and uniqueness of each imputed omics (Fig. 1a and methods). Fi-

nally, the proposed model is trained using a back-propagation algorithm in a mini-

batch way and generates latent embedding, scRNA-seq imputation, and scATAC-seq

imputation simultaneously as output. The details of scMVP design can be found in the

“Methods” section.

We further explored the optimal variable for latent dimensions. We constructed two

datasets with well labelled cells from Paired-seq and sci-CAR cell line datasets and eval-

uated the clustering accuracy using adjusted Rand Index (ARI) metric depending on

different dimensions of latent embedding. The higher ARI score indicates higher clus-

tering accuracy, and the ARI score equals to 1 when the cluster is exactly matched to

the reference standards. scMVP showed best performance with 10 dimensions of latent

embedding, which is set as default size for latent embedding (Fig. 1b).

scMVP model evaluation

We evaluated scMVP along with a set of benchmark methods on several single-cell

joint profiling datasets with variable biological or technological characteristics [8–11].

We first tested the scalability of scMVP model on different joint profiling datasets. To

estimate the time and memory consumption in the training step, we randomly sampled

a range of 1000 to 100,000 cells from the 67,418 cells of SHARE-seq GM12878 cell line

dataset and filtered dataset to 8000 genes and 23,000 peaks with highest expression,

and tested the datasets of scRNA-seq in scVI, scATAC-seq in cisTopic and both in

scMVP and Seurat v4 WNN. scMVP took the 752 MB for 1000 cells and 8.5 GB for

100,000 cells, which is similar with scVI, cisTopic, and WNN testing on 100,000 cells.

Benefit from the GPU parallel computing technique and stochastic optimization in a

minibatch way in the neural network model training, deep models as scMVP and scVI

took similar training time with the general machine learning method WNN, which

used less than 1 h for 100,000 cells dataset, while cisTopic based on Monte Carlo sam-

pling model took more than 5 h for 20,000 cells dataset (Fig. 1c). To evaluate the cap-

acity of scMVP for batch correction, we used the SHARE-seq GM12878 cell line

dataset [11] containing 2 replicates of 2973 cells and 8803 cells, which showed batches

between replicates in both scRNA-seq and scATAC-seq datasets (Additional file 1: Fig.

S1a). scMVP successfully removed the batch from replicates without the label of

batches (Additional file 1: Fig. S1a). In addition, convergence analysis showed scMVP
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reaching stable loss within 30 epochs for the SHARE-seq dataset, which would also be

helpful to reduce the model training time (Additional file 1: Fig. S1b).

Next, we evaluated whether imputation from generative models such as scMVP and

scVI can help mitigate data sparsity issue in joint profiling dataset. We first evaluated

the ability to accurately capture real gene expression profiles by comparing imputed

and real scRNA-seq profile of each cell type to gene expression in bulk cell line datasets

of corresponding cell type. For each cell type, we used the correlation between the gene

expression in every cell and the gene expression in bulk cell line RNA-seq, as higher

the correlation of all genes in each cell from scRNA-seq indicating better capture of

real gene expression of bulk RNA-seq in distinct cell type. We found scMVP showed

higher imputation correlation than scVI and raw scRNA count in A549 cells treated

with DEX for 0h, 1h, and 3h from sci-CAR dataset and four cell types SNARE-seq data-

set (Fig. 2a). For HepG2 cell from Paired-seq scRNA-seq imputation of scMVP and

scVI were consistently better than raw scRNA-seq count, indicating the improvement

of scRNA-seq imputation for three joint profiling techniques.

Fig. 2 scMVP mitigates data sparsity in joint profiling datasets. a Correlation between original and imputed
gene expression of each cell from scRNA of joint profiling datasets and gene expression in corresponding
bulk RNA-seq dataset. A549 cell lines treated with DEX for 0h (ENCSR632DQP), 1h (ENCSR656FIH), 3h (ENCS
R624RID) in sci-CAR dataset, HepG2 cell line (ENCSR058OSL) in Paired-seq dataset and H1 (ENCSR670WQY),
BJ (ENCSR000COP), K562 (ENCSR530NHO), and GM12878 (ENCSR000CPO) cell lines in SNARE-seq dataset
were used for benchmark. b Number of bulk ATAC peaks identified by raw and imputed scATAC in each
cell. c Ratio of raw and imputed scATAC peaks identified in bulk ATAC peaks. DNase-seq signal files for H1
(ENCSR000EMU) and BJ (ENCSR000EME), and ATAC-seq signal files for K562 (ENCSR868FGK) and GM12878
(ENCSR095QNB) were used for benchmark
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We further evaluated imputation of scATAC-seq from scMVP by comparing peaks

identified in each cell to bulk ATAC-seq or bulk DNase-seq signal in corresponding

cell line. Compared to raw scATAC-seq profile, scMVP scATAC imputation captured

more peaks than raw scATAC-seq (p value < 10-10), with median of 4114, 3778, 1017,

and 1251 imputed peaks versus 918, 922, 404, and 442 raw peaks in BJ, H1, K562, and

GM12878 cell lines (Fig. 2b). As scMVP imputed more scATAC-seq peaks in each cell

than raw scATAC-seq profile, the ratio imputed peaks identified in bulk DNase-seq

(H1, BJ) or bulk ATAC-seq (K562, GM12878) were higher in BJ, GM12878, and K562

cells and similar in H1 cells to the ratio of raw peaks in bulk dataset (Fig. 2c), which in-

dicates enhancement of true ATAC-seq signal and mitigation of data sparsity for

scATAC-seq profile of joint profiling dataset.

scMVP accurately identified cell clusters from joint profiling cell line data

We next evaluated the extent to which the joint latent space inferred by scMVP

reflected real biological similarity among cells. We benchmarked scMVP with single

view scRNA-seq tools as Monocle3 [29], scVI [25], single view scATAC-seq tools as

Monocle3 [29] and cisTopic [30], universal integration tools as MOFA+ [16], scAI [15],

MultiVI [18], Cobolt [17], and paired dataset integration tools for multi-modalities in

same cell as Seurat v4 WNN [19]. We assessed the accuracy of these methods by apply-

ing K-means clustering (using the same k as number of major cell types in dataset) and

testing consistency with annotated cell labels.

Firstly, we applied these algorithms to well-labeled cell line mixture data from sci-

CAR, which included the 293T cell line, 3T3 cell line, 293T/3T3 cell mixture, and

A549 cell line treated with dexamethasone (DEX) for 0 h, 1 h, and 3 h. scMVP, scVI,

scRNA, and scATAC from Monocle3 grouped cells into three distinct clusters (293T,

3T3, and A549) from same cell annotations (Fig. 3a, Additional file 2: Table S1), and

ARI scores of cells of annotated labels ranged from 0.92 to 1 (Additional file 1: Fig. S3,

Additional file 1: Table S4), more accurate than cell clusters of WNN (0.42), cisTopic

(0.36), and universal integration tools (0.37–0.42).

Next, we applied these algorithms to Paired-seq cell line data including two labelled

cell types and their mixture. We first evaluated the cell clusters from these algorithms

for cell annotated as HepG2 and HEK293. scMVP displayed a similar accuracy with

scVI, cisTopic, and scATAC from Moncole3, better than Seurat v4 WNN and scRNA

from Monocle3 but relatively lower than ARI scores of algorithms in sci-CAR dataset

(Additional file 1: Fig. S3, Additional file 2: Table S4). However, all universal tools

showed limit discrimination power of two cell types using their latent embedding with

ARI scores ranged from 0.01 to 0.11, indicating the severe impact of data sparsity to

current universal integration tools.

We further investigated UMAP visualization and found different number of cell sub-

populations in these algorithms (Fig. 3b, Additional file 1: Table S2). Rather than the

two cell clusters identified in UMAP results of other single-view algorithms and WNN,

scMVP, and cisTopic yielded three cell clusters (Additional file 1: Fig. S2a-b), two of

which identified as HEK293 cells and HepG2 cells, and another cluster that contained

both cell types were largely consistent in two algorithms (Additional file 1: Fig. S2c).

Then, we evaluated the gene and chromatin accessibility levels of each cell in the new
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cell cluster from scMVP and cisTopic. The new cluster showed relatively lower total

RNA expression (p value<10-10) and relatively higher total expression in the scATAC-

seq (p value<10-10) than the other two clusters (Additional file 1: Fig. 2d). These find-

ings indicate that multi-omic integrated clustering in scMVP can be exploited to iden-

tify and cluster cells of abnormal state in either omic of joint profiling dataset after

Fig. 3 scMVP identifies accurate cell clusters from joint profiling cell line data. a–c Visualization of
algorithms latent embeddings of three groups, algorithms specifically for joint modality datasets (shown as
“Paired only”), algorithms of single omic (shown as “Single view”), and algorithms designed from both
paired and unpaired datasets (shown as “Universal”) a UMAP visualization of scMVP, scVI, cisTopic, WNN,
MultiVI, Cobolt, MOFA+, and scAI by Seurat v4 on the sci-CAR cell line dataset of A549, 293T, and 3T3 cells.
b UMAP visualization of scMVP, scVI, cisTopic, WNN, MultiVI, Cobolt, MOFA+, and scAI by Seurat v4 on the
Paired-seq cell line dataset of HEK293 and HepG2 cells. c UMAP visualization of scMVP, scVI, cisTopic, WNN,
MultiVI, Cobolt, MOFA+, and scAI by Seurat v4 on the SNARE-seq cell line dataset of H1, BJ, K562, and
GM12878 cells. d ARI scores for clustering on latent embeddings of benchmark algorithms
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conventional methods that filter cells by extraordinarily high or low sequencing cover-

age threshold are used.

Then, we applied these algorithms to SNARE-seq cell line data including four labeled

cell types. scMVP displayed a similar high accuracy with Seurat v4 WNN and scRNA

from Monocle3 (Additional file 2: Table S3), which got four distinct subpopulations

from same annotations in their UMAP visualization (Fig. 3c, Additional file 1: Fig. S2c).

Rather than four clusters in scMVP and the other two algorithms, cisTopic, and scA-

TAC from Monocle3 only got three clusters and grouped K562 and GM12878 into

same cluster, which indicates that SNARE-seq could not distinguish K562 and

GM12878 cells well with the single view of scATAC-seq, but could be well separated

by integrated of both scRNA-seq and scATAC-seq by scMVP and Seurat v4 WNN.

Four universal integration tools could not get four identical cell clusters in their latent

embedding, although MOFA+ with better visualization discrimination of four cell types

and higher clustering performance than other three integration tools.

We also evaluated the performance of algorithms designed for integration of different

modalities in different cells as Seurat v3 [31] and Liger [32] for joint profiling cell line

datasets. Seurat v3 cannot integrate scATAC and scRNA into consistent clusters in sci-

CAR and Paired-seq cell line datasets and Liger cannot found consistent clusters in sci-

CAR dataset (Additional file 1: Fig. S3-S5). And cells from same annotations cannot be

distinguished into distinct subpopulations for Seurat v3 in SNARE-seq dataset and

Liger in Paired-seq and SNARE-seq dataset, even if two algorithms can integrate the

view of scRNA and scATAC from same cells.

Overall, analyzing joint profiling dataset with scMVP has proven to be helpful in

identifying accurate grouping of cell clusters taking advantage of joint deep models and

learning the characteristics from both layers of omic data.

scMVP recovered major cell types in realistic datasets

To further examine the performance of scMVP on realistic joint profiling dataset, we

used scMVP and other tools to analyze a 0-day postnatal (P0) mouse cerebral cortex

dataset with 5081 cells generated by droplet-based SNARE-seq [8]. We first evaluated

cells latent embedding and clustering accuracy of scMVP and other benchmark algo-

rithms with reference cell annotations from Chen’s paper [8] (Fig. 4a, Additional file 1:

Fig. S6, Additional file 2: Table S5). The ARI score of Monocle3 scATAC got only

0.002, and the UMAP visualization showed no discrimination among reference cell

types, which indicates limited contribution of scATAC to cell clustering. However, both

scMVP and WNN, which also integrated the data from scATAC, achieved higher clus-

tering accuracy than other algorithms using only scRNA data of the joint profiling data-

set. Among four universal integration tools, scAI could not complete the analysis

within 48 h, and other three algorithms showed low clustering performance with ARI

scores ranging from 0.03 to 0.08, suffering from low sequencing depth of the scATAC

view of the dataset.

We next evaluated the performance of scMVP for 10X Multiome, which is the most

popular multi-omics technology. We analyzed 7039 T cells in the 10X Lymph Node

dataset with scMVP and other benchmark tools, as these T cells were well annotated

by 10x Genomics, but difficult to distinguish the T cell subtypes by the view of scRNA
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or scATAC with ARI scores of 0.28 and 0.08 (Fig. 4a, Additional file 1: Fig. S7, Add-

itional file 1: Table S5). The clustering accuracy of scMVP (0.28) was similar to the ac-

curacy of Monocle3 scRNA, and higher than scVI (0.23), cisTopic (0.06), WNN (0.21),

and universal integration tools, ranging from 0.03 to 0.13.

To test the performance scMVP on more complex realistic datasets, we then applied

scMVP to two larger datasets; PBMC joint profiling dataset with 11,909 cells from 10X

genomics multiome dataset, and mouse skin dataset with 34,773 cells from SHARE-seq

dataset [11]. Compared to benchmark algorithms, scMVP showed consistent high

agreement with the reference in both 10X PBMC dataset and SHARE-seq skin dataset

(Fig. 4a, Additional file 1: Table S5), and most of the major references have correspond-

ing cluster identified by scMVP (Additional file 1: Fig. S8-S9). Among four universal in-

tegration tools, scAI still could not complete the analysis within 48 h. However,

MultiVI, Cobolt, and MOFA+ showed relative higher clustering performance compared

to single view algorithms than their performance in SNARE P0 dataset and three cell

line datasets, as the sequencing depth of 10X PBMC dataset and SHARE-seq skin data-

set was much higher than SNARE P0 dataset and three cell line datasets.

Next, we evaluated scRNA and scATAC imputation from scMVP in downstream

analysis of realistic dataset. We first performed differential gene analysis using gene im-

putations from scMVP and scVI with reference annotations. Compare to differential

Fig. 4 scMVP recovers major cell types in realistic datasets. a Adjusted rand index for nine benchmark
algorithms in SNARE-seq mouse P0 dataset, 10X Genomics PBMC dataset, 10X Genomics Lymph Node
dataset, and SHARE-seq mouse skin dataset. b Consistency between DEGs from SNARE-seq paper and top
DEGs computed from scVI and scMVP scRNA imputation. c Aggregation profile of mouse forebrain P0
H3K4me3 ChIP-seq signal (ENCSR094TTT) in gene proximal cis-regulatory peaks computed by Cicero or
LASSO for raw expression or scMVP imputed expression. d Aggregation profile of mouse forebrain P0
H3K27ac ChIP-seq signal (ENCFF695KNJ) in gene distal cis-regulatory peaks computed by cicero or LASSO
for raw expression or scMVP imputed expression
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genes of each cell type in Chen’s paper [8], top differential genes computed by scMVP

gene imputation were largely consistent in all reference cell types and were similar or

higher than scVI gene imputation with the same threshold in most of the cell types

(Fig. 4b).

We then performed cis-regulatory analysis for the mouse cerebral cortex P0 dataset.

We used Cicero [13] to predict cis-regulatory interactions from scATAC-seq and also

inferenced candidate CREs from scATAC-seq to differential genes in scRNA-seq using

a LASSO method [9]. Cis-regulatory elements were predicted from raw count of

scRNA-seq and scATAC-seq, and also the corresponding imputed expression from

scMVP, and then evaluated with average signal enrichment of bulk forebrain P0 histone

ChIP-seq in distinct peak set. Candidate regulatory peaks predicted from scMVP im-

puted expression with both Cicero and LASSO showed higher enrichment of

H3K4me3 in translation start site (TSS) proximal regions than candidate peaks pre-

dicted from raw count (Fig. 4c). Also, H3K27ac and H3K4me1 signal showed higher

enrichment in TSS distal peaks predicted from scMVP imputed expression than those

distal peaks predicted from raw count (Fig. 4d, Additional file 1: Fig. S10). Thus,

scMVP improved cis-regulatory elements prediction with scRNA-seq and scATAC-seq

imputation in joint profiling dataset.

scMVP facilitates trajectory inference with joint embedding latent features

Previous studies discovered the advantages of using latent embedding from deep gen-

erative models for scRNA-seq [25] or scATAC-seq [14], as well as using joint embed-

ding of both scRNA-seq and scATAC-seq [19] to capture biological structure from

single cell dataset. To further investigate the influence of joint embedding and deep

generative model in scMVP to the latent embedding, we ran scMVP with scRNA or

scATAC alone as input, which would not use joint embedding and reflect the perform-

ance of generative model in scMVP with scRNA-seq or scATAC-seq dataset, respect-

ively. We also compared with latent embeddings from WNN, which would not use

deep generative model and represent the performance of joint embeddings [19].

We first evaluated the influence of joint embedding and deep generative model on

SNARE P0 dataset. Compared to scRNA (ARI=0.25) and scATAC (ARI=0.002) raw

data using Monocle3, scMVP using scRNA or scATAC as input would improve the

clustering accuracy to 0.37 and 0.30, which was consistent with previous report for

deep generative models [14, 25] but still lower than performance of scMVP (ARI=0.41)

and WNN (ARI=0.44) using joint embedding (Fig. 5a). We then focused on the transi-

tion of intermediate progenitors (IP) to upper-layer excitatory neurons (Ex). The rela-

tive position of five cell types in UMAP visualizations was consistent with development

order [8] in all latent embeddings except for scATAC raw data, which could hardly dis-

tinguish any cell type in the latent embedding (Fig. 5a). Using diffusion map [33] , we

next ordered these cells along a pseudotime trajectory with joint embedding. The de-

velopment order of five cell types was largely consistent to the order in pseudotime

(Fig. 5b). We found Sox6 which encodes a transcript factor for maintenance of neuron

precursor cells [34], and membrane-protein-encoding Mlc1 showed a decline of gene

expression along the trajectory of neuron differentiation (Additional file 1: Fig. S11a-b).

And the gene Khdrbs2, which encodes an RNA-binding protein involved in alternative
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splicing, along with its target gene Nrxn1 [35] showed a similar rise along same trajec-

tory (Additional file 1: Fig. S11c-d). The alterations of gene and promoter expression

along joint embedding trajectory were similar with same cellular trajectory in SNARE-

seq paper [8].

Next, we performed same analysis on SHARE-seq skin dataset. scMVP with single-

channel input would improve the clustering accuracy of raw data from 0.22 to 0.45 for

Fig. 5 scMVP facilitates trajectory inference with joint embedding latent features. a UMAP visualization of
SNARE-seq mouse cerebral cortex P0 dataset for 1469 cells (214 IP–Hmgn2, 99 IP–Gadd45g, 437 IP–Eomes,
177 Ex-L2/3–Cntn2, and 542 Ex-L2/3–Cux1) with scMVP with two omics, scRNA only, scATAC only, and
Monocle3 with scRNA and scATAC. The ARI scores for clustering accuracy with each embedding were
labelled in the subtitle of subplots. Ex excitatory neurons, IP intermediate progenitors. b Pseudotime
trajectories constructed with scMVP joint embedding in Fig. 5a. Cells are colored according to pseudotime
score (top) or cellular identity (bottom). c UMAP visualization of 4619 cells (1164 αhigh CD34+ bulge, 1495
αlow CD34+ bulge, 537 Isthmus, 466 K6+ Bulge Companion Layer and 957 ORS) with scMVP with two omics,
scRNA only, scATAC only, and Monocle3 with scRNA and scATAC. The ARI scores for clustering accuracy
with each embedding were labelled in the subtitle of subplots. ORS outer root sheath. d Pseudotime
diffusion map constructed with scMVP joint embedding in Fig. 5c. Cells are colored according to
pseudotime score (top) or cellular identity (bottom). e The cell types shift during bulge cell development,
referenced from SHARE-seq paper
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scRNA and 0.18 to 0.34 for scATAC, revealing consistent advantage of using deep gen-

erative model to capture biological cell types in the latent embedding. Clustering accur-

acy of scMVP with scRNA input was similar to WNN (ARI=0.44), but still lower than

joint embedding from scMVP (ARI=0.50) (Fig. 5c). We then focused on development

of bulge stem cells to new bulge cells. Consistency with difference of UMAP latent em-

bedding between scRNA and scATAC in SHARE-seq paper [11], the two CD34+ bulge

cells and Isthmus cells were adjacent to K6+ Bulge/Companion Layer in UMAP

visualization of scATAC raw data latent embedding, but separated in the latent embed-

ding of scRNA raw data (Fig. 5c). And the ORS (outer root sheath) cells were partially

linked with K6+ Bulge/Companion Layer in UMAP visualization of scATAC raw data,

consistent with order of cell type shifts in bulge development [11] (Fig. 5d). The relative

position of cell types was retained in both scMVP with scATAC input and scMVP joint

embedding, indicating the reserved biological cell type structure during deep generation

model. The WNN captured the relative connection between ORS and K6+ Bulge/Com-

panion Layer, which was missed in latent embedding of scRNA from raw data and

scMVP, but failed to capture cell type shifts from αhigh CD34+ bulge, αlow CD34+ bulge,

and Isthmus in the scATAC latent embedding with simply joint embedding. We then

perform trajectory analysis on scMVP joint embedding of developmental bulge cells.

We found the diffusion map and pseudotime detecting both two paths from αhigh

CD34+ bulge to new bulge cells (Fig. 5e). Overall, deep generation model along with

joint embedding in scMVP could effectively improve clustering accuracy and capture

the biological structure hidden in scRNA or scATAC of the joint profiling dataset.

Discussion
scMVP was designed as a ready-to-use deep generative model to handle sequencing

data that simultaneously measure gene expression and chromatin accessibility in the

same cell, including SNARE-seq [8], sci-CAR [9], Paired-seq [10], SHARE-seq [11], and

10X multiome. Two major challenges in the analysis of scRNA and scATAC joint pro-

filing data are addressed by scMVP. The first challenge is how to overcome difficulties

in processing a very sparse and high dimensional data matrix, as the sequencing data

throughput of the latest joint profiling methods is much lower than the throughput of

single-modality scRNA-seq or scATAC-seq data. Recently, several algorithms [15–18]

were developed to analyze both joint modality dataset as 10X multiome PBMC dataset

and unpaired datasets and showed relative high performance on high quality joint pro-

filing dataset. However, the performance of these universal integration algorithms

showed limited explanation power in their latent embedding when applied to more

sparse and noisy joint profiling datasets, which may impede their application if the joint

profiling dataset is not as “good” as 10X multiome PBMC dataset. To provide a gener-

ally application to joint profiling datasets from different technique platform, scMVP

utilized the multi-head self-attention-based transformer structures in the ATAC mod-

ule and cycle-GAN like module to enhance the signal from both view of joint modality

dataset. The output layer of scMVP with appropriate distribution can impute genes and

peaks from the common latent embedding layer by maximizing the likelihood of the bi-

modal omic data. The scRNA-seq imputation of scMVP in cell line datasets showed

higher consistency to gene expression of bulk cell line RNA-seq than raw count and

similar or better consistency with scVI imputation [25], revealing the advantage of
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generative models in gene imputation for scRNA-seq of joint profiling data (Fig. 2a).

Also, the scATAC-seq imputation of scMVP identified more ATAC-seq or DNase-seq

peaks in corresponding cell line than raw count of scATAC-seq with similar accuracy

(Fig. 2b). Additionally, CREs predicted from scRNA-seq and scATAC-seq imputation

displayed higher regulatory potential than CREs predicted from raw count of scRNA-

seq and scATAC-seq in the SNARE-seq cerebral cortex dataset (Fig. 4c–d), indicating

the availability of joint imputation of scMVP for joint profiling datasets. The second

challenge is how to utilize two omic datasets for single-cell data analyses, such as cell

denoising, cell clustering, and development trajectory inference rather than conven-

tional independent analysis of scRNA-seq and scATAC-seq followed by integration or

anchoring of the two omic datasets between similar cell clusters, as common integra-

tion tools as Seurat v3 and Liger were not applicable for integration of two omic data-

sets in the same cell (Additional file 1: Fig. S3-5). Taking advantages of multi-modal

deep models, scMVP can directly perform these analyses on common latent code in an

embedding layer and provides accurate cell clusters in all cell line datasets and realistic

datasets, which is more robust than other single cell analysis tools (Figs. 3 and 4a, b).

Different from other single-cell deep generation algorithms, scMVP utilized a joint

embedding structure. We then investigated the influence of joint embedding and deep

generative model in scMVP to capture biological cell type structure. For both SNARE-

seq mouse cerebral cortex P0 dataset and SHARE-seq mouse skin dataset, the charac-

teristic of deep generation model for both scRNA and scATAC will improve the clus-

tering accuracy and retain the relative cell type structure in raw data. And the joint

embedding of WNN from two omics would also improve cell clustering and retain the

biological structure in scRNA data when the scATAC data of SNARE-seq P0 showed

limited contribution to latent embedding (Fig. 5c). However, when the biological struc-

ture of scRNA and scATAC latent embeddings differs in SHARE-seq skin dataset, we

found deep generative model for scRNA or scATAC would also learn the biological

structure from latent embeddings in respective raw data (Fig. 5d). Joint embedding of

WNN would also improve the clustering accuracy, but it could not capture the ex-

pected cell type order from scATAC data (Fig. 5d, e). Benefit from continuous sampling

attributes in deep generative architecture and integration attributes in multi-channel

architecture, scMVP not only improved the cell clustering, but also learned the bio-

logical structure from the scATAC, and inferred cell trajectory from both omics data.

Finally, it is worth noting that the multi-modal deep generation models described

here could also be extended to parallel profiling of other epigenomic data, such as

DNA methylation level [36, 37], TFs [38], and spatial chromatin structure [31]. Overall,

scMVP was designed as a general, flexible, and extensible framework to reconcile het-

erogeneity across multiple omic datasets while remaining robust to the substantial

amount of missing data inherent in joint RNA and ATAC single-cell sequencing exper-

iments. The multi-channel encoder architecture of scMVP could also be transformed

for use in traditional single-cell multi-omic data analyses [39].

Conclusions
In this study, we introduced scMVP, a non-symmetric deep generative model designed

for comprehensive handling sequencing datasets that simultaneously measure gene ex-

pression and chromatin accessibility in the same cell. We applied scMVP to datasets
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from various joint profiling techniques and found scMVP as robust and effective tool

in downstream analysis tasks with both joint latent embedding and separate imputa-

tions from two omics.

Methods
The generative model of scMVP

For joint profiles of scRNA-seq and scATAC-seq data, the expression profiles of RNA

and TF-IDF transformed ATAC [40], which convert original binary peaks into continu-

ous value by weighting each peak with its occurring frequency, are represented as gene

expression vector xi ∈ R
∣G∣ and ATAC peak vector yi ∈ R

∣P∣,i = 1, 2, …, N, where G is

the number of all detected genes, P is the corresponding number of detected peaks,

and N is the total number of cells.

Attempting to capture the biological physiology of the cells of interest (e.g., cell types,

developmental state), a multi-view generative model is built to recover the scRNA pro-

file xi and scATAC profile yi from a common latent embedding zi ∈ R
D (the dimension

D≪min(|G|, ∣ P∣), where the latent code zi follows a GMM-based prior distribution

and xi and yi each follow a negative binomial (NB) distribution and zero-inflated Pois-

son distribution [41]. The Poisson distribution is better to fit the signal counts of TF-

IDF transformed scATAC chromatin accessibility [40] rather than the regular binary

transformation. Due to the extreme sparsity of scATAC dataset, we use zero-inflated

Poisson for scATAC peaks in current joint sequencing technique. That is:

p cð Þ ¼ Cat πð Þ ¼
YK
k¼1

πk
ck ;π¼ π1;π2;…;πK½ � ð1Þ

p zjcð Þ ¼ N zjμc; σcIð Þ ¼ 1ffiffiffiffiffiffi
2π

p
σc

e
−

z−μcð Þ2
2σ2c

� �
ð2Þ

αx; βx ¼ Decoderx zð Þ ð3Þ

p μxjαx; βx
� � ¼ Gamma αx; βx

� � ¼ βx
αxxαx−1e−βxx

Γ αxð Þ ð4Þ

p xjμx
� � ¼ Poisson μx

� � ¼ μx
x

x!
e−μx ð5Þ

μy; τy ¼ Decodery zð Þ ð6Þ

p yjμy
� �

¼ Poisson μy
� �

¼ μy
y

y!
e−μy ð7Þ

p ωyjτy
� � ¼ Bernoulli τy

� � ¼ τyωy 1−τy
� �1−ωy ð8Þ

p yjy;ωy
� � ¼ p yjμy

� �
�p ωy ¼ 1jτy

� �h i
y>0

þ p ωy ¼ 0jτy
� �þ p yjμy

� �
�p ωy ¼ 1jτy

� �h i
y¼0

ð9Þ

Here, c represents one of the K components(clusters) of Gaussian mixture distribu-

tion, which is extract from a categorical distribution with probability πc, then the com-

mon embedding latent variable z is derived from the component c with a probability

p(z| c) = N(z| μc, σcI), which means the latent variable z associated cells is belonged into
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a specific cluster (cell type) c. Then, a two-channels decode network is used to generate

the parameters of the NB and ZIP distribution to reconstruct the original observed x

(RNA) and TF-IDF transformed y (ATAC) from the common latent variable z. In this

paper, we decompose the NB distribution as a composite of a Gamma distribution with

shape parameter αx and scale parameter βx, a Poisson distribution with mean parameter

μx given by the Gamma distribution sampling, in which the gamma distribution cap-

tures the real distribution of expression values, the Poisson distribution simulates the

sequencing bias. As a result, the RNA counts can be imputed with the mean of the

Poisson distribution. Similarly, the ZIP distribution is decomposed as a Poisson distri-

bution and a Bernoulli distribution, and the mean μy of Poisson distribution is worked

here as the imputation of scATAC-seq data. To coordinate the potential correlations

between the RNA and ATAC data in the same cell, we introduce an attention module

to weight the two decoder channels using the probabilities of latent variable z belonging

to each of the K cluster components (Fig. 1a and Additional file 1: Fig. S12). In

addition, to make sure the embedding and clustering consistency between the original

and imputed data, we design a cycle consistency module to match each layer of latent

variables from the imputed RNA and ATAC data, respectively, with the joint embed-

ding latent variable from the original data (Fig. 1a and Additional file 1: Fig. S12, S14).

Specifically, the Decodery(z) is designed as a self-attention-based transformer subnet-

work to capture weak and genome-wide correlation from sparse and high-dimensional

(>105) scATAC data [21], that is:

Decodery zð Þ ¼ LayerNormðBatchNorm MLP zð Þð Þ
þMultiHeadðQðBatchNorm MLP zð Þð ÞÞ;K BatchNorm MLP zð Þð Þð Þ;
V BatchNorm MLP zð Þð Þð ÞÞÞ� Softmax MLP p zjcð Þð Þð Þ

ð10Þ
MultiHead Q;K;Vð Þ ¼ Concat head1;…; headhð ÞWO ð11Þ

headi ¼ Attention QWQ
i ;KWK

i ;VWV
i

� �

¼ softmax
QWQ

i

� �
KWK

i

� �T
ffiffiffiffiffi
dk

p
0
@

1
AVWV

i ð12Þ

As shown in formula 10, the Decodery(z) is cascaded by a multilayer perceptron

(MLP), a batch normalization, a multi-head self-attention-guided skip connection mod-

ule (similar with the Resnet block) and a layer normalization, which is then weighted

by Softmax(MLP(p(z| c))), functioned as the additional cell cluster-indicated attention

module to recover the cell-type specific semantic information (Additional file 1: Fig.

S12). In detail, we firstly produce queries (Q), keys (K) and values (V) matrixes for self-

attention module using BatchNorm(MLP(z)), the output of batch-normalized multilayer

perceptron, and then split each of three matrixes into the ith of h heads by multiplying

each head specific transformation weight matrix: WQ
i ,W

K
i , and WV

i , respectively. Next,

the ith head-indicated values VWV
i is weighted by the softmaxððQW

Q
i ÞðKWK

i Þ
Tffiffiffiffi

dk
p Þ, the acti-

vated correlation attention matrix between the ith queries and keys, where the dk is the

scale factor [21] (formula 12). Finally, all the h heads are concatenated together to
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decode the latent embedding z as the ZIP distribution parameters μy, τy for generating

ATAC profile (formula 6) with a transformation matrix WO and a skip-connection layer

(formula 11). Contrarily, the RNA generating/decoder subnetwork Decoderx(z) utilizes

a canonical mask attention structure by cascading a multilayer perceptron, a layer

normalization, a batch normalization, and an attention module (Additional file 1: Fig.

S12), which can be presented as follows:

Decoderx zð Þ ¼ MLP BatchNorm LayerNorm MLP zð Þð Þð Þ�Softmax MLP zð Þð Þð Þ�
ð13Þ

This branch is also weighted by Softmax(MLP(p(z| c))), the additional cell cluster-

indicated attention module.

scMVP model is optimized by maximizing the log likelihood probability of the gener-

ated scRNA and ATAC data according to variational Bayesian inference [42]:

logp x; yð Þ ¼ log
Z X

c
p x; y; z; cð Þdz

≥
Z X

c
q z; cjx; yð Þ� log

p x; y; z; cð Þ
q z; cjx; yð Þ

¼ Eq z;cjx;yð Þ log
p x; y; z; cð Þ
q z; cjx; yð Þ

� �
¼ Lelbo x; yð Þ

ð14Þ

where q(z, c| x, y) is the introduction variational distribution. According to our network

structure and the mean field theory [42], we can get:

p x; y; z; cð Þ ¼ p xjz; cð Þp yjz; cð Þp cjzð Þp zð Þ ð15Þ

q z; cjx; yð Þ ¼ q zjx; yð Þq cjzð Þ ð16Þ

Here, p(x| z, c) is worked as a NB distribution and generated by p(x| μx) ∗ p(μx| αx, βx),

while p(y| z, c) is worked as a ZIP distribution and generated by pðyjy;ωyÞ�pðωyjτyÞ�pðy
jμyÞ (see formula 1–9), and all distribution parameters as αx, βx, τy, and μy are gener-

ated from decoder network. The q(z| x, y) is inferenced from the joint encoder network

in scMVP model, which is composed of a mask attention-based scRNA embedding

subnetwork and transformer self-attention-based scATAC embedding subnetwork, as

each of them has a similar structure with the corresponding decoder subnetwork (Add-

itional file 1: Fig. S13a).

Then, the variational lower bound can be represented as follows:

Lelbo x; yð Þ ¼ Eq zjx;yð Þq cjzð Þ p xjz; cð Þ½ �
þ Eq zjx;yð Þq cjzð Þ p yjz; cð Þ½ �−DKL p zð Þkq zjx; yð Þð Þ−DKL p cjzð Þkq cjzð Þð Þ

ð17Þ

To further improve the performance of scMVP model to extreme sparse dataset as

joint profiling dataset, we introduce a cycle-GAN like clustering consistency auxiliary

network to coordinate the latent embedding of each scMVP imputed profile with the

joint embedding from raw profile. Due to the different characteristics of scRNA data

and scATAC data, we applied transformer self-attention-based imputed embedding for

scATAC cycling workflow and mask attention-based module for scRNA cycling work-

flow (Additional file 1: Fig. S13 b, c and S14). Similar with the cycle consistency loss
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used in cycle-GAN model, the clustering consistency loss can be represented as the

Kullback-Leibeler divergence of the embedding between the imputed and original data:

Lconsistency x; y; ximpute; yimpute

� �
¼ DKL q zjx; yð Þ∥q zjximpute

� �� �
þ DKLðq zjx; yð Þ∥q zjyimpute

� �
ð18Þ

where q(z| ximpute) and q(z| yimpute) represent the latent embedding of imputed scRNA

and scATAC, respectively.

To maximize Lelboðx; yÞ , the independent component DKL(p(c| z)‖q(c| z)) ≡ 0 should

be satisfied (in fact, the discrete variable c is depended only on z); and considering the

clustering consistency loss Lconsistencyðx; y; ximpute; yimputeÞ , we use a constrained

optimization process to solve Lelboðx; yÞ:

L
0
elbo ¼ Eq zjx;yð Þq cjzð Þ p xjz; cð Þ½ � þ Eq zjx;yð Þq cjzð Þ p yjz; cð Þ½ �−DKL p zð Þ k q zjx; yð Þð Þ

−DKL q zjx; yð Þ∥q zjximpute
� �� �

−DKL q zjx; yð Þ∥q zjyimpute

� �� �
ð19Þ

s:t: p cjzð Þ ¼ q cjzð Þ ¼ p zjcð Þp cð ÞPK
c0 ¼1p z0 jc0ð Þp c0ð Þ ð20Þ

In practice, the parameters of variational distribution q(z| x, y) is implemented in a

two-channel encoder network concatenated with a joint embedding layer, the distribu-

tion parameters of p(x| z, c) and p(y| z, c) are generated through the decoder network

as shown in formulas (1–9). Then, Eq(z| x, y)[p(x| z, c)] and Eq(z| x, y)[p(x| z, c)] represent

the log likelihood of reconstructed scRNA-seq and scATAC-seq data, respectively, and

the Kullback-Leibeler divergence DKL(p(z)‖q(z| x, y)) regularizes the latent variable z

into one of the K Gaussian distributions for cell type identification, and the parameters

of p(z| c) and p(c) are estimated by the gradient back-propagation of decoder network.

In our study, scMVP consists of a two-channel encoder network and a two-channel

decoder to integrate the information from scRNA-seq and scATAC-seq, and the input

dimension of each channel is determined by the gene and peak number. Different from

the network layer design in scVI [25] and SCALE [14], we used a mask attention chan-

nel for RNA branch and a self-attention channel for ATAC branch to identify the cell

type associated information and capture the intra-omics distal correlation. Specifically,

RNA branch of encoder sequentially concatenates 128-dimensional hidden layer, a layer

normalization layer, a batch normalization layer, and an output Relu activation layer,

which is weighted by a mask attention tensor generated from the first 128-dimensional

hidden layer. The ATAC branch of encoder sequentially concatenates a 128-

dimensional hidden layer, a batch normalization layer, a Relu activation layer, and a

multi-heads self-attention layer, which is designed as 8 self-attention heads and each

head takes 16-dimension feature in this study, and a layer normalization. The output

two channels are combined together to form a shared linear layer (256 dimensions). Fi-

nally, two cascaded 128-dimension linear layers are used to produce the mean and vari-

ance of a normal distribution N(z| μ, σ) for the 10-dimensional common latent variable

z (Additional file 1: Fig. S13). After a reparameterization trick with z = μ + σN(0, 1),

which is a specific sampling scheme from the variational distribution, and used to ap-

proximate the expectation of q(z| x, y), a two-channel decoder is employed to determine
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the distribution parameters of NB and ZIP for the reconstruction of scRNA-seq and

scATAC-seq, which utilize a similar network structure with the encoder network ex-

cept an attention module. The attention module receives the p(c| z) for all K compo-

nents as input, by a linear layer (128 dimensions), and then weights the last layer of

each decoder channel with a SoftMax activation function (Additional file 1: Fig. S12).

Finally, the imputed scRNA-seq and scATAC-seq data are fed back two single-channel

encoders to produce the imputed embedding for clustering consistency evaluation, and

those two encoders have the same structure with each omic-specific encoder branch

and are trained with the joint encoder simultaneously. The raw scRNA-seq and

scATAC-seq data are also used to train for both subnetworks, avoiding the possible

overfitting from cycling clustering consistency training of the imputed data.

In addition, the cluster number K should be user predefined or specified by the rank

of cell-cell correlation matrix. The GMM algorithm is used to estimate the initial pa-

rameters of the Gaussian mixture prior distribution [43]. Our model is trained using

the Adam optimizer with a mini-batch of 128, learning rate 5.0e−3, and the maximum

number of iterations is 30. The neural network of scMVP is implemented with

PyTorch, and the GMM is constructed with the scikit-learn package [44] from python.

Data analysis and model evaluation

Cell line pre-processing and visualization

The sci-CAR cell line dataset was derived from 293T, 3T3, 293T/3T3 cell mixtures,

and A549 cell lines treated with DEX for 0 h, 1 h, and 3 h [9]. For the sci-CAR dataset,

only co-assay cells were used for further analysis, and cells with fewer than 200 peaks

or genes and peaks or genes with fewer than 10 cells were removed from further ana-

lysis. The Paired-seq cell line dataset was derived from HEK293, HepG2, and their cell

line mixture [10]. For Paired-seq dataset, cells with fewer than 200 peaks or genes,

peaks, or genes with fewer than 10 cells or peaks with more than 336 cells were re-

moved from further analysis. The downsampled sciCAR and Paired-seq cell line data-

sets were used for training epochs evaluation. The SNARE-seq cell line dataset was

derived from H1, BJ, K562, and GM12878 [8]. For SNARE-seq dataset, cells with fewer

than 200 peaks or genes and peaks or genes with fewer than 10 cells were removed

from further analysis. For model performance evaluation, we used replicate 3 of

GM12878 cell line with 67,418 cells from SHARE-seq dataset [11]. Cells were filtered

with same threshold and top 8000 genes/23,000 peaks were used for memory and train-

ing time benchmark. We sampled 1000, 2000, 5000, 10,000, 20,000, 50,000, and

100,000 cells from SHARE-seq GM12878 dataset in a put-back way. For batch removal

evaluation, we used 2973 cells and 8803 cells from replicate 2 and replicate3 of

GM12878 cell line from SHARE-seq dataset. We used Seurat [19] for data pre-

processing of all datasets. UMAP visualization and clustering of the scATAC profiles

was performed using Monocle3 [29] and cisTopic [30], and scRNA profiles of the cell

lines were produced with the same analysis using Monocle 3 [29] and scVI [25]. UMAP

visualization of multi-view integrations were also processed with Seurat v3 [31], Liger

[32], Seurat v4 WNN [19], MOFA+ [16], scAI [15], MultiVI [18], and Cobolt [17].
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Cell line clustering and imputation evaluation

We used the metric of adjusted Rand Index (ARI) for clustering comparison of algo-

rithms as described in previous literature [14, 25]. Cells derived from unique cell line

were used for clustering benchmark in sci-CAR dataset of 3 cell types, Paired-seq of 2

cell types, and SNARE-seq of 4 cell types.

We used gene quantifications of bulk cell line RNA-seq for gene imputation evalu-

ation. Gene count files of A549 cell lines treated with DEX for 0h (ENCSR632DQP), 1h

(ENCSR656FIH), 3h (ENCSR624RID) used in sci-CAR dataset, HepG2 cell line (ENCS

R058OSL) used in Paired-seq dataset and H1 (ENCSR670WQY), BJ (ENCSR000COP),

K562 (ENCSR530NHO), and GM12878 (ENCSR000CPO) cell lines used in SNARE-seq

dataset were downloaded from ENCODE3 data portal [45] for gene imputation bench-

mark. We also downloaded DNase-seq signal files for H1 (ENCSR000EMU) and BJ

(ENCSR000EME), and ATAC-seq signal files for K562 (ENCSR868FGK) and GM12878

(ENCSR095QNB) ENCODE3 data portal. Bulk DNase-seq signal and bulk ATAC-seq

signal in single-cell ATAC-seq peaks were computed with UCSC tools bigwigAvera-

geOverBed [46], and single-cell ATAC-seq peaks with signal over certain threshold

were used as valid peaks in bulk DNase-seq and ATAC-seq. One-tailed t test was used

to estimate the significance of true peak count and true peak ratio of scMVP scATAC

imputation higher than raw scATAC counts.

Realistic datasets pre-processing, clustering evaluation, and trajectory inference

The same pre-processing procedures and same algorithms were used for three realistic

datasets with cell line dataset. For clustering evaluation, reference cell annotations of

10X Genomics PBMC dataset and fresh frozen lymph node with B cell lymphoma data-

set (10x Lymph Node dataset) were downloaded from 10X Genomics website

(www.10xgenomics.com/resources/datasets), as annotation of SHARE-seq skin dataset

was downloaded from SHARE-seq paper [11]. Reference cell annotations of SNARE-

seq mouse cerebral cortex P0 dataset was provided by Prof. Kun Zhang [8]. Differential

gene analysis of SNARE-seq P0 dataset were performed by scanpy [47] using both

scMVP and scVI scRNA imputation and reference cell annotations. Consistency of

DEGs in each cell type was calculated by number of top DEGs from scMVP or scVI

overlap with distinct SNARE paper DEGs divided by number of SNARE paper DEGs

used for gene imputation. Cellular trajectory and pseudotime were computed with joint

latent embeddings of SNARE-seq and SHARE-seq dataset by function DiffusionMap in

R package destiny [48].

Evaluation of CRE prediction in the SNARE-seq P0 dataset

Candidate cis-regulatory elements were predicted from original and scMVP imputed

scATAC data using Cicero [13] with default parameter. For each gene, we also com-

puted correlations between its expression and the binary accessibility of all peaks lo-

cated 100 kilobases (kb) of its transcriptional start site (TSS) using LASSO (least

absolute shrinkage and selection operator) with R package glmnet [49]. Gene proximal

peaks for each peak list were defined as peaks located within 2 kb upstream to 500kb

downstream of transcription start sites (TSS), as other peaks were defined as gene distal

peaks. H3K27ac (ENCSR094TTT), H3K4me1 (ENCSR465PLB), and H3K4me3 (ENCS
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R258YWW) ChIP-seq of mouse forebrain P0 files were downloaded from the EN-

CODE3 data portal [45]. Aggregation of the H3K27ac signal, H3K4me1 signal, and

H3K4me3 signal on both gene proximal and distal CREs was performed with deep-

Tools2 [50].
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