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Abstract

Advances in multi-omics have led to an explosion of multimodal datasets to address
questions from basic biology to translation. While these data provide novel
opportunities for discovery, they also pose management and analysis challenges,
thus motivating the development of tailored computational solutions. Here, we
present a data standard and an analysis framework for multi-omics, MUON, designed
to organise, analyse, visualise, and exchange multimodal data. MUON stores
multimodal data in an efficient yet flexible and interoperable data structure. MUON
enables a versatile range of analyses, from data preprocessing to flexible multi-omics
alignment.

Background
Multi-omics designs, that is the simultaneous profiling of multiple omics or other mo-

dalities for the same sample or cells, have recently gained traction across different bio-

logical domains. Multi-omics approaches have been applied to enable new insights in

basic biology and translational research [1, 2].

On the one hand, the emerging multi-omics datasets result in novel opportun-

ities for advanced analysis and biological discovery [3]. Critically, however, multi-

omics experiments and assays pose considerable computational challenges, both

concerning the management and processing as well as the integration of such data

[4, 5]. Major challenges include efficient storage, indexing and seamless access of

high-volume datasets from disk, the ability to keep track and link biological and

technical metadata, and dealing with the dependencies between omics layers or in-

dividual features. Additionally, multi-omics datasets need to be converted into spe-

cific file formats to satisfy input requirements for different analysis and

visualisation tools.

While specialised frameworks for the analysis of different omics data types have

been proposed, including for bulk and single-cell RNA-seq [6–9] or epigenetic

variation data [10–13], there is a lack of comprehensive solutions that specifically

address multi-omics designs. Additionally, there currently exists no open exchange

format for sharing multi-omics datasets that is accessible from different
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programming languages. The currently existing solutions for multi-omics data (Seu-

rat [8], MultiAssayExperiment [14]) are confined to the R programming language

ecosystem, and typically require loading the full dataset, a limitation that prohibits

dealing with larger datasets and can only be partially mitigated by using additional

third-party software [15, 16].

To address this, we here present MUON (multimodal omics analysis), an analysis

framework that is designed from the ground-up to organise, analyse, visualise, and ex-

change multimodal data. MUON is implemented in Python and comes with an exten-

sive toolbox to flexibly construct, manipulate and analyse multi-omics datasets. At the

core of the framework is MuData, an open data structure standard, which is compatible

with and extends previous data formats for single omics [9, 17]. MuData files can be

seamlessly accessed from different programming languages, including Python [18], R

[19], and Julia [20]. We illustrate MUON in the context of different vignettes of its ap-

plication with a major focus on single-cell data, including analysis of combined gene

expression and chromatin accessibility assays as well as gene expression and epitope

profiling.

Results
MuData: a cross-platform multimodal omics data container

At the core of MUON is MuData (multimodal data)—an open data structure for

multimodal datasets. MuData handles multimodal datasets as containers of uni-

modal data. This hierarchical data model generalises existing matrix-based data for-

mats for single omics, whereby data from each individual omics layer are stored as

an AnnData [17] object (Fig. 1a, c). MuData also provides a coherent structure for

storing associated metadata and other side information, both at the level of sam-

ples (e.g. cells or individuals) and features (e.g. genes or genomics locations).

Fig. 1 Architecture and content of a multimodal data container (MuData). a Schematic representation of
the hierarchical structure of a MuData container. Raw data matrices from multiple modalities together with
associated metadata are encapsulated in an array structure. For illustration, blue and red denote RNA-seq
and ATAC-seq data modalities; green denotes multimodal annotation or derived data. b Example content
of the structure in a. Shown are example content of a MuData container, consisting of count matrices,
embeddings, neighbourhood graphs and cell annotations for individual modalities (blue, red), as well as
derived data from multi-omics analyses (green). c Schematic representation of MUON storage model and its
serialisation scheme using the HDF5 file format on disk. Left: Hierarchy of the storage model, with plates
denoting different levels of hierarchy. Arrows signify access schemes of the HDF5 file using various
programming languages. Right: Representation of the MuData object in Python, with metadata and derived
annotations represented as NumPy arrays or Pandas DataFrames, and with individual modalities as
AnnData objects
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Metadata tables can either be specific to a single stored data modality, or they can

represent joint sample annotations that apply to all modalities stored in a MuData

container. In a similar manner, MuData containers can be used to store derived

data and analysis outputs, such as cluster labels or an inferred sample embedding

(Fig. 1b).

MuData objects are serialised to HDF5 [21] files by default—the industry stand-

ard for storing hierarchical data. Individual omics layers are serialised using the

existing AnnData serialisation format, thus permitting direct access to single omics

using existing toolchains that build on this data standard (Fig. 1c). Basic access to

MuData files is possible from all major programming environments that support

access to HDF5 array objects. Additionally, MUON comes with dedicated libraries

to create, read and write MuData files from Python, R, and Julia. These tools facili-

tate the exchange of multi-omics data across platforms and ensure consistent file

format definitions.

MUON: a framework for multimodal omics data

The MUON framework allows for managing, processing, and visualising multi-omics

data using the MuData containers. Existing workflows developed for single-omics can

be reused and applied to the contents of a multi-omics container. For example, individ-

ual modalities of the simultaneous gene expression and chromatin accessibility profiling

[22] can be processed using existing RNA [23] and ATAC [24] workflows. In this man-

ner, canonical processing steps, including quality control, sample filtering, data normal-

isation and the selection of features for analysis can be transferred from single-omics

analysis (Fig. 2a).

The integration of multiple modalities within a MuData container facilitates the

definition of multi-omics analysis workflows, allowing to flexibly combine alterna-

tive processing steps (from left to right in Fig. 2b). For example, single-omics di-

mensionality reduction methods such as principal component analysis or factor

analysis [25–28] can be used to separately process RNA-seq and ATAC-seq count

matrices. Additionally, MUON comes with interfaces to multi-omics analysis

methods that jointly process multiple modalities, including multi-omics factor ana-

lysis [29, 30] (MOFA) to obtain lower-dimensional representations, and weighted

nearest neighbours [31] (WNN) to calculate multimodal neighbours. Once the re-

sults from either dimensionality reduction strategy are stored in a MUON con-

tainer, they can be used as input for defining cell neighbour graphs. This graph

can be either estimated from individual omics modalities, from a multi-omics rep-

resentation (e.g. as obtained from MOFA), or by fusing two single-omics neighbour

representations (e.g. using methods such as similarity network fusion, SNF [32], or

WNN [31]).

Finally, the latent or neighbourhood representations can serve as a starting point for

downstream analysis and interpretation. For example, uniform manifold approximation

and projection (UMAP) [33] can be directly applied to cell neighbourhood graphs to

generate nonlinear embeddings of cells. Similarly, the alternative cell neighbourhood

graphs can be used as input for identifying connected components and thereby putative

cell types (e.g. using multiplex community detection techniques [34]).
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Fig. 2 Example multi-omics analysis workflows implemented using MUON. a Construction and processing
of individual modalities of a multi-omics scRNA-seq and scATAC-seq dataset. Processing steps for individual
omics from left to right. Rectangles denote count matrices following each processing step, which are
stored in a shared MUON data container. MUON provides processing functionalities for a wide range of
single-omics, including RNA-seq, ATAC-seq, CITE-seq. Existing workflows and methods can be utilised,
including those implemented in scanpy. Respective analysis steps are described below each step. b
Alternative workflows for integrating multiple omics for latent space inference and clustering. MUON
enables combining alternative analysis steps to define tailored multi-omics data integrations. Shown are
canonical workflows from left to right: dimensionality reduction, definition of cell neighbourhood graphs,
followed by either nonlinear estimation of cell embeddings or clustering. Letters W and Z denote matrices
with feature weights (loadings) and factors (components), respectively. Triangles represent cell-cell distance
matrices, with shading corresponding to cell similarity. Green colour signifies steps that combine
information from multiple modalities; steps based on individual modalities only are marked with blue (RNA)
or red (ATAC) respectively. The outputs of the respective workflows (right) are from top to bottom: UMAP
space (i) and cell labels (ii) based on RNA or alternatively based on ATAC modality (iii, iv), cell labels based
on two cell neighbour graphs from individual modalities (v), UMAP space and cell labels based on WNN
output (vi, vii), UMAP space and cell labels based on MOFA output (viii, ix)
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The flexibility to choose and control individual processing steps in MUON makes it

possible to compose tailored workflows for a particular dataset.

Application of MUON to single-cell multi-omics data

To illustrate MUON, we considered data from simultaneous scRNA-seq and scATAC-

seq profiling of peripheral blood mononuclear cells (PBMCs), which were generated

using the Chromium Single Cell Multiome ATAC + Gene Expression protocol by 10x

Genomics [22]. Features in the RNA modality correspond to the expression level of

genes, whereas the ATAC modality encodes accessible genomic loci as peaks. MUON

supports the application of alternative dimensionality reduction strategies (Fig. 2). For

example, multi-omics factors analysis [30]—an approach for integrating different omics

modalities based on matrix factorization—yields a lower dimensional representation, in-

cluding factors that capture variation of individual omics or shared variability (Add-

itional file 1: Fig S1a), which in turn can be interpreted on the level of individual

features (Fig. 3a, Additional file 1:Fig S1b). Here, the factors that explain the largest

fraction of variance in PBMCs capture canonical biological differences, such as the

myeloid—lymphoid axis and cytotoxicity (Fig. 3a, left). These factors capture both vari-

ation in mRNA abundance and chromatin accessibility, e.g. as CD3E expression and

BCL11B promoter accessibility, which are characteristic for T cells [35, 36] (Fig. 3a,

right).

A two-dimensional latent space recapitulating the structure of the data is commonly

used for visualising cell type composition, cell-level covariates, or feature counts. For

this, it is important that MUON allows to generate, store, and operate with multiple

different embeddings constructed for individual modalities (Fig. 3b, left) or jointly for

both modalities based, for instance, on the MOFA factors or the WNN graph (Fig. 3b,

right). Such visualisations can be generated from MuData objects without loading all

the data into memory.

As a second example, we considered CITE-seq [37] data, which comprise gene ex-

pression and epitope abundance information in the same cells. To process the latter,

specialised normalisation strategies for denoising and scaling [38] are available. Nor-

malised protein counts can then be used to define cell types, akin to gating in flow cy-

tometry [39] (Fig. 3c). Once the count matrices are processed, these can be integrated

using alternative multimodal options (Fig. 2). For instance, using both modalities for

cell-type annotation as well as for dimensionality reduction allows to attribute the dis-

tinction between naïve and memory T cells to the abundance of CD45 isoforms RA

and RO at the protein level (Fig. 3d).

Discussion
Multimodal omics designs are increasingly accessible, allowing for characterising and

integrating different dimensions of cellular variation, including gene expression, DNA

methylation, chromatin accessibility, and protein abundance [3, 40, 41]. MUON directly

addresses the computational needs posed by such multi-omics designs, including data

processing, analysis, interpretation, and sharing (Fig. 1). Designed for the Python eco-

system, MUON operates on MuData objects that build on community standards for
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Fig. 3 (See legend on next page.)
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single-omics analysis [9]. Serialisation to HDF5 makes MuData objects accessible to

other programming languages, including R and Julia.

MUON is designed in a modular fashion, which means that existing methods

and tools for processing individual omics can be reused to design more complex

analysis workflows (Figs. 2 and 3). At the same time, the software facilitates com-

bining single-omics analysis methods with a growing spectrum of multi-omics inte-

gration strategies [42, 43] to define novel multi-omics workflows.

Looking ahead, MUON will be a robust platform to build upon and support fu-

ture developments. On the one hand, handling novel assays for multi-omics that

are emerging can be integrated. For example, mRNA and proteins can be assayed

together not only with CITE-seq [37] but also with QuRIE-seq [44] or INs-seq

[45]. Other examples include explicit support for genomic-coordinate based assays

[46] or assays with spatial coordinates [47]. Moreover, trimodal assays such as

scNMT-seq [48] or TEA-seq [49] allow to generate data beyond just two modal-

ities and can be handled with MUON, which is designed to manage an arbitrary

number of modalities. On the other hand, the complexity of experimental designs

is rapidly increasing [50, 51]. Already, MUON can take additional covariates into

account during multimodal integration, for example, to perform temporally aware

factor analysis [52]. Future development of MUON will include incorporating add-

itional relationships in MuData, for example, to explicitly model the dependencies

between feature sets across omics, or to account for dependencies between mul-

tiple sets of multi-omics experiments.

Conclusions
With MuData proposing a standardised and language-agnostic approach to manage,

store, and share multimodal omics data, it is now possible to build methods and tools

that can be applied to an increasingly large number of multi-omics datasets. As a multi-

modal framework, MUON addresses the need for multi-omics analysis workflows that

are well integrated into the existing Python ecosystem, in particular with tools for

omics analysis such as Scanpy [9]. At the same time, MuData facilitates the compatibil-

ity and data exchange with R and Julia.

(See figure on previous page.)
Fig. 3 Single-cell multi-omics datasets processed and visualised using MUON. a MOFA factors estimated
from simultaneous scRNA-seq and scATAC-seq profiling of PBMCs, with cells coloured by either left: coarse-
grained cell type; or right: gene expression (in blue) and peak accessibility (in red). Displayed genes and
peaks are selected to represent cell-type-specific variability along factor axes. b UMAP latent space for the
same dataset as in a, constructed from left: principal components for individual modalities; or right: MOFA
factors and WNN cell neighbourhood graph. Cells are coloured by coarse-grained cell type. c. Examples of
individual feature values of protein abundance in the CITE-seq profiling of PBMCs after applying dsb
normalisation. Colours correspond to the relative local density of cells with red for high density and blue for
low density. d UMAP latent space for the same dataset as in c, constructed from MOFA factors (top) or
WNN cell neighbourhood graph (bottom). Cells are coloured by their coarse-grained cell type or feature
values (blue for gene expression, yellow for protein abundance
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Methods
Implementation of MuData

The reference MuData implementation is written in the Python programming language

and builds on AnnData [17]. A MuData object can be cast as a collection of single-

omics modalities, each of which is represented as an AnnData object. Additionally, the

MuData object provides basic selector operations, including access to individual modal-

ities, subsetting of samples and/or features. When subsetting samples, these are selected

in each modality as well as in multimodal annotations; features from different modal-

ities can be used to obtain a MuData object with desired features. As with AnnData,

unstructured data can be stored in a MuData object, which can be used for recording

assay-specific information. Feature relations across modalities can be stored in the

MuData object as a sparse multimodal graph.

MuData objects are serialised to .h5mu files, which are based on HDF5—industry

standard for hierarchical storage of numerical data supported by many programming

languages [21]. Individual modalities are stored in the file hierarchy in a way compliant

with AnnData serialisation, enabling access to individual modalities from disk. Disk

backing is implemented for MuData objects so that MuData files can be read without

loading count matrices of individual modalities.

Cross-language capabilities of MuData files are demonstrated with Julia and R librar-

ies. Julia library implements native AnnData and MuData objects whereas R libraries

create MultiAssayExperiment [14] or Seurat [8] objects with information from MuData

files. As .h5ad and .h5mu are not the native formats for R frameworks, standards are

still to be developed for how to serialise auxiliary information stored in the R object—

and, conversely, deserialize this information back from the files.

Implementation of MUON

MUON has been implemented in the Python programming language and builds on a

number of existing numerical and scientific open-source libraries, in particular, NumPy

[53], Scipy [54], Sklearn [55], Pandas [56], h5py [57], AnnData [17], and Scanpy [9] for

omics data handling, MOFA+ [30] for multimodal data integration and matplotlib [58]

and seaborn [59] for data visualisation. The weighted nearest neighbours (WNN)

method has been implemented following [31] describing the original method and [49]

describing its generalisation to an arbitrary number of modalities.

Comparison of MuData with alternative data formats

MuData and MUON take inspiration and build on concepts from AnnData [17] and

Scanpy [9]. In fact, the software incorporates ideas and extends it in a modular fashion,

similar to the existing practice in the Bioconductor community [60].

MuData AnnData [9,
17]

Seurat
[8]

MultiAssay
Experiment [14]

Main programming environment Python Python R R

Objects can contain data out of memory
(on disk)

Yes Yes No† Yes‡

Native serialisation accessible from multiple
languages

Yes (.h5mu) Yes (.h5ad) No
(.rds)††

No (.rds)‡‡

Native support for I/O operations Python, Julia, Python R R
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Comparison of MuData with alternative data formats (Continued)

MuData AnnData [9,
17]

Seurat
[8]

MultiAssay
Experiment [14]

R*

Support for multiple modalities Yes No Yes Yes

Support for data missing in some modalities Yes NA No Yes

Support for multimodal embeddings Yes NA No No

*Deserialized to MAE or Seurat objects
†With SeuratDisk library, in-memory Seurat objects can be constructed from parts of the data stored in HDF5 files
‡Only possible with HDF5Array library for matrices stored in external HDF5 files
††With SeuratDisk library, in-memory Seurat objects can be exported to HDF5 files
‡‡Only matrices stored in external HDF5 files, exported with HDF5Array library, can be accessed

Processing gene expression and chromatin accessibility data

Single-cell multiome ATAC + gene expression demonstration data for peripheral blood

mononuclear cells (PBMCs) from a healthy donor with granulocytes removed through

cell sorting processed with ARC 1.0.0 pipeline were provided by 10X Genomics

(https://support.10xgenomics.com/single-cell-multiome-atac-gex/datasets). Log-

normalisation was used for both gene and peak counts, and respective values for highly

variable features scaled and centred to zero mean and unit variance were then used as

input to discussed algorithms such as PCA, as implemented in scikit-learn [55] and

scanpy [9], or MOFA+ [30]. Differentially expressed genes and differentially accessible

peaks were identified with respective functionality in scanpy and were used to compile

gene lists for cell type identification.

The respective vignettes are available at https://muon-tutorials.readthedocs.io/en/

latest/single-cell-rna-atac.

Processing CITE-seq data

CITE-seq data for PBMCs from a healthy donor were provided by 10X Genomics

(https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.2/5k_pbmc_

protein_v3). Log-normalisation was used for gene counts, and dsb [38] was used to

denoise and scale protein counts. Respective values for highly variable features scaled

and centred to zero mean and unit variance were then used as input to discussed algo-

rithms. The respective vignettes are available at https://muon-tutorials.readthedocs.io/

en/latest/cite-seq.
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