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Abstract

Microbiome samples with low microbial biomass or severe DNA degradation remain
challenging for amplicon-based or whole-metagenome sequencing approaches. Here,
we introduce 2bRAD-M, a highly reduced and cost-effective strategy which only
sequences ~ 1% of metagenome and can simultaneously produce species-level bacterial,
archaeal, and fungal profiles. 2bRAD-M can accurately generate species-level taxonomic
profiles for otherwise hard-to-sequence samples with merely 1 pg of total DNA, high host
DNA contamination, or severely fragmented DNA from degraded samples. Tests of
2bRAD-M on various stool, skin, environmental, and clinical FFPE samples suggest a
successful reconstruction of comprehensive, high-resolution microbial profiles.

Introduction
Metagenome sequencing, widely used to derive the taxonomic profile of microbiome,

typically adopts two strategies that target (i) amplicons of phylogenetic “marker genes”

(e.g., 16S rRNA for bacteria and archaea, and 18S rRNA or internal transcribed spacer

(ITS) for fungi) or (ii) the whole genomes (whole metagenome shotgun; WMS).

Although less costly, marker gene analyses can be limited in taxonomic resolution (i.e.,

at the genus level) and susceptible to PCR bias in composition and abundance

estimates [1]; moreover, they are usually unable to capture a landscape-like view that

includes bacteria, archaea, fungi, and virus due to the lack of universal primers. In con-

trast, by sequencing the total DNA, WMS can resolve species- or strain-level taxonomy

and offers a landscape-like view that includes all domains of organisms [2, 3]. However,

although 1 ng is applicable via certain specialized kits [4], WMS usually requires a high

amount of DNA as the starting material (≥50 ng preferred, 20 ng at a minimum) and

moreover is not efficient in tackling DNA samples that are low in biomass, heavily

degraded, or dominated by host DNA [1, 4]. Furthermore, WMS is typically much

more costly, due to the much higher sequencing volume required for covering the
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whole genome (instead of just the marker gene). Therefore, new methods should be

developed that cost-efficiently produce accurate, species-resolution, landscape-like

taxonomic profiles for challenging samples like low-biomass, high host-contaminated,

and degraded microbiomes.

Restriction site-associated DNA sequencing (RADseq) that utilizes restriction en-

zymes to digest genomic DNA from a broad range of organisms and sequences only

the digested fragments has been applied to genotype variable genetic markers as well as

for microbial species detection [5, 6]. Although RADseq has demonstrated the ability to

produce species-resolution microbiome profiles with lower costs [7–10], the large size

variation of DNA fragments after enzyme digestion results in a high bias in PCR-based

amplification and thus the low fidelity of reconstructed taxonomic profile [11, 12].

Moreover, RADseq has not been thoroughly and systematically benchmarked against

marker gene-based or WMS approaches [7–10]. Therefore, it remains unclear whether

RADseq can provide accurate, landscape-like taxonomic profiles for low-biomass and

severely degraded microbiome samples.

To address these challenges, here, we proposed the “2bRAD sequencing for Micro-

biome” (2bRAD-M) method that utilizes Type IIB restriction enzymes to produce ex-

clusively iso-length DNA fragments of 25–33 bp (depending on the selection of

enzymes) for sequencing [13–15]. This approach reduces the bias in PCR-based frag-

ment amplification and thus ensures the high fidelity of the taxonomic profile. This of-

fers significant benefits especially for low-biomass, heavily contaminated, or degraded

microbial DNA which requires more PCR cycles. Tests on simulated datasets, mock,

and actual microbiome samples illustrate that 2bRAD-M, by sequencing just about 1%

of genomes, accurately generates species-level taxonomic profiles for challenging sam-

ples: (i) of merely 1 pg total DNA, (ii) of 99% host DNA contamination, or (iii) consist-

ing of highly degraded fragments just 50-bp long. For real stool, skin, and

environment-surface samples, it accurately reconstructs a comprehensive, species-

resolution profile of bacteria, archaea, and fungi. Furthermore, microbiome in the

formalin-fixed paraffin-embedded (FFPE) tissue samples which were otherwise recalci-

trant to sequencing can now be analyzed, and a species-resolved classifier discriminated

the healthy tissue, pre-invasive cancer, and invasive cancer with 91.1% accuracy. The

ability to profile low-biomass microbiomes at the species level is pivotal to expanding

the boundary of the known microbial world.

Results
The principle and workflow of 2bRAD-M

The principle and appealing features of 2bRAD-M are as follows (Fig. 1): (i) reliable

enzyme-digested sequence tags can be derived that are specific to high-resolution taxa

(e.g., species or strain) yet universally applicable for a broad range or all of bacterial, ar-

chaeal, and fungal genomes; (ii) these taxa-specific, iso-length sequence tags can be

evenly amplified and sequenced; and (iii) the tag sequences can be mapped to reference

genomes to reconstruct faithfully the taxonomic composition.

Specifically, the experimental workflow has two steps: (i) BcgI (a commercially avail-

able Type IIB restriction enzyme) is used, as an example, to digest total genomic DNA

extracted from microbiome samples. BcgI recognizes the sequence of CGA-N6-TGC in

Sun et al. Genome Biology           (2022) 23:36 Page 2 of 22



the genomic DNA and cleaves on both upstream (12–10 bp) and downstream (10–12

bp) of this signature [13], producing short and iso-length DNA (32 bp without sticky

ends) across all loci [14, 15]. (ii) These so-called 2bRAD fragments are ligated to

adaptors, amplified, and then sequenced.

In the computational workflow, the foundation is a unique 2bRAD tag database (“2b-

Tag-DB”), which contains taxa-specific 2bRAD tags identified from all the sequenced

bacteria, fungi, and archaea genomes. Mapping the 2bRAD reads against 2b-Tag-DB

thus identifies the presence of species in a sample. Subsequently, to estimate the rela-

tive abundance of the identified taxa, the mean read coverage of all 2bRAD tags specific

to each taxon is derived. To improve the utilization rate of reads and classification ac-

curacy, a secondary, sample-specific 2b-Tag-DB was dynamically derived from only

those candidate taxa identified in a particular sample, which produces more species-

specific 2bRAD tags than the original 2b-Tag-DB and results in more accurate model-

ing of relative abundance of taxa.

The feasibility of 2bRAD-M for microbiome analysis via in silico simulation

To identify the taxa-specific tags, we first downloaded 173,165 microbial genomes

(171,927 bacteria, 293 fungi, and 945 archaea; representing 26,163 species) from NCBI

RefSeq (Oct 2019) to create a 2b-Tag-DB via in silico restriction digestion of these ge-

nomes using BcgI restriction enzyme [13]. This yields an average of 3010 iso-length

Fig. 1 Scheme of the 2bRAD-M workflow. In the library preparation module of the 2bRAD-M pipeline, DNA
samples were first digested using a type IIB restriction enzyme. The resulting 2bRAD fragments were
enriched and amplified for DNA sequencing. In the computational module of the 2bRAD-M pipeline, we
employed both prebuilt and sample-specific 2bRAD marker database to perform taxonomic profiling on
2bRAD data. Firstly, all reads were mapped against the default prebuilt unique 2bRAD marker database (2b-
Tag-DB) to identify all candidate species in a 2bRAD-M sample. Next, to accurately estimate the abundance
of identified species, we increased the number of taxa-specific 2bRAD markers for each candidate species
by reconstructing a reduced 2bRAD marker database (sample-specific 2b-Tag-DB) which contains more
2bRAD markers specific to each candidate species than those in the default 2b-Tag-DB. All the 2bRAD
sequences were then remapped to this sample-specific 2b-Tag-DB for abundance estimation of candidate
species. In principle, the relative abundance of a given species was calculated as the read coverage of all
species-specific 2bRAD markers. For more information, please refer to the “Materials and Methods” section

Sun et al. Genome Biology           (2022) 23:36 Page 3 of 22



(32 bp) 2bRAD tags per genome, and a total of 114,132,487 BcgI-digested unique

species-specific 2bRAD tags that are of single-copy within a genome (average 1194 per

species genome; Additional file 1: Supplemental Methods). Besides BcgI, species-

specific 2bRAD tags (unique 2bRAD tags) were also identified for each of the other 15

Type IIB enzymes (AlfI, AloI, BaeI, BplI, BsaXI, BslFI, Bsp24I, CjeI, CjePI, CspCI, FalI,

HaeIV, Hin4I, PpiI, and PsrI; Additional file 1: Table S1, Fig. S1a) to establish the

usability of all Type IIB enzymes for 2bRAD-M. Notably, 2bRAD tags are detected in

all genomes regardless of the Type IIB restriction enzyme used (Additional file 1: Fig.

S1b). Moreover, the number of 2bRAD tags within a genome and their GC content are

highly consistent with the length and the GC% of genomes (r > 0.98) (Additional file 1:

Fig. S2) for all the 16 Type IIB restriction enzymes, suggesting unbiased and broadly

applicable representation of the microbial genomes by these tags.

To test whether these species-specific tags enable detection and abundance profiling

of all known species in a community, a simulated 50-species microbiome was generated

(one genome per species; randomly selected from RefSeq; Additional file 1: Table S2)

and profiled using the default 2b-Tag-DB and sample-specific 2b-Tag-DB for each of

the 16 Type IIB restriction enzymes. Performance of 2bRAD-M in species detection

was assessed via precision and recall (with relative abundance threshold of 0.0001),

while that of species abundance evaluated via L2 similarity score (a metric of similarity

adapted from L2 distance [16]), by comparing to the ground truth (Fig. 2a). Precision,

recall, and L2 similarity of the taxonomic profiling are all remarkably high (average for

the 16 enzymes—precision = 98.0%, recall = 98.0%, L2 similarity = 96.9%), and this is

achieved with an average genome coverage of 1.50% among the 50 selected genomes

(Fig. 2a, Additional file 1: Fig. S3).

The accuracy and computational efficiency of 2bRAD-M were assessed by compari-

son with highly cited WMS profiling tools such as Kraken2 [17], Bracken [18],

mOTUs2 [19], and MetaPhlAn2 [20], using the in silico simulated data of 25 microbial

communities for benchmarking [21] (2bRAD-M applied BcgI-derived species-unique

markers to profile the simulated data, while the others produced the abundance profiles

from simulated pair-end 150-bp WMS reads; the “Materials and Methods” section). In

terms of average Shannon similarity, Bray-Curtis similarity, L2 similarity (accuracy met-

rics evaluated based on the ground truth), precision, and recall, 2bRAD-M showed a

level of 0.998, 0.97, 0.98, 0.89, and 0.98, respectively, which either outperformed or are

equivalent to others (Fig. 2b). As for database storage and memory use, 2bRAD-M re-

quires < 10-GB disk space to store the reference marker database and a relatively low

RAM of 30 GB (equivalent to a desktop computer) as compared to Centrifuge, Kra-

ken2, and Bracken (Fig. 2b). Thus, the 2bRAD-M bioinformatic pipeline can provide

accurate profiling results with high computational efficiency.

High reproducibility and sensitivity of 2bRAD-M under challenging conditions

To assess 2bRAD-M ability to handle low-biomass, highly degraded, or heavily contam-

inated samples, we first constructed a mock community (Mock-CAS) consisting of five

prevalent oral or gut bacterial species in equal proportion. With this mock community

stock, three series of samples were prepared: (i) “LoA” (low amount)—samples with

total DNA amounts from 50 ng, 20 ng, 10 ng, 1 ng, 100 pg, 10 pg to only 1 pg; (ii) “HiD”
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(high degradation)—100-ng degraded DNA samples where the DNA mixture was ran-

domly sheared by DNAse I into fragments of mostly 150 bp and 50 bp in length; and

(iii) “HoC” (host contamination)—100-ng samples spiked with human DNA to simulate

90% or 99% contamination by host genome. Three technical replicates were included

for each of the LoA (n = 7*3), HiD (n = 2*3), and HoC (n = 2*3) groups. Each of the 33

samples from the three series was then sequenced by 2bRAD-M. In addition, a sample

Fig. 2 Benchmark measurements of 2bRAD-derived taxonomic profile. a Simulated microbial community
data consisting of 50 microbes were profiled by each of the 16 type IIB restriction enzymes. The scatter
plots indicate the correlation of the taxonomic abundance estimated from 2bRAD-M with the expected
abundance for each enzyme. The percentage number indicated in each plot represents the average
genome coverage (compare to the original 50 microbial genomes) after digesting by the enzymes. b
Performance comparison of 2bRAD-M with Kraken2, Bracken, MetaPhlAn2, and mOTUs2 based on 25
simulated communities. Two types of abundance are used as the ground truth of the simulation data to
evaluate the performance: sequence abundance is used to evaluate Bracken and Kraken2, while taxonomic
abundance is used to evaluate 2bRAD-M, mOTUs2, and MetaPlAn2
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of 100-ng DNA was then prepared from the mock community stock and sequenced by

WMS to be referenced as the positive control (WMS of 50 ng or lower DNA failed).

To compare the results and minimize performance bias introduced by bioinformatic

pipelines, we employed Centrifuge [22] to map both WMS (150-bp) and 2bRAD-M

(32-bp) generated reads to the reference microbial genomes for taxonomic abundance

estimation. For 2bRAD-M, tags from the actual data of each sample covered avg. 97.1%

in silico predicted tags from the five genomes, indicating high consistency between ob-

served and expected 2bRAD tags (which is key to accurate and reliable taxonomic pro-

filing). Moreover, for each sample, the 2bRAD-M results are highly consistent among

the three biological replicates (avg. L2 similarity: 95.4%; Fig. 3a).

Notably, for the LoA, HiD, and HoC groups, the average L2 similarity between

2bRAD-M profiles and the reference positive control is 88.9%, 84.6%, and 89.6%,

Fig. 3 Comparison of taxonomic profiling results of 2bRAD-M, shotgun WGS, and 16S rRNA sequencing
methods in mock microbial communities. a 2bRAD-M performance in samples with low amount (LoA), high
DNA degradation (HiD), and high host DNA contamination (HoC) based on a mock community of five bacteria
species (Mock-CAS). LoA are samples with a gradient of total DNA concentrations (50 ng, 20 ng, 10 ng, 1 ng, 0.1
ng, 0.01 ng, and 0.001 ng); HiD includes samples with fragmented bacterial DNA (50 bp or 150 bp). HoC are
samples with a mixture of human DNA (90% or 99%) and bacterial DNA. Three technical replicates were
included for each group. The L2 score that measures the microbial composition similarity between 2bRAD-M
and WMS is shown on the head of each stacked bar plot. The false-positive identification rates of reads (i.e.,
reads mapped to species not in the mock community) are very low (0.9% in WMS and 1% in 2bRAD-M). b
Benchmarking 2bRAD-M against conventional metagenomic approaches using the mock community of MSA
1002. Each stacked bar plot in the left panel shows the resulting taxonomic profile from a benchmarked
method in a library preparation or bioinformatic setting. The white blank refers to false-positive identifications.
For WMS data, we employed various bioinformatic tools (e.g., MetaPhlAn2, Bracken, Kraken2, and mOTUs2) to
generate taxonomic profiles on MSA 1002. For 2bRAD-M data, we applied our own bioinformatic pipeline to
generate the taxonomic profiles of MSA 1002 with low to high DNA amounts, and under various degrees of
host DNA contamination. In the right panel, bars in each row indicate the corresponding precision, recall, L2
similarity, Bray-Curtis dissimilarity, and Shannon index similarity of the predicted taxonomic profile as compared
to the ground truth. The bars in the “Shannon” column represent the correlation between the Shannon index
of the profiling results and the ground truth (see the “Materials and Methods”)
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respectively, with the global average being 88.2% (ranging from 82.1 to 90.4%; Fig. 3a).

These observations are consistent across the technical replicates, indicating high repro-

ducibility of 2bRAD-M. Specifically, in the LoA group, the L2 similarity of the 1-pg

sample can still realize a respectable 83.5% as compared to 90.1% for the 50-ng sample

(Fig. 3a). This suggests that 2bRAD-M offers high sensitivity and stable performance in

low-biomass samples over a broad DNA-amount range (from 50 ng to 1 pg). In the

HiD group, the L2 similarity is 87.2% and 82.1% for the 150-bp and 50-bp samples, re-

spectively, indicating DNA degradation did not have a large negative effect and the 2b-

RAD-M can effectively accommodate severe DNA degradation while providing reliable

results. For the HoC group, the L2 similarity is 89.4% in the 90%-host-contaminated

samples and 89.7% in 99%-host-contaminated samples (in addition, a certain degree of

enrichment of microbiome-originated reads versus host-originated reads is apparent

under HoC; Additional file 1: Table S3), suggesting 2bRAD-M’s ability to provide reli-

able microbial profiling in the presence of host DNA contamination.

To further probe the capability of 2bRAD-M in profiling a highly complex microbial

community at low-biomass setting, we used ATCC MSA 1002, a standard, commer-

cially available mock community consisting of 20 bacterial species (from 18 genera)

with at equal DNA abundance among species [23]. Samples with total DNA amount

ranging from 10 ng, 1 ng, 100 pg, 10 pg, and 1 pg and DNA host contamination from

90%, 95%, and 99% were prepared from this mock community for 2bRAD-M profiling.

As a reference control, a 100-ng sample was profiled with the 16S-rRNA and WMS ap-

proaches (the 1-pg~10-ng samples failed). The precision for 2bRAD-M is 90.9%, 76.0%,

46.3%, 40.0%, 14.0%, 82.6%, 79.2%, and 90.5% for the 10 ng, 1 ng, 100 pg, 10 pg, 1 pg,

90% host DNA, 95% host DNA, and 99% host DNA samples, respectively. This is in

contrast to the 53.7% (average number of different profilers) for WMS-100 ng and the

17.3% for 16S-rRNA-100 ng (Fig. 3b). Therefore, 2bRAD-M offers much lower false

positives in detecting the species than 16S-rRNA and WMS. As for recall, 2bRAD-M is

100.0%, 95.0%, 95.0%, 80.0%, 75.0%, and 95% for 10 ng, 1 ng, 100 pg, 10 pg, 1 pg, and

host DNA-contaminated samples, respectively, as compared to the 93.7% for WMS-

100 ng and the 90.0% for 16S-rRNA-100 ng. Therefore, 2bRAD-M offers a comparable

level of sensitivity to WMS and 16S-rRNA when starting with down to 100 pg of DNA.

Moreover, the L2 similarity for 2bRAD-M is 91.0%, 89.1%, 88.5%, 84.8%, 48.5%, 91.8%,

89.4%, and 67.7% for 10 ng, 1 ng, 0.1 ng, 10 pg, 1 pg, 90% host DNA, 95% host DNA,

and 99% host DNA samples, respectively, as compared to 82.1% for WMS-100 ng and

70.0% for 16S-rRNA-100 ng. As for alpha diversity (Shannon index) and beta diversity

(Bray-Curtis similarity), profiling results of the low-biomass samples by 2bRAD-M are

comparable to the corresponding high biomass samples by WMS and 16S as well

(alpha diversity: averagely 92.5% by 2bRAD-M, 97.4% by WMS, and 95.5% by 16S; beta

diversity: averagely 73.8% by 2bRAD-M, 74.6% by WMS, and 60.6% by 16S). Taken as a

whole, these results demonstrated 2bRAD-M’s ability to profile complex microbiota

with a high level of sensitivity and specificity.

2bRAD-M enables cost-effective deep microbiome profiling of real samples (fecal)

To assess the performance of 2bRAD-M on real samples, we performed and compared

2bRAD-M and 16S rRNA sequencing on human fecal samples (n = 3). In addition, each
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sample was also subjected to ultra-deep WMS sequencing (mean of 437 million reads

or 239.73 Gb per sample) with the resultant taxonomic profiles used as evaluation ref-

erence [24].

Taxonomic profiles from 2bRAD-M are compared with those from 16S rRNA se-

quencing (Fig. 4a–c) and WMS (Fig. 4d–f; Additional file 1: Supplemental Methods).

Specifically, at the genus level, results of 2bRAD-M and 16S rRNA are highly consistent

(mean Pearson correlation R = 0.997 and mean L2 similarity L2 = 92.0%), and avg.

95.27% of genus identified by 16S were also detected by 2bRAD-M (Additional file 1:

Table S4). As for the species level, to perform the comparison in a fair manner, we ex-

tracted 2bRAD reads from WMS data and then used these WMS-originated 2bRAD

reads as input for the 2bRAD-M computational pipeline; then, we found that WMS-

originated 2bRAD reads and real 2bRAD sequencing data are also concordant in

species-level profiling results, as evidenced by a high Pearson correlation (R = 0.99) and

high L2 similarity (up to 97.8%). Moreover, only 0.40% of the taxa in WMS were not

identified in 2bRAD-M (Additional file 1: Table S5). Thus, 2bRAD-M can produce

highly complete and accurate species-level profiles that are equivalent to WMS.

One determinant of quality (and cost) of taxonomic profiling is sequencing depth

[25]. To test how it influences 2bRAD-M performance, the fecal sequencing datasets

were subsampled to various depths for 2bRAD-M (average 13.5 million reads per sam-

ple, subsampled at 0.1, 1, 2, 3, 5 to 13.5 million sequences per sample) or WMS (sub-

sampled at 0.5, 10, 20, 30, 40, 50, 100, and 200 million sequences per sample since one

2b read can be identified and fetched from about 15 WMS reads) respectively. Then,

we asked how many 2bRAD sequences are required to accurately quantify key eco-

logical metrics such as alpha diversity (Shannon index), beta diversity (Bray-Curtis),

and species compositions (species richness). In each of the fecal samples, with 20–40

Fig. 4 Comparison of taxonomic profiles and desired sequencing depth of 2bRAD-M, 16S, and WMS in
fecal samples. a–c Comparison of taxonomic profiles at the genus level between 16S rRNA and 2bRAD-M.
d–f Comparison of taxonomic profiles at the species level between 2bRAD-M and WMS. To perform the
comparison in a fair manner, we extracted 2bRAD reads from WMS data and then used these WMS-
originated 2bRAD reads as input for the 2bRAD-M computational pipeline. Then, species abundance
generated by 2bRAD-M (using 2bRAD-M sequencing data) is used as the X-axis while the species
abundance generated by 2bRAD-M (using WMS data) as the Y-axis for the scatter plot. g The rarefaction
analysis of 2bRAD-M and WMS samples. The species-level compositions in the subsampled data at each
given sequencing depth were compared to the pre-rarefaction result for each method
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million reads per sample, WMS identified averagely 170–182 species, but the Shannon

diversity and species abundance estimates are far from saturation (i.e., reaching the

values derived by sequencing ~ 400 million reads). In contrast, with just 3–4 million

reads per sample, 2bRAD-M identified 173–188 species in each fecal samples and yield

Shannon diversity and species abundance estimates comparable with those from the

deepest (~ 13.5 million) read depth (Additional file 1: Fig. S4).

To evaluate the optimal sequencing depth of 2bRAD-M for species-level taxonomic

profiling, we evaluated the similarity of taxonomic profiles derived at each reduced

sequencing depth to its original taxonomic profile using the L2 similarity score.

For 2bRAD-M, a sequencing depth of over 0.5 million reads per sample can

achieve a L2 similarity score of 98.9% (1 million for 99.1%), which however

requires many more (at least about 50 million) reads per sample in WMS (Fig. 4g).

Overall, with 2~3 million reads (i.e., 60 Mb of sequencing data) per sample,

2bRAD-M can generate consistent, accurate, and stable alpha diversity estimates

and taxonomic profile at the species level.

2bRAD-M enables species-resolved analysis of low-biomass skin, home, and car samples

To assess 2bRAD-M performance on actual low-biomass samples, we collected

samples from the human skin surface (underarm, n = 20; Additional file 1: Table

S6) for 16S-rRNA and 2bRAD-M analysis (WMS was aborted due to too-low DNA

amounts for library construction). To gauge the potential impact of contaminating

DNA (introduced from regents, in workflow, etc.) in the low-biomass samples [26],

MSA 1002 was included as a control. MSA 1002 profiling revealed the expected

microbial community profile while unforeseen microbes were absent which indi-

cates minimal contamination. Between 16S rRNA and 2bRAD-M, a high degree of

consistency in taxonomic profiles at the genus level was observed, with avg. L2

similarity of 81.1% (Table 1; Additional file 1: Fig. S5). In both methods, Staphylo-

coccus (2bRAD-M: avg. 47.17%; 16S rRNA: avg. 44.43%) and Corynebacterium

(2bRAD-M: avg. 10.38%; 16S rRNA: avg. 15.06%) are recognized as dominant mi-

crobes, consistent with existing literature [27–29].

We further explored the application of 2bRAD-M, by testing on indoor environmen-

tal low-biomass samples, which are of significant health implications due to their con-

tact with humans [30]. Surfaces of floor mat (n = 5) and cushion (n = 3) in the car and

interior surfaces of a house (n = 4) were sampled and subjected to both 16S rRNA and

2bRAD-M (similarly, WMS was aborted due to the low DNA amounts; Additional file

1: Table S6). High L2 similarity (average 85.6% among samples; Additional file 1: Fig.

S5) between 2bRAD-M and 16S rRNA was observed, suggesting stable performance of

2bRAD-M for such indoor samples. At the species level (Additional file 2), we identi-

fied 4929, 2335, and 1626 taxa for the three niches, respectively, whose dominant bac-

terial species are highly distinct: (i) floor mats are dominated by Kocuria rosea

(23.23%), Psychrobacter 1501_2011 (11.44%), and Acinetobacter johnsonii (10.43%); (ii)

cushions are dominated by Cutibacterium acnes (42.19%), Lactobacillus delbrueckii

(10.62%), and Ralstonia pickettii (10.14%); (iii) home surfaces are mainly colonized by

Streptococcus mitis (49.64%), Prevotella copri (39.14%), and Megamonas funiformis

(18.36%). Rarefaction of sequence depth (e.g., sequenced 2b-tags) via alpha diversity,
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beta diversity, and species-level compositions support high robustness of 2bRAD-M for

such low-biomass indoor samples (Additional file 1: Fig. S6).

Similar to WMS, 2bRAD-M enabled species-level profiles for fungi along with bac-

teria. In general, the relative abundance of fungi in the underarm and indoor environ-

ment samples is extremely low (0.83%) as compared to bacteria (99.16%) (Additional

file 1: Table S7). Possible reasons for this observation include (i) micro-environments

of these samples are not friendly fungal growth [31] and (ii) the relatively small number

of available fungi genomes curated in our reference database limits the discovery of the

fungi population. Nonetheless, among all the sites, the samples taken from the car

cushion are found to harbor the highest amount of fungi (2.33%) with the surfaces from

home being the lowest (0.06%). In addition, the 2bRAD-M species-level profile unveils

distinctive patterns of fungal composition among the various sites (Fig. 5a). Malassezia

restricta and Malassezia globose, known commensals on human skin surface [32], were

found as the top abundance fungi at underarm and most of the indoor environmental

samples. It was possible that the Malassesia sp. was transferred from humans, given

the likely high contact frequency between the skin and these indoor environmental

Table 1 High concordance of dominant microbial taxa in 16S rRNA and 2bRAD-M profiling results
of 20 underarm samples. The left three columns illustrate the top five genera in 16S profiling
results of the 20 underarm samples with average relative abundance and ranking. The right three
columns are the corresponding species’ average relative abundance and ranks identified by
2bRAD-M

Top genus in
16S

Relative
abundance

Rank Corresponding species in
2bRAD-M

Relative
abundance

Rank

Staphylococcus 44.43% 1 Staphylococcus epidermidis 27.56% 1

Staphylococcus hominis 12.57% 2

Staphylococcus capitis 4.78% 5

Staphylococcus haemolyticus 1.78% 11

The other 4 species 0.48%

SUM 47.17%

Corynebacterium 15.06% 2 Corynebacterium ureicelerivorans 2.58% 8

Corynebacterium jeddahense 2.41% 9

Corynebacterium aurimucosum 1.80% 10

Corynebacterium pseudogenitalium 1.29% 15

Corynebacterium kefirresidentii 1.23% 17

Corynebacterium
tuberculostearicum

1.08% 19

The other 47 species 2.08%

SUM 12.47%

Uruburuella 5.67% 3 Uruburuella suis 5.80% 4

Enterococcus 4.49% 4 Enterococcus devriesei 1.68% 12

Enterococcus dispar 1.48% 13

The other 3 species 0.45%

SUM 3.61%

Moraxella 02.34% 5 Moraxella osloensis 2.77% 7

The other 1 species 0.04%

SUM 2.81%

SUM 72.00% SUM 71.86%
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surfaces. Conversely, Alternaria alteranta was mostly found in indoor environments

but absent in the underarm which is in agreement with existing reports [33, 34]. Thus,

the fungi profiles derived from 2bRAD-M are consistent with literature, demonstrating

the ability to reliably profile fungi (simultaneously with bacteria) in low-biomass

samples.

Taking advantage of 2bRAD-M’s capability in profiling bacterial and fungal species

simultaneously, an occurrence-network analysis revealed a negative correlation between

the human skin commensal yeast of Malassezia globosa (which is associated with

Seborrheic Dermatitis [35]) and the aforementioned S. epidermidis (recently proposed

as a gatekeeper of healthy skin [36]; Spearman coefficient of −0.569; Fig. 5b). Such

landscape-like, species-level correlations for low-biomass microbiomes can potentially

reveal novel bacteria-fungi interactions.

2bRAD-M enables tumor microbiome profiling from FFPE tissue samples

Microbiota in human tumor or blood tissues were recently associated with the types,

developmental stages, or chemotherapeutic efficiency of cancer [37–41]. Formalin-

fixed, paraffin-embedded (FFPE) tissue, the gold standard of preserving tumor biopsy

specimens [42, 43], represents a vast, irreplaceable historical clinical resource of enor-

mous value for cancer microbiome studies [44]; however, profiling microbiome from

Fig. 5 2bRAD-M analysis of low-biomass samples collected from underarm, home, and car surfaces. a Heat
map shows identified fungal species via 2bRAD-M in the underarm, home, and car samples. b Co-
occurrence network of bacterial and fungal species based on 20 underarm samples profiled by 2bRAD-M.
Each green circle represents a species, and its size refers to the degree centrality score. Blue/red edges
indicate positive/negative Spearman coefficients
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FFPE tissues has been challenging due to the low microbial biomass, high human

DNA contamination, severe DNA damage, and cross-links by chemical modification

[45]. To test whether 2bRAD-M can tackle FFPE samples, we started with three

pairs of healthy lung tissues from lung adenocarcinoma patients (typical of low

microbial biomass), each derived both before (i.e., fresh tissue) and after FFPE (the

“Materials and Methods” section). For each of the three pairs of lung tissue sam-

ples, a high consistency of microbial profiles derived using 2bRAD-M was reported

between pre- and post-FFPE samples (Additional file 1: Fig. S7). These results thus

support the ability of 2bRAD-M to accurately reconstruct microbiome structure

from FFPE samples.

Next, we collected FFPE cervical tissue samples from 15 healthy controls (H), 15 pre-

invasive cancerous (PreC; benign), and 15 invasive cancerous patients (InvaC; malig-

nant) and subjected these samples to 2bRAD-M sequencing. DNA from the FFPE tissue

was extracted from an area of 3cm2 with 4-μm thickness. On average, 25 ng/μl of DNA

in each sample was detected as smears of size under 500 bp in agarose gels (Additional

file 1: Fig. S8, Table S3), suggesting extremely low concentration and highly fragmented

nature of DNA (both human and microbes [45]) in FFPE samples.

The microbiome of the FFPE samples is mostly dominated by bacteria species (n =

243) with minimal fungal species (n = 2; Additional file 2). The alpha diversity (Shan-

non and Simpson index) in healthy controls (H) is significantly lower than PreC and

InvaC (p = 0.044, Kruskal test; Fig. 6a). Among the identified bacterial species

(Additional file 1: Fig. S9), samples in the PreC and InvaC groups are significantly

enriched with Methyloversatilis discipulorum (p-value = 1.2e−5), Mycobacterium tuber-

culosis (p-value = 0.004), Methyloversatilis universalis (p-value = 1.8e−5), Ferrovibrio

Fig. 6 Microbiome-based diagnosis of FFPE thin section from cervical cancer samples as enabled by
2bRAD-M. a Shannon and Simpson index among 15 healthy controls (H), 15 pre-invasive cancerous (PreC;
benign), and 15 invasive cancerous (InvaC; malignant) samples. b Comparison of differential species and
Lactobacillus spp. among the three groups. c The Random Forest classifier for discriminating cancer and
healthy samples. In the ternary plot, each dot represents a FFPE sample. The axes indicate the microbiome-
based probability of being InvaC, PreC, and H for a FFPE sample. The closer one sample is to an apex, the
more likely it is predicted as to be corresponding disease states. d Feature selection by rebuilding Random
Forest classifiers using a series of reduced sets of features. The scatter plot shows that nine variables
(species) in a reduced RF model (i.e., the AUC plot on the right) can maximize model performance. And the
ROC curve shows an even better discriminate performance using binary categories (averagely 0.96)
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K5 (p-value = 0.001), and Pseudomonas aeruginosa (p-value = 6.8e−5) (each increase in

relative abundance from H to PreC and to InvaC; Fig. 6b). Conversely, Lactobacillus

spp. (L. paracasei, L. vaccinostercus, L. pentosus, and L. plantarum) are greatly enriched

in H (average abundance of 63.1%, in contrast to 33.9% and 32.9% in PreC and InvaC,

respectively, Fig. 6b); this is consistent with a previous study [41] showing depletion of

the Lactobacillales genera in “fresh,” non-FFPE cervical cancerous tissues. Notably,

Lactobacillus paracasei shows anticancer potential against cervix cancer cells (HeLa)

in vitro [46]. Furthermore, the enrichment of Mycobacterium tuberculosis, Pseudo-

monas aeruginosa, and Staphylococcus aureus in PreC- and InvC-phase PPFE sam-

ples is consistent with those “fresh” tissue-based studies that reported related

genus-level (via 16S 32) or species-level (via WMS [41, 47]) taxa. Taken as a whole,

2bRAD-M has successfully captured the microbiome structure in FFPE samples

and is able to reveal previously unknown discriminative microbial features between

healthy and cancerous tissues. These features may serve as potential indicative

novel markers for tumor onset and progression diagnosis. To evaluate this poten-

tial, we applied Random Forest on the FFPE taxonomic profiles at the species level,

and the model distinguishes H, PreC, and InvaC samples with 91.1% accuracy (ten-

fold cross-validation; Fig. 6c). Notably, we can achieve maximized discriminative

performance (AUC 0.96) with the fewer features of the nine most important spe-

cies in the RF model (Fig. 6d; Additional file 1: Table S8). Thus, 2bRAD-M offers

a viable option for microbiome profiling on the vast archive of historical FFPE

samples with potential application in early diagnosis and treatment of cancer.

Discussion
Using mock microbiomes plus actual samples from the stool, skin, environment-

surface, and frozen FFPE tissues, we demonstrated the ability of 2bRAD-M to profile

microbiome samples that are challenging by using marker-gene or WMS sequencing

approaches. Three key features are highlighted from this research. Firstly, it can analyze

samples with low biomass (down to 1 pg), severe degradation, or high contamination.

This advantage is built on the ability to (i) provide an unbiased (i.e., without the large

size variation of DNA fragments) and reduced representation of metagenomes for se-

quencing, (ii) evenly cover all restriction sites, and (iii) generate short, iso-length reads

and thus reliable quantification of tag abundance. With such advantage, 2bRAD-M is

valuable to profiling microbiome samples from sparsely populated niches (e.g., indoor

surfaces, blood, and skin), precious clinical specimen, or heavily degraded or contami-

nated tissues (e.g., FFPE sections and archeological samples). Notably, cervical cancer

can be effectively cured in the preinvasive period [48], yet detection of this asymptom-

atic stage remains challenging which results in unnecessary delays in diagnosis and

treatment [49]; therefore, 2bRAD-M sequencing of FFPE cervical cancer microbiomes,

which is challenging for WMS or 16S rRNA approaches, promises to turn the

enormous clinical repositories of FFPE tissue specimens into a treasure trove of

microbiome-driven discoveries [42].

Secondly, it can provide species-level taxonomic information for bacteria, archaea,

and fungi simultaneously. The multiple species-specific 2bRAD-M tags can uniquely

identify the species from the microbial community, as resolution at the “species” level

instead of the “genus” level can be crucial [50]. In this case, the ability to extract the
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species-level cancer-stage-specific markers from FFPE tissues, as well as to distinguish

S. epidermidis, S. hominis, and S. aureus from underarm skin samples, is crucial to the

diagnosis and mechanistic understanding of inflammation [29]. Interestingly, the overall

ratio of fungal and bacterial abundance, a potential indicator of ecological balance [51],

is 0.31% for underarm, 0.07% for home, and 1.27% for car (significantly different), sug-

gesting characteristic ecological features among the sites.

Finally, using 2bRAD-M, the species-level taxonomic profiling can be achieved with

a much lower sequencing cost than WMS. For example, only 1~5% of the sequencing

data of WMS are required by 2bRAD-M to produce a taxonomic profile of equivalent

accuracy, resulting in a cost reduction of 20–100 folds. Moreover, multi-isoRAD allows

sequencing of five concatenated 2bRAD tags altogether via a single, 100–150-bp read

from Illumina paired-end (PE) library [14], which further reduces the sequencing cost.

The cost advantage is significant when high sequencing depth is required to address

questions like unveiling the true microbial diversity or recovering rare but functionally

important species in complex microbiota [25, 52]. Thus, 2bRAD-M appears especially

suitable for such samples or circumstances. Notably, the performance of 2bRAD-M is

limited by the availability and the potential bias of related reference genomes (e.g.,

171927 bacterial and 945 archaeal genomes, yet only 293 fungal genomes in RefSeq),

although the situation is rapidly improving with the steady increase of sequenced ge-

nomes for both cultured and uncultured microbes (e.g., via single-cell sequencing [53]).

Conclusions
To overcome the bottlenecks of conventional metagenomic sequencing methods, we

developed a new metagenomics method (2bRAD-M) that can cost-effectively produce

accurate, species-resolution, landscape-like taxonomic profiles for challenging micro-

biome samples that are low-biomass, high-host-contaminated, and degraded. Tests on

simulated datasets, mock microbiome, and actual microbiome samples showed that

2bRAD-M, by sequencing just about 1% of genomes, accurately generates species-level

taxonomic profiles for samples that include merely 1 pg total DNA, are of 99% host

DNA contamination, or consist of highly degraded fragments just 50 bp in length. Fur-

thermore, it can accurately reconstruct a comprehensive, species-resolution profile of

bacteria, archaea, and fungi for real stool, skin, environment-surface, and FFPE samples.

Therefore, 2bRAD-M greatly expands the opportunities in microbiome research in

challenging settings.

Materials and methods
Sample preparation and sequencing

Mock samples

Two mock microbial communities were used to validate the stability, sensitivity, and

precision of 2bRAD-M. The first consists of five evenly mixed bacterial strains includ-

ing Streptococcus mutans UA159, Streptococcus agalactiae ATCC13813, Staphylococcus

aureus ATCC29213, Escherichia coli DH5α, and Lactobacillus fermentum ATCC9338.

Then, three circumstances that simulated “challenging” microbiome samples were pro-

duced (with three replicates for each sample): (1) LoA: samples with low amount DNA;

a concentration gradient from 10 ng to 1 pg was designed, with one-tenth of the
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concentration retained each time. (2) HiD: samples with highly degraded DNA; two

samples with DNA lengths about 150 bp and 50 bp were included. (3) HoC: samples

with host DNA contamination, which consist of either 90% or 99% human DNA. To

avoid the bias introduced by human DNA removal, we did not perform any depletion

methods before or after DNA extraction in this study.

The second mock used in this paper is the 20-Strain Even Mix Genomic Material

(named as ATCC MOCK MSA 1002, 3.87 ng/μl; frozen 50 μl in Tris-HCl pH 8.5) which

is purchased from ATCC. This mock comprises genomic DNA prepared from fully se-

quenced, characterized, and authenticated ATCC Genuine Cultures that were selected

based on relevant phenotypic and genotypic attributes, such as Gram stain, GC content,

genome size, and spore formation.

Fecal and FFPE tissue samples

The study protocol complies with the ethical guidelines of the 1975 Declaration of

Helsinki, and institutional review board approval was obtained from Qingdao Institute

of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences

(CAS). Written informed consent and photography consent were obtained from each

subject before enrollment. Three healthy adult individuals were enrolled as volunteers,

and fecal samples were collected for deep WMS, 16S rRNA gene amplicon, and

2bRAD-M sequencing for comparison.

Three pairs of fresh and FFPE samples from healthy lung tissues of lung adenocarcin-

oma patients, and 45 cervical cancer-related sections in FFPE blocks (with a thickness

of 4 μm and an area of 3 cm2), underwent microbiome profiling via 2bRAD-M. The 45

cervical cancer-related sections in FFPE blocks include 15 healthy controls (H), 15 pre-

invasive cancerous (PreC; benign), and 15 invasive cancerous (InvaC; malignant) ones

(determined by morphological evidence of polymorphonuclear infiltration). Each of the

45 samples was from a distinct individual, i.e., a cross-sectional design. To prepare the

FFPE blocks, fresh tissue samples were fixed in phosphate-buffered formalin for 24–48

h, followed by tissue processing for 10 h, and paraffin embedding for 20 min [54]. Post-

fixation processing of the tissues was completed in a histopathological laboratory using

consistent processor protocols over years. Prior to microbiome profiling, the FFPE

blocks were already stored at 17–22 °C and 20–60% humidity levels for 1–2 years. For

these FFPE tissue sections, attempts to construct 16S amplicon or WMS libraries for

microbiome sequencing both failed, due to the low quality of initial DNA (Additional

file 1: Fig. S8).

Underarm, home, and car sampling collection protocol and processing

For the underarm sampling protocol, individuals were subjected to a washout period

where the use of anti-bacterial products was not allowed for 4–5 days. After the wash-

out period, a 22-mm D-squame tape strip (Cuderm) was applied onto the lower under-

arm skin surface (without hair) using a pressure applicator. The tape strips were then

pre-treated with 200mg of 0.1 mm Zirconia Silica beads and bead beat using Qiagen

TissueLyser II (Valencia, CA) at 30 Hz for 3 min to lyse (via mechanical force) and dis-

lodge the biomass from the tape strip. After dislodging the biomass from the tape strip,

complete cell lysis is achieved via further enzymatic reaction by 2% w/v lysozyme,
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0.05% w/v lysostaphin, and 1.2% Triton-X in TE buffer, followed by DNA extraction

using Qiagen DNeasy Blood and Tissue Kit (Cat no. 69504, Valencia, CA). For the

home and car sampling, the swab was used for wiping the surface of the cushion and

carpet in the car and toy and toilet seat in the home. Specifically, wipe the swab for 20

times on an area of 4 × 4cm2. After collection, transfer the disposable swab to the tube

containing sample storage liquid immediately and break the swab along the crease.

Then, close the lid of the tube and make sure that there is no leakage. Finally, put the

sample preservation solution tube in the biosafety bag for DNA extraction.

DNA extraction, 16S rRNA, and shotgun metagenomic sequencing

Genomic DNA was extracted from each fecal-containing tube using the Tissue and

Blood DNA Isolation kit (Qiagen, Valencia, CA) following the manufacturer’s instruc-

tions with slight modifications. PCR amplification of the V1-V3 hypervariable regions

of 16S rRNA genes was performed using the primer set (27F/534R) and followed the

protocol developed by the Human Microbiome Project. PCR amplification reactions in

triplicate for each sample were pooled at approximately equal amounts and sequenced,

via the Illumina MiSeq 250 platform. All sequences were pre-processed following the

standard QIIME (v.1.9) pipeline. Downstream bioinformatics analysis was performed

using Parallel-Meta 3, a software package for comprehensive taxonomic and functional

comparison of microbial communities. Clustering of OTUs was conducted at the 97%

similarity level using a pre-clustered version of the Refseq database by BLASTN.

Paired-end metagenomic sequencing was performed for the two mock samples and

fecal microbiota from three individuals via the Illumina HiSeq 2500 platform, yielding

239.73 ± 12.34 GB per sample (for fecal samples, with average fragment insert size of

350 bp and average read length of 150 bp). The reads were quality controlled by Trim-

momatic (Sliding window 4:20; Minlength:100; MinPhred:25; Percentage of MinPhred:

80), and finally, 858,032,764 ± 13,140,670 clean reads per sample were generated and

then profiled by mOTUs2 using default parameters.

2bRAD-M sequencing

The 2bRAD-M library preparation basically followed the original protocol developed by

Wang et al. [13] with minor modifications. Library preparation began with the diges-

tion of 1 pg–200 ng genomic DNA in a 15-μl reaction using 4 U BcgI (NEB) at 37 °C

for 3 h. Five microliters of the digested product was run on a 1% agarose gel to verify

digestion. Next, ligation reaction was performed at 4 °C for 16 h in a 20-μl volume con-

taining 10 μl of digested product, 0.2 μM each of library-specific adaptors (Ada1 and

Ada2), 1 mM ATP (NEB), 1 × T4 DNA Ligase Buffer, and 800 U T4 DNA ligase (NEB).

Then, heat inactivation was performed for BcgI at 65 °C for 20 min.

Ligation products were amplified in 40-μl PCRs, each composed of 7 μl ligated DNA,

0.1 μM each primer (Primer1 and Primer2 for Illumina), 0.3 mM dNTP, 1× Phusion HF

buffer, and 0.4 U Phusion high-fidelity DNA polymerase (NEB). PCR was conducted in

a DNA Engine Tetrad 2 thermal cycler (Bio-Rad) with 16–28 cycles of 98 °C for 5 s,

60 °C for 20 s, and 72 °C for 10 s and then a final extension of 10 min at 72 °C. The tar-

get band (Illumina ~ 100 bp) was excised from 8% (wt/vol) polyacrylamide gel, and the

DNA diffused from the gel into nuclease-free water for 12 h at 4 °C. Finally, barcodes
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were introduced by means of PCR with platform-specific barcode-bearing primers.

Forty-microliter PCR reaction contained 50 ng of gel-extracted PCR product, 0.2 μM of

each primer (Primer1 and Primer3 for Illumina), 0.6 mM dNTP, 1× Phusion HF buffer,

and 0.8 U Phusion high-fidelity DNA polymerase; seven cycles of the PCR profile listed

above were performed. PCR products were purified by QIAquick PCR purification kit

(Qiagen, Valencia, CA) and subjected to Illumina HiSeq platform sequencing. All pri-

mer and adaptor sequences are provided at Additional file 1: Table S9.

Data analysis

Rationale of 2bRAD-M in overcoming high host contamination

We attribute the ability of 2bRAD-M to overcome high host contamination to the fol-

lowing. (i) By sequencing the representative 1% of the human genome and microbial

genomes, 2bRAD-M can dramatically reduce the cost and hence greatly increase the

sequencing depth. (ii) Due to the highly imbalanced presentation of enzyme sites in mi-

crobial genomes and the human genome, microbial genomes can generate many more

2bRAD tags than the human genome. For example, if we set the 1:99 as the microbial

DNA vs human DNA ratio in the mock samples (MOCK CAS), the sequencing reads

ratio would change to 3:97 in the actual sequencing results. (iii) The 2bRAD fragments

in the human genome are completely different from those in microbial genomes

(Additional file 1: Fig. S10). Consequently, qualitative analyses such as abundance

estimation for microbial species are robust against host DNA interference, and the FPs

would be greatly reduced.

Identification of species-specific 2bRAD-M markers from the most comprehensive genome

database

Firstly, a total of 173,165 microbial genomes (including bacteria, fungi, and archaea)

were downloaded from the NCBI RefSeq database. Then, built-in Perl scripts (GitHub:

https://github.com/shihuang047/2bRAD-M) were used to sample restriction fragments

from microbial genomes by each of 16 type 2B restriction enzymes, which formed a

huge 2bRAD microbial genome database. The set of 2bRAD tags sampled from each

genome was assigned under the GCF number, as well as GCF’s taxonomic information

corresponding to the whole genome. Finally, all 2bRAD tags from each GCF that occur

once within the genome were compared with those of all the others. Those 2bRAD tags

are specific to a species-level taxon (having no overlap with other species) were devel-

oped as species-specific 2bRAD markers, collectively forming a 2bRAD marker data-

base. The species-specific marker database has been shown to outperform other

reference databases using all 2bRAD tags or full genomes in taxonomic profiling

(Additional file 1: Fig. S11).

Simulation of 2bRAD-M sequencing data

To test the generalizability of our 2bRAD markers for microbial profiling, we first sim-

ulated 25 abundance profiles representing microbiota from distinct habitats (gut, oral,

skin, vagina, and building, with five profiles for each) with known abundance profiles

(abundance was created randomly from a log-normal distribution using the function

rlnorm in the R language with the following parameters: meanlog = 0 and sdlog = 1).
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Given a specified species composition (taxonomic abundance), their sequence abun-

dance can be inferred accordingly (taxonomic abundance equals sequence abundance

divided by their genome length), and then Wgsim (https://github.com/lh3/wgsim) was

used (with default parameters) to simulate the sequences. The intersection of organ-

isms in the mOTU2, MetaPhlaAn2, and Kraken2 reference databases was used as the

source genomes for the simulation. The simulation scripts for metagenomic data can

be found in https://github.com/shihuang047/re-benchmarking.

Usage of metagenomic profilers

For shotgun metagenomic sequencing data, we validated the taxonomic profiles with

state-of-the-arts profilers, such as Kraken2 [17], Bracken [18], mOTUs2 [19], MetaPh-

lAn2 [20], and Centrifuge [22]. The detailed procedures are listed below.

Kraken2 (v2.0.8-beta) is a k-mer-based taxonomic classification method. It searches

for 35-bp k-mers from the query sequence in a precomputed database that matches k-

mers to the lowest common ancestor (LCA) taxon of all genomes that contain that

taxon. The default database was constructed using complete bacterial and viral ge-

nomes from NCBI RefSeq (2019 Oct). A filtering abundance threshold of 0.01 (default)

was selected. The Kraken2 command below was used: “kraken2 --threads 32 --fastq-in-

put --gzip-compressed --paired input_1.fastq.gz input_2.fastq.gz –output output.reads

--report output.report”.

Bracken (v2.5) utilizes the read classification output from standard Kraken for a

Bayesian re-estimation of taxonomic abundances, which significantly improves the

false-positive issue of standard Kraken and implicitly normalizes for genome

length. The kraken-filter was used to filter raw classifications at the 0.01 thresh-

old. The Bracken command of “est_abundance.py -i input -k db -o output” was

used.

MetaPhlAn2 (2.96.1) is a marker-gene alignment approach that relies on a precom-

puted database containing clade-specific marker genes. Query reads are aligned via

bowtie2 to the marker genes for microbial identification and abundance estimation.

The database version used is mpa v296 CHOCOPhlAn 201901. The MetaPhlAn2 com-

mand of “metaphlan2.py input_1.fastq.gz, input_2.fastq.gz --input_type fastq --nproc

threads --bowtie2out output_bowtie2out.txt -o output.report” was used.

mOTUs2 (v2.5.1, database version 2.5.0) is a marker-based method that compiles a

large variety of phylogenetic marker genes from multiple biomes. Query reads are

aligned using bwa mem and further processed to generate an abundance profile. The

mOTUs2 command of “motus profile -f input_1.fastq.gz -r input_2.fastq.gz -o output.re-

port -t threads” was used.

Centrifuge (v1.0.3-beta) is a microbial classification engine based on FM-index which

enables rapid, accurate, and sensitive taxonomic labeling of short reads. To analyze

2bRAD sequencing data of MOCK CAS (Fig. 3a), we employed Centrifuge to perform

the 2bRAD-tag-level taxonomic classification that none of other existing profilers can

handle. We started by customizing a database for Centrifuge that only contains ge-

nomes of the five species in MOCK CAS. Next, Centrifuge was used as a search engine

to calculate the 2bRAD read-level proportion of five microbial species. Accordingly, we

repeated this process using WMS for benchmarking purpose.
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Calculation of relative abundance in 2bRAD-M

Firstly, to identify microbial species within each sample, all sequenced 2bRAD tags after

quality control were mapped (using a built-in Perl script) against the 2bRAD marker

database which contains all 2bRAD tags theoretically unique to each of 26,163 micro-

bial species in RefSeq database (Fig. 1). To control the false-positive in the species iden-

tification, a G score was derived for each species identified within a sample as below,

which is a geometric mean of the proportion of the species-specific markers that have

been captured (by sequencing) and the number of all detected species-specific markers

(by sequencing) of this species. The G score is more sensitive as the threshold than the

relative abundance used in conventional WMS (Additional file 1: Fig. S12). The thresh-

old of G score for a false-positive discovery of microbial species was set as 10.

G scorespecies i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

Si � ti
p

S: the number of reads assigned to all 2bRAD markers belonging to species i within a

sample.

t: number of all 2bRAD markers of species i that have been sequenced within a

sample

We estimated the relative abundance of each microbial species in a sample using the

formula as below. We first calculated the average read coverage of all 2bRAD markers

for each species, which represent the number of individuals belonging to a species

present in a sample at a given sequencing depth. The relative abundance of a given spe-

cies is then calculated as the ratio of the number of microbial individuals belonging to

a species against the total number of individuals from known species that can be de-

tected within a sample, with the default G score of 10.

Relative abundancespecies i ¼ Si=Ti
Pn

i¼1Si=Ti

S: the number of reads assigned to all 2bRAD markers of species i within a sample

T: the number of all theoretical 2bRAD markers of species i

Calculation of precision, recall, L2 similarity, and Pearson coefficient

For overall performance assessment, we applied precision and recall to evaluate the

accuracy of microbial identification, while L2 distance [16] was employed to evalu-

ate the accuracy of abundance estimation within a sample. Precision is the propor-

tion of true positive species against the total number of species identified by a

method, whereas recall is defined as the proportion of true positive species against

the number of all species actually existing in a sample. To evaluate the accuracy of

abundance profiles, we calculate the L2 distance between ground-truth abundance

profile to each of the taxonomic profiles at a given taxonomic level (e.g., species or

genus) produced by metagenomic sequencing methods. To visualize the bench-

marking results more intuitively, we further employed L2 similarity calculated as

the 1-L2 distance for performance comparisons. As for Shannon correlation, it is

denoted by the difference between 1 and the absolute value of 1 minus the ratio of

the predicted Shannon index and its ground truth. In addition, in Pearson correl-

ation analysis, for those unique species that are identified only in one method, we

replaced their abundance with 0 in calculating the Pearson correlation coefficient.
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Diagnosis model of cancer samples

Random Forest models were trained to identify cancer status using the taxonomy pro-

files on the species level. Default parameters of the R implementation of algorithm were

applied (R package ‘randomForest’, ntree=5000, using default mtry of p/3 where p is

the number of input taxa). The performance of RF models based on microbiota was

evaluated with a tenfold cross-validation approach.

Additional details are provided in Additional file 1: Supplemental Methods.
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