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Abstract

Background: The daily cycling of plant physiological processes is speculated to arise
from the coordinated rhythms of gene expression. However, the dynamics of diurnal
3D genome architecture and their potential functions underlying the rhythmic gene
expression remain unclear.

Results: Here, we reveal the genome-wide rhythmic occupancy of RNA polymerase
II (RNAPII), which precedes mRNA accumulation by approximately 2 h. Rhythmic
RNAPII binding dynamically correlates with RNAPII-mediated chromatin architecture
remodeling at the genomic level of chromatin interactions, spatial clusters, and
chromatin connectivity maps, which are associated with the circadian rhythm of
gene expression. Rhythmically expressed genes within the same peak phases of
expression are preferentially tethered by RNAPII for coordinated transcription. RNAPII-
associated chromatin spatial clusters (CSCs) show high plasticity during the circadian
cycle, and rhythmically expressed genes in the morning phase and non-rhythmically
expressed genes in the evening phase tend to be enriched in RNAPII-associated
CSCs to orchestrate expression. Core circadian clock genes are associated with
RNAPII-mediated highly connected chromatin connectivity networks in the morning
in contrast to the scattered, sporadic spatial chromatin connectivity in the evening;
this indicates that they are transcribed within physical proximity to each other during
the AM circadian window and are located in discrete “transcriptional factory” foci in
the evening, linking chromatin architecture to coordinated transcription outputs.

Conclusion: Our findings uncover fundamental diurnal genome folding principles in
plants and reveal a distinct higher-order chromosome organization that is crucial for
coordinating diurnal dynamics of transcriptional regulation.
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Background
Diurnal oscillations of gene expression are presumed to drive daily cycles of plant

physiological processes through core circadian genes involved in interlocked tran-

scriptional/translational negative feedback loops [1–8]. The genome-wide cis-acting

targets (cistromes) of core circadian clock components during the circadian cycle

have been identified in mammals using the high-throughput chromatin immuno-

precipitation (ChIP) approach [9–11]. Interlocking transcriptional loops generate

cycles of transcription with various expression phases depending on the alternative

usage of cis-elements in the promoters and enhancers of specific target genes [12,

13]. In Arabidopsis, genome-wide identification of circadian clock associated 1

(CCA1), the timing of CAB expression 1 (TOC1; also known as PRR1), pseudo-

response regulator 5 (PRR5), and PRR7 targets revealed phase-specific circadian

clock regulatory elements in target gene promoters and temporal regulation of spe-

cific output pathways [14–17].

In the transcriptional feedback loop module, chromatin status and RNA polymerase

II (RNAPII) occupancy are directly linked to the regulation of diurnal gene expression

patterns [6, 8, 13]. In the mouse liver, on a genome-wide level, circadian rhythms in

transcription factor (TF) binding, RNAPII recruitment and initiation, and chromatin

states account for cycling mRNA transcripts, suggesting that RNAPII occupancy and

histone modifications are intimately connected with the generation of diurnal output

rhythms [11, 13]. Accumulating evidence has shown that chromatin remodeling events

are involved in circadian regulation in plants. In Arabidopsis, core clock proteins inter-

act with epigenetic modifiers, and the related chromatin-modifying enzymes are associ-

ated with promoters bearing rhythmic mark deposition [18–21]. In addition, core

circadian clock genes promote diurnal expression of chromatin-modifying factors,

which in turn regulate rhythmic histone modification on the core clock and target

genes [22]. RNAPII plays an essential role in initiating nascent transcription [23, 24];

however, whether RNAPII occupancy is under diurnal control to regulate circadian

transcription in plants remains poorly understood.

Over the past few years, chromatin conformation capture techniques have provided

an unprecedented three-dimensional (3D) view of chromatin organization [25, 26]. Re-

cent advances in 3D genome studies have shown that long-range chromatin interac-

tions between promoters and enhancers influence the expression of connected genes in

a coordinated pattern [27–30]. In addition, recent studies have described the circadian

regulation underlying genome-wide higher-order genome organization and long-range

interactions at specific loci in mammals [31–36]. However, despite this progress, a

comprehensive understanding of the high-resolution dynamic chromatin architecture

and its effects on diurnal gene expression is still lacking in plants.

To investigate how RNAPII dynamically interacts with their corresponding regulatory

regions during the circadian cycle, we used long-read chromatin interaction analysis

(ChIA-PET) to globally analyze genome-wide chromatin interactions associated with

RNAPII in rice. We also systematically characterized the interplay between 3D genome

architecture, rhythmic RNAPII occupancy, and rhythmic gene expression. The gener-

ated RNAPII-associated high-resolution dynamic chromatin interactome maps revealed

a detailed chromatin topology that provides a framework for understanding orches-

trated circadian transcriptional outputs.
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Results
RNAPII occupancy is rhythmic and predicts transcription in rice

To explore the origin of the global rhythms of gene expression in rice, we analyzed the

genome-wide occupancy of RNAPII using ChIP-seq over a six-point time course span-

ning 24 h (Fig. 1a, Fig. S1, Additional file 2: Table S1). We found that RNAPII signals

increased sharply at transcription start sites (TSS), decreased on entering gene body re-

gions, and peaked at polyadenylation site (PAS) (Fig. 1b). On a genome-wide basis, we

detected 21,495 RNAPII-binding peaks and found that 35% (7537) of RNAPII occu-

pancy was rhythmic (Fig. S2a, Additional file 3: Table S2). We also detected 7594

rhythmically expressed genes (37%, out of 20,696 active genes) as determined by BIO_

CYCLE [37] [q < 0.05, 20 < period (t) < 28 h] (Fig. S3a, Additional file 4: Table S3 and

Additional file 5: Table S4). We then examined the temporal relationships between

RNAPII recruitment and RNA accumulation and found that the phase distribution of

RNAPII peaks and peak abundance of rhythmic transcripts clustered around the morn-

ing phase (Fig. 1c, d; Fig. S2b, 3b) and that rhythmic RNAPII peak intensity was

Fig. 1 Rhythmic occupancy of RNAPII and temporal relationship with mRNA accumulation in rice. a
Sampling time points of a diurnal light and dark cycle under field conditions. Red font indicates the sample
collection time, and black font indicates sunrise and sunset. b Distribution of RNAPII occupancy along
genes over a six-point time course in mature leaves of rice. The gene body was converted into percentiles
to standardize genes with different lengths. Regions 3 kb upstream and downstream of the gene are
shown. c Phase distribution of rhythmic RNAPII occupancy represented as a rose plot. The values inside the
circle represent the coordinates, the numbers outside the circle indicate the sidereal hours. d Peak
expression phase distribution of rhythmically expressed genes. The phase of each transcript rhythm is
represented as a rose plot. e Heat map representation of rhythmic RNAPII occupancy and transcript levels.
Each rhythmic RNAPII occupancy and the corresponding rhythmically expressed gene are represented as a
horizontal line and ordered vertically by the rhythmic RNAPII occupancy phase in sidereal hours. f Density
plot of RNAPII occupancy and mRNA accumulation phase. The orange dashed line indicates the average
phase of RNAPII occupancy, and the green dashed line indicates the average phase of mRNA accumulation.
g Features of RNAPII binding peaks and gene transcription at the indicated time point and the OsLHY locus.
Each RNAPII occupancy and RNA-seq track represents the normalized read coverage (wiggle plot) at a
single time point. Of the RNA-seq track, the red and black wiggle plots represent forward- and reverse-
strand RNA-seq reads, respectively. Six time points (each time point is a replicate of two successive days)
every 4 h over a circadian cycle are shown beginning at 00:00 and ending at 20:00
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significantly correlated with rhythmic transcript expression levels (Pearson rank correl-

ation = 0.69, over the six time points; Fig. 1e, Fig. S2c). In addition, a global analysis of

phase relationships revealed that RNAPII recruitment preceded RNA accumulation by

2 h (Fig. 1f, g). However, the open chromatin regions were non-rhythmic over the sam-

pled time series (Fig. S2a). The rhythmic mRNA expression of known circadian-related

genes (e.g., OsLHY, OsTOC1) showed robust oscillation patterns (Fig. S3c). The Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that genes os-

cillating in phase have closely related biological functions (Fig. S3d) that vary with the

phase, supporting the robustness of our data. Together, these results suggest that

genome-wide rhythmic RNAPII recruitment largely influences the oscillating transcrip-

tome and that widespread transcriptional and post-transcriptional regulatory events

also contribute to the generation of rhythmic mRNA in rice.

Rhythmic RNAPII recruitment is associated with diurnal 3D genome architecture

remodeling

Rhythmic RNAPII occupancy prompted us to examine whether the RNAPII-mediated

high-resolution 3D genome organization changes in a rhythmic manner. We thus per-

formed RNAPII ChIA-PET using the same samples employed for ChIP-seq and RNA-

seq at 08:00 and 20:00 (Fig. 2a, Fig. S4a, b, Additional file 6: Table S5). In total, we

identified 20,667 high-confidence (FDR < 0.05) RNAPII-associated chromatin interac-

tions connecting 4526 genes at 08:00 (Fig. 3a, Additional file 7: Table S6) and 21,001

loops connecting 5298 genes at 20:00 (Fig. S6e, Additional file 8: Table S7). Approxi-

mately half (48.63%) of these loops were intrachromosomal and unevenly distributed

Fig. 2 ChIA-PET analysis defines the RNAPII interactome in rice during a circadian cycle. a ChIA-PET
mapping of the long-range chromatin interactions of genes. b–d ChIA-PET contact heatmaps at 100, 50,
and 10 kb resolution of the 08:00 (AM) and 20:00 (PM) datasets. e Mapping browser screenshot showing
the RNAPII-defined chromatin interactions, RNAPII occupancy, and RNA-seq data in the box region of d.
Each chromatin interaction, RNAPII occupancy, and RNA-seq track represents the normalized loops and read
coverage (wiggle plot) at the 08:00 and 20:00 time points. f Circos plot representing the genome-wide view
of OsLHY interactions with the corresponding chromosomes in trans at 08:00. The cloned gene
corresponding to each contact region is indicated in the outer layer of the plot. The lines in red represent
intrachromosomal interactions, and lines in blue represent interchromosomal interactions
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along the genome (Fig. S5). The genomic spans of the 08:00-specific intrachromosomal

loops were longer than those of the 20:00-specific intrachromosomal loops and com-

mon intrachromosomal loops (Fig. S4c). The overall megabase-sized RNAPII-

associated 3D genome organization was highly similar between 08:00 and 20:00. How-

ever, visualization of progressively enlarged genomic regions in the genome browser

Fig. 3 Characterization of rhythmically expressed gene-centered chromatin interactions and dynamics of
chromatin loops. a Boxplot showing the expression levels of rhythmically and non-rhythmically expressed
genes involved or not involved in RNAPII-mediated chromatin interactions at 08:00. ***p < 0.0001. b
Boxplot showing the positive correlation between the degrees (connection frequency) and transcript
abundance of anchor genes at 08:00. c Boxplot showing the positive relationship between the degrees and
transcript abundance of rhythmically and non-rhythmically expressed anchor genes at 08:00. d As the
degree increases, rhythmically expressed anchor genes showed higher transcript abundance than did non-
rhythmically expressed anchor genes did at 08:00. The correlation coefficients between transcript
abundance and degree among rhythmically, non-rhythmically, and non-expressed genes were 0.94, 0.42,
and 0.51, respectively. Rhythmically vs. non-rhythmically, p = 9.669e−06 (binomial test). e Expression
breadth (number of tissues in which a gene is expressed) of RNAPII-mediated anchor and basal genes with
rhythmic or non-rhythmic characteristics. Random genes served as controls. f Distribution of rhythmically
expressed gene-centric interactions at 08:00. The percentages of RG (rhythmically expressed gene)-RG, RG-
NG (non-rhythmically expressed gene), and RG-NEG (non-expressed gene) interactions are listed. ***p <
0.0001. g Distribution of phase spans of RG-RG interaction gene pairs and randomly picked gene pairs from
rhythmically expressed anchor genes and rhythmically expressed basal genes in the 08:00 datasets. Actual
vs. random anchor, p = 6.469e−11; actual vs. random basal, p < 2.2e−16, random anchor vs. random basal,
p = 1.057e−07 (Kolmogorov-Smirnov test). h Distribution of Pearson’s correlation coefficient for RNAPII-
bound interacting gene pairs, gene pairs with a loop connecting rhythmically expressed genes, and gene
pairs with a loop connecting non-rhythmically expressed genes in the 08:00 datasets. i Bar chart showing
the percentages of overlap (common) and dynamic chromatin loops across the day. j Heatmap showing
the time-specific chromatin loops, ordered by the number of paired-end tag (PET) counts. Pseudo-color
reflects the normalized contact frequencies between the loop anchors for each stage-specific loop. RR, RG-
RG; RN/NR, RG-NG or NG-RG; NN, and NG-NG. k Enriched KEGG pathways for genes located at the loop
anchors of distinct clusters in j along with their adjusted p values. l Over-represented transcription factor-
binding motifs for distal open chromatin regions located at the loop anchors of distinct clusters in j and
their corresponding p values
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with chromatin interactions showed a clear divergence between 08:00 and 20:00 (Fig.

2b–d). OsLHY, a well-known core circadian clock gene in rice [38], was found to form

loops with 74 genomic regions at 08:00 in the RNAPII-mediated chromatin connectiv-

ity maps (Fig. 2e, f, Additional file 9: Table S8), which is the time point at which OsLHY

showed the highest expression level. In contrast, these RNAPII-tethered chromatin

loops were virtually undetectable at 20:00 at OsLHY locus, which was the time point of

trough OsLHY expression (Fig. 2e). These findings demonstrate that RNAPII-related

rhythmic spatial clustering at the OsLHY locus is highly time-specific and that these

variations in looping structures may influence the diurnal expression of OsLHY.

Properties of rhythmically expressed genes involved in the RNAPII-mediated diurnal 3D

genome architecture

Among the 13,738 and 16,983 RNAPII-binding sites detected at 08:00 and 20:00, re-

spectively, 8455 peaks were overlapped. Of 6090 (44%) and 6883 (41%) chromatin

interaction anchors at 08:00 and 20:00, respectively, we found 3608 shared RNAPII an-

chors between two time points. The remaining RNAPII peaks were classified as basal

promoters without chromatin interactions (Fig. S6a, b). The peak intensity of the an-

chor sites was significantly higher than that of the basal sites, and the intensity of

rhythmic peaks was significantly higher than that of non-rhythmic peaks in the corre-

sponding anchor or basal sites, suggesting that rhythmic RNAPII peaks with higher

peak intensities are more likely to be involved in chromatin loops (Fig. S6a–d). More-

over, the transcript abundance of both rhythmically expressed anchor and basal genes

was significantly higher than that of non-rhythmically expressed genes in the corre-

sponding models (Fig. 3a, Fig. S6e). In addition, anchor genes with high degrees (con-

nection frequency) displayed high expression levels, and rhythmically expressed anchor

genes showed greater transcript abundance than non-rhythmically expressed anchor

genes in the AM datasets (Fig. 3b–d). These trends were also present in the PM data-

sets, although the differences between the rhythmically and non-rhythmically expressed

anchor genes were less pronounced (Fig. S6f–h). Gene expression breadth analysis

(breadth is defined as the number of tissues in which a transcript is detected) showed

that anchor genes were more widely expressed than basal genes were, and further ana-

lysis revealed that rhythmically expressed anchor genes were almost universally

expressed genes, supporting the notion that RNAPII-interacting anchor genes are spe-

cifically enriched for ubiquitously expressed genes (Fig. 3e, Fig. S6i, Additional file 10:

Table S9).

Further analyses showed that ~ 74% of RNAPII-bound loops were associated with

rhythmically expressed genes and that the rhythmically expressed gene pairs were more

likely to be tethered by RNAPII than were rhythmically-non-rhythmically expressed

gene pairs (Fig. 3f, Fig. S6j). Moreover, interacting rhythmically expressed gene pairs

tended to have the same or close diurnal phase (Fig. 3g, Fig. S6k) and showed signifi-

cantly higher positive transcriptional correlation compared with other categories (Fig.

3h, Fig. S6l). For example, of all the OsLHY looping genes, 46% (33), 44% (31), and 10%

(7) were associated with rhythmically, non-rhythmically, and non-expressed genes, re-

spectively, and the expression peak phases of rhythmically expressed genes were largely

(70%, 23 out of 33) clustered in the 06:00–10:00 temporal window (Fig. S6m, n). The
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expression levels of RNAPII-mediated OsLHY looping rhythmic genes were positively

correlated with OsLHY mRNA expression (Pearson rank correlation = 0.71), while

other looping genes (non-rhythmically and non-expressed genes) were negatively corre-

lated with OsLHY mRNA expression (Pearson rank correlation = − 0.38) (Fig. S6o).

Altogether, our results indicate that rhythmically expressed genes showing small phase

differences are more likely to be involved in RNAPII-mediated organization for coordi-

nated transcription.

More than half (58%; 2447) of the rhythmic loop anchors were time-specific, and the

peak intensity was significantly correlated with the level of rhythmic transcripts (Pear-

son rank correlation = 0.79; Fig. S7a, b). Moreover, 91% of the chromatin interactions

(32,697) were time-specific (Fig. 3i). Actually, of all the 32,697 time-specific chromatin

loops, ~ 26% (n = 8561) were RG (rhythmically expressed genes)-RG interactions and

looped 2619 rhythmically expressed genes; ~ 44% (n = 14,398) were RG–NG (non-

rhythmically expressed genes) or NG–RG interactions and looped 4757 rhythmically

expressed genes and 2383 non-rhythmically expressed genes, respectively; ~ 21% (n =

6,837) were NG–NG interactions and looped 2280 non-rhythmically expressed genes;

and ~ 9% (n = 2901) were NEG (non-expressed genes)-associated interactions, and of

all the looping genes, 37% (780), 31% (656), and 32% (694), were associated with rhyth-

mically, non-rhythmically, and non-expressed genes, respectively (Fig. S7c). In total,

there are 3259 rhythmically (43%, out of 7594 rhythmically expressed genes), 3241

non-rhythmically (25%, out of 13,102 non-rhythmically expressed genes), and 694 non-

expressed (2%, out of 36,478 non-expressed genes) genes involved in RNAPII-

associated time-specific chromatin interactions. We also defined two distinct clusters of

time-specific chromatin loops, each subdivided by the corresponding rhythmic charac-

teristics of anchor genes (Fig. 3j). In particular, the gene set engaged in the RNAPII-

associated AM chromatin loop cluster was enriched for biological processes, including

photosynthesis and circadian entrainment, whereas the gene set involved in the PM

chromatin loop cluster was enriched for plant–pathogen interactions (Fig. 3k, l), dem-

onstrating that gene clusters related to altered chromatin loops participating in diverse

biological pathways.

RNAPII-associated chromatin spatial clusters (CSCs) change throughout the day, and

variable CSCs are correlated with gene expression

RNAPII-mediated chromatin loops were observed to form spatial clusters, in which

multiple interactions could be seen emanating from a single anchor site termed the

node gene; the divergent interaction sites were considered the connecting genes (Fig.

4a). We found that these CSCs showed considerable variation between the 08:00 and

20:00 datasets that reflected three types of oscillatory patterns: (i) a total of 1166 AM-

specific CSCs were identified at 08:00 that were absent or markedly decreased in size at

20:00 as the diurnal cycle progressed. (ii) a total of 1128 PM-specific CSCs were present

at 20:00 that were absent or markedly decreased in size at 08:00, and (iii) a total of

1125 static CSCs were present at both 08:00 and 20:00, which included common node

genes with different connecting genes in the morning and evening (Fig. 4b).

In all three types of CSC examined, approximately two-thirds of the node genes were

associated with rhythmically expressed genes, 20–40% of the node genes were
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associated with non-rhythmically expressed genes, and the rest were not expressed (Fig.

S8a); moreover, the percentages were varied with the type of CSC. Rhythmically

expressed node genes within AM-specific CSCs were enriched during their expression

phase at 08:00 and showed higher expression levels than at 20:00 (Fig. 4c, d, Fig. S8a).

Similarly, node genes in PM-specific CSCs were enriched with rhythmically expressed

genes in the evening phase and showed higher levels of gene expression at 20:00 than

at 08:00 (Fig. 4c, d, Fig. S8a). Rhythmically expressed node genes within static CSCs

with expression peaks were relatively randomly distributed throughout the day and had

Fig. 4 RNAPII-organized chromatin spatial clusters (CSCs) change throughout the day. a Browser view of a
203-kb genomic segment with five CSCs showing RNAPII ChIA-PET data at the 08:00 (AM) and 20:00 (PM)
time points. The number in brackets represents the number of connecting genes in each CSC. b Simulated
3D model of the CSCs throughout the diurnal cycle. CSCs change in an oscillatory manner with three
forms: (i) an AM-specific state, (ii) a PM-specific state, and (iii) a static state (overlap). c The phase
distribution of rhythmically expressed node genes in the three possible models specified in b represented
as rose plots. d Expression levels of rhythmically or non-rhythmically expressed node genes in the three
possible models. ***p < 0.0001. e Boxplot shows that rhythmically expressed node genes within AM CSCs
tended to connect with rhythmically expressed genes, whereas non-rhythmically expressed node genes in
PM CSCs tended to connect with non-rhythmically expressed genes. The red dashed line indicates the
number of rhythmically expressed linked genes equally to the number of non-rhythmically expressed linked
genes within a CSC. ***p < 0.0001. f, g Violin plot showing the distribution of the mean gene number in
AM-specific CSCs (f) and PM-specific CSCs (g) with randomly simulated rhythmically and non-rhythmically
expressed genes. h Schematic model of the chromatin organization during the circadian cycle.
Representative CSCs from AM and PM circadian windows as well as their components and influence on
rhythmically and non-rhythmically expressed genes transcription are shown. Red wavy lines indicate
transcript abundance.
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similar expression levels in the morning and evening (Fig. 4c, d, Fig. S8a). The

non-rhythmically expressed node genes in each category showed lower expression

levels but similar expression patterns to the rhythmically expressed node genes

(Fig. 4c, d, Fig. S8a). In addition, rhythmically expressed node genes in the AM-

specific CSCs had higher expression levels (Fig. S8b) and degrees (Fig. S8c), stron-

ger correlation of expression (Fig. S8d), and a more concentrated phase difference

(Fig. S8e) than those in PM-specific CSCs. This reflects a diverse RNAPII-

associated chromosomal organization associated with rhythmically expressed genes

in the AM circadian phase compared with those in the PM phase. Furthermore,

rhythmically expressed node genes within AM CSCs were preferentially linked to

rhythmically expressed genes as their linked genes, whereas non-rhythmically

expressed node genes in PM CSCs were preferentially linked to non-rhythmically

expressed genes (Fig. 4e). The findings suggest that RNAPII preferentially capture

rhythmically expressed genes in the morning and non-rhythmically expressed genes

in the evening to form spatial clusters.

Static CSCs shared common node genes but had distinctive connecting genes be-

tween the AM and PM datasets. Notably, the common node genes shared approxi-

mately 10% common linked genes and possessed 90% AM- or PM-specific linked

genes (Fig. S8f, g). These results indicate that node gene-centric CSCs may connect

distinct clock components in the interconnected circuits between morning and

evening.

We further examined whether RNAPII-associated time-specific CSCs underlie the

genome architecture facilitating cooperative gene expression. Compared with non-

rhythmically expressed genes, rhythmically expressed genes tended to be enriched in

AM CSCs (including AM-specific and common CSCs) (Fig. 4f, Fig. S8h). Peak phase

analysis revealed that of the 2337 rhythmically expressed genes that peaked at 08:00,

the actual number of genes involved in each AM-specific CSC was 4.87, which was far

more than that for the same number of randomly simulated genes (Fig. 4f). This sug-

gests that phase-related genes tend to form spatial clusters, and such spatial congrega-

tion may contribute to the coordinated expression of rhythmically expressed genes in

the morning. In contrast, non-rhythmically expressed genes were prone to tether to-

gether in PM CSCs (Fig. 4g, Fig. S8i), which was consistent with the evidence men-

tioned above (Fig. 4e). Together, these results suggest that RNAPII is more likely to

tether rhythmically expressed genes in the AM phase and non-rhythmically expressed

genes in the PM phase, linking chromatin architecture to orchestrated gene expression.

The above findings helped establish a 3D genome architecture model linked to tran-

scription control (Fig. 4h). The model describes RNAPII-associated CSCs under diurnal

control and spatial partitioning of the genome organization into CSCs that correlate

with transcription. Specifically, RNAPII preferentially tethered rhythmically expressed

genes in the morning, forming a hub for coordinated rhythmic expression. As the circa-

dian cycle progresses, RNAPII-associated morning spatial clusters disassembled, and

then RNAPII tended to capture non-rhythmically expressed genes together in the even-

ing to orchestrate expression. Overall, RNAPII-associated genome-wide chromatin

folding showed high plasticity during the circadian cycle, and the variable spatial clus-

ters were correlated with transcription outputs.
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Complex dynamic patterns of chromatin interactome maps highlight an AM–PM switch

of RNAPII-associated genome conformation

We further explored the global oscillations of the RNAPII-mediated high-resolution 3D

chromatin organization during the morning and evening. We investigated the inter-

action frequencies of 50 genes upstream and downstream the TSS of node genes (de-

gree ≥ 3), centering the interaction submatrices at the TSS while considering the

transcription directionality. Notably, AM-specific node genes showed strong preferen-

tial clustering around the TSS in the AM datasets (Fig. S9a). Moreover, AM-specific

node gene-associated interaction profiles in the PM datasets showed weak spatial clus-

tering around the TSS (Fig. S9b). In contrast, PM-specific node genes displayed a tem-

porally opposite change, from enhanced interactions around the TSS in PM datasets

(Fig. S9c) to an overall reduction in interaction frequencies in the AM datasets (Fig.

S9d). Together, these results indicate that the RNAPII interaction sites mapped by our

ChIA-PET data dynamically change during the circadian cycle.

We then classified the core node genes (degree ≥ 32) located in the RNAPII-arranged

networks into three groups based on the circadian patterns to explore their phase fea-

tures (Fig. S10a). AM-unique core node genes had a higher amplitude, more concen-

trated phase distribution, and narrower expression breadth compared with that of PM-

unique and overlapping core node genes (Fig. S10b–e), further suggesting that the

RNAPII interaction maps in the AM may have a distinct nuclear landscape from that

of the PM.

The global circadian transcriptome is driven by core circadian genes involved in

autoregulatory loops [13, 39]. To investigate the spatial chromatin interaction net-

work of the core circadian genes, we constructed interaction networks. We found that

the core circadian gene regulatory landscape showed fundamentally different chroma-

tin configurations between the AM and PM, as determined by subtraction of the 08:

00 and 20:00 RNAPII-associated connectivity networks (Additional file 9: Table S8

and Additional file 11: Table S10). We were able to recapitulate the AM-specific in-

teractions between OsLHY and the functionally related OsTOC1, OsPRR73, and

OsELF3 genes as well as the PM-specific disconnection of these loci (Fig. S11a, b).

When network analysis was extended from one to two hops of connectivity, all core

circadian genes were found to be connected within one major network (Fig. 5a, Fig.

S11c). In contrast to the AM-specific connectivity networks, we observed a transition

in the connectivity maps used to assess the loci of the core circadian genes; they ex-

hibited scattered, sporadic sub-networks in the PM (Fig. 5b, Fig. S11d). Further inves-

tigation of the node genes in the core circadian gene-associated network revealed that

the rhythmic node genes tended to show a wider expression breadth and longer gene

length than non-rhythmic node genes (Fig. 5c, Fig. S11e, f). Moreover, the common

node genes among the core circadian clock gene-associated interaction maps showed

higher degrees than those in the AM- or PM-specific connectivity maps (Fig. 5d, e).

Non-rhythmically expressed genes involved in the network showed higher transcrip-

tional abundance than those outside of the network (Fig. 5f). Core circadian clock

gene-associated RNAPII chromatin connectivity maps suggest that they are co-

localized within the same “transcriptional factory” at AM circadian window and are

released from the RNAPII-associated spatial gene clusters in the evening for coordi-

nated transcriptional regulation.
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Fig. 5 Connecting networks converged by core circadian genes. a, b Connectivity network constructed
from two-hop interactions mediated from the core circadian genes at 08:00 (a) and 20:00 (b). The
connectivity network was constructed through two hops of all interactions (light grey lines) mediated from
seven (top; OsLHY, OsTOC1, OsPRR73, OsPRR37, OsGI, OsZTL1, and OsELF3) or three (bottom; OsTOC1, OsPRR73,
and OsZTL1) genes. The colors of the circles represent the node features. Colored lines represent OsLHY-
centric (top; yellow) or OsTOC1-centric (bottom; purple) interactions. The different node sizes represent the
core circadian factor (large) versus the interaction factor (small) nodes. c Properties of the top 52 core node
genes with the highest chromatin connectivity in the core circadian gene-associated chromatin
connectivity maps. d Distribution of rhythmically and non-rhythmically expressed genes that participated in
the core circadian gene-associated chromatin connectivity maps. Gene numbers in each category are given.
e Boxplot showing the degrees of the common and specific chromatin connectivity genes in the networks.
NS, no significant difference. f Boxplot showing the expression levels of non-rhythmically expressed genes
involved or not involved in the core circadian gene-associated chromatin connectivity maps at 08:00 and
20:00. ***p < 0.0001
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Discussion
During the past decade, a marked innovation in chromosome organization analysis has

occurred, as genomic approaches for mapping chromatin interactions are yielding

genome-wide chromatin interaction maps at unprecedented resolution. The circadian

clock provides an ideal system for studying the temporal–spatial correlations among

3D genome organization, transcription, and physiology dynamics, representing the so-

called 4D nucleome network [40]. In mammals, the plasticity in genome-wide chroma-

tin folding during the circadian cycle and its role in oscillating transcription have been

revealed [33, 36]. However, information on highly dynamic long-range chromatin inter-

actions and their roles on transcriptional rhythmicity is lacking in plants. In this study,

we mapped genome-wide chromatin interactions by using long-read ChIA-PET in rice

and uncovered an RNAPII-mediated 3D genome architecture with marked changes at

the genomic level of chromatin interactions, spatial clusters, and chromatin connectiv-

ity maps. Our findings suggest that widespread RNAPII-associated chromatin configur-

ation is altered in a circadian manner and that these variations link chromatin

architecture to coordinated rhythmic outputs. In mouse liver, Hi-C data showed topo-

logically associating domains (TADs) harboring circadian genes that switch assignments

between the transcriptionally active and inactive modules at different hours of the day;

moreover, sub-TADs enriched in circadian genes exhibited extensive remodeling of

enhancer-promoter interactions corresponding to their transcriptional activities, while

their boundaries stably maintain their structure over time [33, 36]. ChIA-PET is known

to be mediated by specific protein factors that tether linear genomic elements to

higher-order chromatin structure, whereas Hi-C allows for probing of physical proxim-

ity between potentially any pair of genomic loci; thus, our ChIA-PET data provide func-

tional specificity and a higher resolution for identifying any RNAPII-associated specific

regulatory elements involved in interactions. We found that RNAPII-mediated chroma-

tin interactions were abundant at the peak of OsLHY expression and then decreased at

the opposite phase when OsLHY expression was low, in line with the previous findings

that circadian gene promoters display a maximal number of chromatin contacts during

their peak transcriptional output [31]. Furthermore, rhythmically expressed genes

within the same peak phases of expression were preferentially tethered by RNAPII for

coordinated transcription. Similar results were obtained using the mouse liver

promoter-capture Hi-C dataset, where circadian genes, as well as contacted and tran-

scribed regulatory elements, were found to reach maximal expression at the same time

points [36]. Taken together, these findings suggest that the mechanism of chromatin

conformation impacting rhythmic gene expression is conserved, at least in part, among

mammals and plants.

Our comprehensive analysis also showed that RNAPII-interacting rhythmically

expressed anchor genes were almost ubiquitously expressed genes, whereas tissue-

specific genes were less likely to be rhythmically expressed; this is consistent with the

observations drawn from the diurnal transcriptome atlas of a primate across tissues

[41]. These results also support the notion that a primordial circadian system, as found

in unicellular organisms, tunes the rhythmic expression of the majority of the genome

to orchestrate the daily rhythms of essential biochemical and cellular processes. With

the evolution of metazoans and tissue specialization, the basic set of genes necessary

for cellular function was rhythmically expressed in all tissues and the circadian clock
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continued to oscillate in a similar phase [41]; however, non-rhythmically expressed

genes were recruited for tissue-specific expression. During eukaryote evolution, a

higher-order chromosomal organization emerged in the nuclei, providing a regulatory

layer underlying circadian transcription. This would imply that the higher-order

chromosomal organization for rhythmic transcription regulation is an ancient regula-

tory mechanism from the last eukaryote common ancestor.

In this study, we demonstrated that RNAPII (detected by antibodies with hypopho-

sphorylated C-terminal domain) is recruited into the pre-initiation complex in a rhyth-

mic manner, which is consistent with previous results showing that RNAPII

recruitment is highly circadian in the mouse liver [11, 42]. It is worth noting that

RNAPII-Ser5P occupancy is also circadian in mammals, indicating that both recruit-

ment and initiation of RNAPII are under circadian control [11]. However, whether

RNAPII-Ser5P, as well as RNAPII-Ser2P occupancy, is rhythmic in rice is unclear and

remains to be verified. Given that rhythmic RNAPII recruitment preceded mRNA accu-

mulation by approximately 2 h, other transcriptional and post-transcriptional mecha-

nisms, such as circadian TF binding, chromatin remodeling, and post-transcriptional

regulatory events may also contribute significantly to the generation of rhythmic

mRNA in rice. It will be of interest to explore the role of circadian TFs and chromatin

states in circadian regulation, where TF binding and histone deposition coupled with

RNAPII occupancy to determine the ultimate genome-wide transcriptional outputs.

Overall, the results of this study illustrate the complexity and dynamics of chromatin

structures during the circadian cycle; however, we only explored the RNAPII-mediated

chromatin interacting complexes. Future studies will be needed to uncover the hier-

archical organization of all clock regulators to determine the circadian chromatin archi-

tecture and decipher the molecular mechanisms implicated in the organization of the

circadian interactome. Finally, we expect that the recapitulation of a structure-based

framework with a greater diversity of time intervals and integrative analyses will be

valuable in elucidating the mechanisms driving circadian genome organization, which

will help determine the extent to which such remodeling contributes to circadian tran-

scriptional regulation.

Conclusions
In the present study, we mapped the 4D genome architecture of rice by employing im-

proved ChIA-PET, a robust high-resolution 3D genome-mapping technology. Our re-

sults show that genome-wide rhythmic RNAPII occupancy is dynamically associated

with diurnal RNAPII-mediated 3D genome architecture with marked changes at the

genomic levels of chromatin interactions, spatial clusters, and chromatin connectivity

maps throughout the day, and these variations link chromatin architecture to coordin-

ate rhythmic outputs.

Methods
Plant materials and growth conditions

Rice Xian/indica cv. Minghui 63 (MH63) seeds were sown on May 19, 2017, in a paddy

field. At 20 days after germination, the seedlings were transplanted into a paddy field of

Huazhong Agricultural University at Wuhan, China, and grown under normal
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agricultural conditions. In the paddy field, the plants were transplanted at a density of

one plant per 15 × 30 cm area. From July 7 to July 9, 2017 (natural long day condi-

tions), 12 independent samples were collected (six time points at 4-h intervals per day

for two successive days) and categorized into the following three groups: (1) samples

for RNA isolation, which were immediately frozen in liquid nitrogen and stored at −

80 °C until use; (2) samples for chromatin immunoprecipitation followed by sequencing

(ChIP-seq) and formaldehyde-assisted isolation of regulatory elements followed by se-

quencing (FAIRE-seq), which were cross-linked with 1% formaldehyde and stored at −

80 °C; and (3) samples for long-read chromatin interaction analysis by paired-end tag

sequencing (ChIA-PET), which were double cross-linked with 1% formaldehyde and

ethylene glycol bis [succinimidyl succinate] (EGS), and stored at − 80 °C. To avoid the

effect of sampling (wounding response, etc.), individual plants were used only once for

sampling.

Whole transcriptome sequencing (RNA-seq) libraries preparation

RNA was isolated from the leaves using the RNeasy Plant Mini Kit (QIAGEN, 74904)

according to the manufacturer’s instructions. 1.5 μg of total RNA was depleted of ribo-

somal RNAs using TruSeq Stranded Total RNA with Ribo-Zero Plant (Illumina, RS-

122-2401) for RNA-seq according to the manufacturer’s instructions. RNA sequencing

was performed on an Illumina HiSeq X Ten system (paired-end 150 bp reads).

ChIP-seq libraries preparation

ChIP-seq was performed as previously described [43], with minor modifications. Rice

mature leaves were cross-linked with 1% formaldehyde for 20 min and quenched with

0.2M glycine at room temperature. Approximately, 0.5-g samples were used for each

ChIP-Seq assay. Samples were ground into fine powder in liquid nitrogen and then

lysed in 750 μl of Buffer S for 10 min at 4 °C. Then, the homogenate was added to 2.25

ml of Buffer F, mixed, and the chromatin was fragmented into 200–600 bp by sonic-

ation using a Bioruptor (Diagenode). Lysates were centrifuged at 20,000g for 10 min at

4 °C, and the supernatant was transferred to a new tube for ChIP. For the subsequent

analysis, 20 μl of supernatant was used as an input sample. ChIP was performed using

RNAPII antibody [43, 44] (BioLegend, 920102, unphosphorylated state of its large sub-

unit C-terminal domain), which primarily recognized the pre-initiation complexes of

RNAPII. First, 50 μl of Dynabeads® protein G beads (Life Technologies, 10003D) was

washed with 300 μl of PBST buffer twice then resuspended in 200 μl of PBST buffer.

Antibody (10 μl) was added to the beads and incubated for 6 h at 4 °C on a rotator. The

antibody-bead complexes were washed with PBST twice and incubated with chromatin

supernatant for 8 h or overnight on a rotator at 4 °C to immunoprecipitate the target

chromatin. The immunoprecipitated chromatin was washed orderly with low-salt ChIP

buffer, high-salt ChIP buffer, ChIP wash buffer, and TE buffer. One hundred microli-

ters of freshly prepared ChIP Elution buffer was added to elute the protein-DNA com-

plexes from beads, with agitation at 900 rpm for15 min at 65 °C. The eluate was then

transferred to a new tube. Then, 5 μl of proteinase K was added to the eluate and incu-

bated for 6 h at 55 °C to reverse-cross-linking the protein–DNA complexes. ChIP DNA

was extracted by using phenol:chloroform:isoamyl alcohol (Sigma–Aldrich, P3803),
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precipitated with pre-cooled ethanol, and resuspended in TE buffer. ChIP DNA librar-

ies were prepared using a NEBNext® Ultra™ II DNA Library Prep Kit for Illumina® (New

England BioLabs, E7645). Finally, the DNA fragments were sequenced using an Illu-

mina HiSeq X Ten system (paired-end 150 bp reads).

FAIRE-seq libraries preparation

Nucleosome-depleted region mapping was performed using the FAIRE-seq method,

with minor adaptations for rice [45, 46]. Approximately 0.5 g of mature rice leaves with

cross-linked was used for each assay. Nuclei/chromatin isolation was performed as

mentioned above. The final pellet was resuspended in 400 μl of sonic-FAIRE buffer (10

mM Tris-HCl, pH 8.0, 100mM NaCl, 1 mM EDTA, 0.5% SDS, and protease inhibitor

cocktail) and sheared to DNA fragments of 200–400 bp length by sonication in a Bior-

uptor (Diagenode). Lysates were centrifuged at 20,000g for 10 min at 4 °C, and the

supernatant was transferred to a new tube. To prepare DNA that can be directly used

for the identification of nucleosome-depleted regions, 1 volume of phenol:chloroform:

isoamyl alcohol was added to the supernatant, vortex-mixed, and centrifuged at 20,000g

for 10 min, and the supernatant was transferred to a new tube. These steps were re-

peated at least twice to remove nucleosome-coated DNA. After pre-cooled ethanol pre-

cipitation, DNA was resuspended in TE buffer. Subsequently, generated DNA

fragments of 200–400 bp were generated using AMPure XP beads. FAIRE DNA library

preparation and sequencing were performed as described above for ChIP-Seq.

Long-read ChIA-PET library preparation

RNAPII-mediated ChIA-PET libraries were constructed according to the long-read

ChIA-PET protocol with slight modifications [28, 44, 47]. In brief, mature rice leaves

were cross-linked with 1% formaldehyde for 20 min. Next, EGS was added to a final

concentration of 1.5 mM in PBS buffer and incubated for another 40 min at room

temperature, after which glycine was added to a final concentration of 0.2M to stop

the cross-linking reaction. The samples were rinsed with ddH2O three times and stored

at − 80 °C until further use. The sample (5 g) was ground into a fine powder in liquid

nitrogen and resuspended in 100 ml of EB1 buffer. The homogenate was then filtered

through Miracloth, and the filtrate was centrifuged at 1,800×g for 10 min at 4 °C. The

pellet was washed three times in 5 ml of EB2 buffer and centrifuged at 2000×g for 10

min at 4 °C. Next, the pellet was washed in 2 ml of EB3 buffer and centrifuged at

2000×g for 1 h at 4 °C. The final pellet was resuspended in 1 ml of NLB buffer, and the

chromatin solution was sonicated to achieve an average DNA size of 1–3 kb. After cen-

trifugation at 2000×g for 10 min at 4 °C, the supernatant was transferred to a new tube

for ChIP. The RNAPII antibody (80 μg; BioLegend; 920102) was mixed with 800 μl of

suspended protein G magnetic beads and incubated at 4 °C for 8 h with rotation to coat

the magnetic beads. All chromatin was extracted with antibody-loaded beads in a new

tube and incubated at 4 °C overnight with rotation. The wash and library preparation

steps were performed according to our previously published step-by-step long-read

ChIA-PET library preparation protocol. The resulting library DNA products were then

subjected to size selection and paired-end sequencing (2 × 150 bp) using the Illumina

HiSeq X Ten system.
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RNA-seq data processing

The quality of raw data was controlled using FastQC, and the adapter sequences and

low-quality reads were filtered out using Trimmomatic [48]. These strand-specific clean

reads were mapped to the reference genome of MH63 using TopHat2 [49]. The expres-

sion level of each gene was quantified using HTSeq [50]. Normalization was performed

using DESeq [51] according to the sequencing depth and then the formula Ei/M − 1

(Ei is the normalized counts of each time point, and M is the mean values of all time

points) for row normalization. The final normalized values were used for the detection

of rhythmic genes. A gene was defined as being expressed if the sum of count values of

all time points was higher than a given value. The Cufflinks software was used to calcu-

late the fragments per kilobase per million (FPKM).

ChIP-seq data processing

After clipping adapters and trimming low-quality reads with Trimmomatic, the clean

sequenced reads were aligned to the rice reference genome of MH63 using Burrows–

Wheeler Aligner (BWA) with default parameters [52]. Samtools was used to remove

potential PCR duplicates [53]. The reads with mapping quality > 30 were maintained.

Only one uniquely aligning read per genomic position was retained for further analysis.

RNAPII-occupied peaks were called using MACS2 [54] for each sample using input

sample as a control. MACS2 was run with the default settings for RNAPII data calling

the narrow-peak. For each identified protein-binding site, MACS2 uses the control data

to calculate the p value, which is adjusted for multiple testing by a Benjamini–Hoch-

berg correction. To further control the quality of each ChIP-seq dataset, the RSC was

set to > 0.8 and the NSC was set to > 1.05, and FRiP was used to assess the peak quality

[55]. To construct a union peak list from the six time points, bam files of two biological

replicates after aligning were merged together using the command merge in samtools

for peak calling, and these peaks from all time points were merged using bedtools mer-

geBed [56], and the regions of merged peaks were counted and normalized using the

same method as RNA-seq processing. The final normalized values were used to predict

rhythmic peaks.

FAIRE-seq data processing

The process of FAIRE-seq data was similar to that of ChIP-seq data, except for the

peak-calling settings using MACS2. For the FAIRE-seq data at each time point, MACS2

was run with “--nomodel --shift -100 --extsize 200” parameters.

ChIA-PET data processing

The raw ChIA-PET data were processed using the modified ChIA-PET protocol [57],

which is a software package for the automatic processing of ChIA-PET sequence data,

including linker filtering, mapping tags to reference genomes, and identifying protein-

binding sites and chromatin interactions. First, the linker filtering was carried out for

the PET sequence reads. Next, the PET sequences were mapped to the MH63 rice ref-

erence genome using BWA with up to two mismatches allowed [52]. The mapped PETs

were then used for further classification as self-ligation, inter-ligation, and other PETs.

Inter-ligation PETs are those containing inter-chromosomal PETs defined as the head
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and tail of the PETs mapped onto different chromosomes, and intrachromosomal PETs

are defined as the head and tail of the PETs mapped onto the same chromosome with

a genomic distance of > 8 kb. In addition, we used the respective ChIP-seq peaks ± 10%

regions as the given anchors to call clusters and identify specific chromatin interac-

tions. To obtain more reliable results, only interactions with an FDR < 0.05 and PET

count ≥ 5, determined by the sequencing depth, were considered for further analyses.

Time-series data analysis for circadian cycling

After removing low signal values, normalized values across all time points of the RNA-

seq, ChIP-seq, and FAIRE-seq data were analyzed to obtain the cycling time series

using two programs: Bio_Cycle, which is based on deep-learning methods [37], and

MetaCycle, which contains three algorithms, LS, ARSER, and JTK [58]. For Bio_Cycle,

the period was set between 20 and 28 h [37]. Two independent days of sample collec-

tion were treated as biological replicates when statistically analyzing according to a

guideline paper suggestion [59]. This experimental design can be advantageous when

the focus of the study is rhythmicity under natural conditions, rather than isolated out-

puts of the circadian clock [59]. The parameters that describe the oscillations of signals

and AMP from Bio_Cycle were used for further analysis, and the phase was estimated

in MetaCycle. A rhythmic gene or peak was considered when the Bio_Cycle q value

was < 0.05 after Benjamini–Hochberg correction, which is a commonly applied statis-

tical threshold.

Relationship between rhythmic RNAPII occupancy and gene expression

To analyze the correlation of rhythmic RNAPII occupancy and gene expression across

all time points, we calculated the PCC between the rhythmic RNAPII peak signal and

the corresponding rhythmic gene expression level. The average gene phase relative to

the RNAPII occupancy phase was computed using the datasets which the phases of

rhythmically expressed genes lag the phases of corresponding rhythmic RNAPII

occupancy.

Analysis of coexpression and phase difference of gene pairs

A gene was modified by RNAPII if the peak summit coordinates were within the gene

body and + 500 bp regions. If a peak summit was in the region of two or more genes,

we selected the gene with the highest FPKM value. The unique RNAPII-mediated

interacting gene pairs were determined based on peak interactions.

The PCC was calculated for each gene pair based on the FPKM values across all time

points, and the phase difference was calculated for each rhythmic gene pair. As con-

trols, we randomly selected the same number of gene pairs with a similar distance dis-

tribution from all anchor and basal genes.

We downloaded the RNA-seq data of 20 rice tissues from GEO datasets and mapped

the raw data to the reference genome of MH63 using hisat2 with “--dta-cufflinks” pa-

rameters [60]. The FPKM values were calculated using the Cufflinks software. Genes

with FPKM > 1 were regarded as expressed genes. The number of tissues in which a

gene was expressed was used to define the expression breadth.
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Analysis of chromatin spatial clusters (CSCs)

CSCs at 08:00 (AM) and 20:00 (PM) were classified into three types (static, AM-

specific, and PM-specific) based on the degree ratio of AM and PM node genes. CSCs

containing overlapping node genes with an AM:PM ratio > 3 and AM-specific node

genes were defined as AM-specific CSCs, whereas CSCs containing overlapping node

genes with a PM:AM ratio > 3 and PM-specific node genes were defined as PM-

specific CSCs. The remaining CSCs with node genes with a degree fold-change ≤ 3

were defined as static CSCs. The PCC and the phase difference were calculated for all

gene pairs in each CSC, and we randomly selected the same number of rewired gene

pairs from anchor genes in the AM and PM as a control.

We computed the mean gene number of genes whose phase was around 08:00 and

20:00 with a high amplitude for each hub and randomly selected the same gene number

from rhythmic and non-rhythmic sets as controls. All random procedures were re-

peated 1000 times.

Construction of contact maps

We obtained the contact matrix using the bedpe2Matrix program of the ChIA-PET2

software [61] at 100 kb, 50 kb, and 10 kb resolutions with “--all --matrix-format

complete” parameters from the ChIA-PET unique mapping reads, and the matrix was

normalized by iterative correction and eigenvector decomposition using HiC-Pro [62].

Motif mining

The FAIRE-seq peaks were merged across the six time points to construct a master

peak list. Genes associated with time-specific chromatin loop were divided into differ-

ent clusters (RR, RG–RG; RN/NR, RG–NG, or NG–RG; NN, NG–NG). To identify the

phase-specific motif enriched in each cluster, the FAIRE-seq-merged peaks that over-

lapped with the promoters of rhythmic genes within a 2 kb window (+ 1 kb to − 1 kb

relative to the annotated TSS) from each gene cluster were used for motif enrichment

analysis using HOMER [63]. The remaining merged peaks that overlapped with non-

rhythmic genes were used as the background. Only motifs that could be mapped to

plants were included, and redundant motifs were removed.

KEGG pathway analysis

The GATE-WAY (http://rice.hzau.edu.cn/rice/) was used for KEGG pathway enrich-

ment analysis. The p value of a particular KEGG pathway item was calculated using

Pearson’s chi-squared test and FDR correction, with an FDR cutoff of 0.05 as the sig-

nificance threshold; the lower the p value, the more relevant the pathway.

Correlation analysis of biological replicates

The rice genome was divided into 1-kb bins, and normalized values in each bin were

calculated using deepTools software [64]. A scatter plot was generated based on the

PCC between biological replicates, and a heatmap was plotted using the normalized

values for each RNA-seq, ChIP-seq, and FAIRE-seq sample replicate.
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Data visualization

RNA-seq and ChIP-seq bigWig files were generated using the deeptools bamCoverage

[64] function with the RPKM (reads per kilobase of transcript per million mapped

reads) normalization; these files were then used for data visualization by IGV [65].

Construction of RNAPII mediated gene networks

The interactome networks were constructed through one hop or two hops of all gene

interactions originating from either seven or three core circadian genes at 08:00 and 20:

00. For the connectivity networks of two hops, we merged the anchor genes of the in-

teractome networks at the two points to produce a list of non-overlapping nodes. These

were used to build the new networks. Nodes were connected on the basis of the inter-

actions present in the ChIA-PET libraries respectively at the two points and visualized

using Gephi [66]. Embedded meta-information was used for color coding.

Statistical analysis

For comparison of multiple groups, statistical significance was calculated by the Krus-

kal–Wallis test. For comparison of two groups, we performed the Wilcoxon test; a p

value of < 0.05 was considered statistically significant; NS indicates not statistically sig-

nificant. Statistical parameters, including statistical analysis and statistical significance,

are reported in the figure legends.
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