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Abstract

We developed a single-cell approach to detect CRISPR-modified mRNA transcript
structures. This method assesses how genetic variants at splicing sites and splicing
factors contribute to alternative mRNA isoforms. We determine how alternative
splicing is regulated by editing target exon-intron segments or splicing factors by
CRISPR-Cas9 and their consequences on transcriptome profile. Our method
combines long-read sequencing to characterize the transcript structure and short-
read sequencing to match the single-cell gene expression profiles and gRNA
sequence and therefore provides targeted genomic edits and transcript isoform
structure detection at single-cell resolution.
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Background
For any gene’s messenger RNA (mRNA), alternative splicing events lead to a diverse

set of transcripts that have different combinations of exons. Also referred to as tran-

script isoforms, these different mRNA species result from genetic variants at intron-

exon junctions and the functional contribution of different splicing factors. This diver-

sity of transcripts provides cells with an added level of transcriptional regulation. Fre-

quently, different isoforms have significantly different functions depending on the cell

and tissue type. To date, most studies examining the structure and function of isoform

variation have relied on CRISPR or other genome engineering methods. These experi-

ments involve introducing a single genetic variant within an exon/intron junction or

knocking out a splicing factor. Subsequently, the impact on transcript structure is

assessed using conventional short-read RNA-seq—this bulk sequencing method aver-

ages the changes in transcript expression across many cells [1, 2]. Importantly, conven-

tional short-read approaches may not resolve important transcript isoform features

that are present in only a subset of cells since these require complex bioinformatic
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methods to resolve. Thus, it remains a challenge to determine how these factors influ-

ence the generation of different mRNA species.

Single-cell RNA sequencing (scRNA-seq) has been used for profiling transcript iso-

forms across individual cells [3, 4]. Some studies have adapted long-read sequencing

for single-cell transcript isoform analysis [5, 6]. These approaches rely on instruments

such as the Oxford Nanopore or Pacific Biosciences sequencers that generate long

reads, typically over hundreds of bases if not much longer. Intact cDNAs are generated

from single cells and used for library preparation without the fragmentation step re-

quired for short-read analysis. Sequencing the intact cDNA across the length of a single

read can identify transcript structure and expressed genetic variants. However, this

method only assesses the transcripts, without providing a way to experimentally test

possible isoform alterations such as exon-intron junction modifications or splicing fac-

tor knock-outs.

Several studies have integrated single-cell RNA-seq with CRISPR screening to evalu-

ate the transcriptional phenotypes of cellular networks [7–10]. These single-cell

CRISPR studies require sequencing an individual cell’s expressed guide RNA; this bar-

code functions as an indirect indicator of which cells have a CRISPR edit. However,

these methods do not directly verify the genome edit for a given cell. In addition, those

approaches rely on short-read sequencing of transcripts where only a small portion of

the ends of the mRNA are available. As a result, short-read sequencing methods for

single-cell analysis do not identify changes in transcript structure nor the quantitative

expression of individual isoforms.

Herein, we present a new approach which characterizes CRISPR-induced alterations

of full-length transcript isoforms from single cells. We design CRISPR edits targeting

specific exon-intron junctions that potentially alter transcript structure. As another ex-

perimental manipulation of transcript isoforms, we use CRISPR to alter specific splicing

factor genes and assess how these changes influence a downstream gene’s expression of

transcript isoforms. Our method relies on single-cell nanopore sequencing where an in-

dividual read has sufficient length to cover the entire mRNA molecule. We use this

added information to extrapolate the transcript structure. Subsequently, we match each

individual cell’s long-read information with its corresponding short-read transcriptome

information to identify general transcriptional profile changes (Fig. 1A). Likewise, we

show that CRISPR edits introducing short insertions or deletions (indels) are detected

within sequences distal from the cDNA’s 5′ or 3′ end that could not be detected with

short reads. This allows for validation of CRISPR edits even if they do not affect iso-

form sequence.

Results
Altering RACK1 isoform structure with CRISPR and single-cell level detection

As a proof-of-concept, we designed and conducted an experiment targeting the splicing

acceptor of exon 5 within the RACK1 gene (Fig. 1B and Additional file 1: Fig S1). This

gene encodes a receptor for activated C kinase 1. It plays a role in intracellular protein

shuffling and anchoring. This gene was chosen because it is one the most highly

expressed genes in the human embryonic kidney 293 T (HEK293T) cell line as deter-

mined from single-cell short-read gene expression data. In addition, it has eight exons

Kim et al. Genome Biology          (2021) 22:331 Page 2 of 16



to target with CRISPR. We selected a sequence for this target and generated a plasmid

construct expressing Cas9 and target gRNA. These plasmids were transfected into

HEK293T cells. After 6 days, we prepared single-cell cDNAs from both the wild-type

and transfected cells with the gRNAs (Methods). From the single-cell cDNAs, the

RACK1 transcript was amplified using two primers that included sequence from the 5′

adaptor and the last exon of RACK1. The amplified target cDNA underwent long-read

sequencing (Oxford Nanopore). We performed base calling using the program guppy

and aligned the long reads to the reference genome, GrCh38 using minimap2 [11, 12].

Utilizing the cell barcodes at the 5′ end of the cDNA enables assignment of a long

read covering a transcript to its cell of origin. Since these barcodes will not align to the

genome, they should fall into the soft-clipped region of the aligned read. Accordingly,

the soft-clipped portion of each read was extracted and compared to the whitelist of fil-

tered cell barcodes identified by cellranger (Methods) from the short-read single-cell

sequencing. The comparison was performed using vectorization with token length of 8

Fig. 1 a Overview of single-cell short/long-read integration strategy of RACK1 targeting. b Structure of
RACK1 transcript. c, d Two heatmaps showing the proportion of each transcript isoform (x-axis) with each
cell (y-axis) for either the single (c) or multiplexed (d) CRISPR edits respectively. For panel c, hierarchical
clustering was conducted on the cells subject to a single CRISPR edit of exon 5. Cluster 2 has the intact
RACK1 isoform with all exons. Cluster 1 cells demonstrate exon 5 skipping. For panel d, hierarchical
clustering was conducted on cells subject to multiplexed edits across different exons. Cluster 3 indicates
the cells with an intact RACK1 transcript. The remaining clusters demonstrate cells with exon skipping. e
Expression level of RACK1 in each cell cluster denoted in panel d. P values were calculated for each cluster
in comparison with Cluster 3 (C1 P = 5.7e−12, C2 2.6e−11, C4 9.9e−11, C5 1.6e−10, C6 1.1e−07, C7 9.5e−06,
C8 2.5e−07, C9 1.1e−08 ; two-sided t-test)
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and a cosine similarity metric as described for assessment of text document similarity

and referred to as tf-idf cosine [13]. The cosine similarity score evaluates the frequency

of 8-mer occurrence between the whitelisted barcodes and the soft-clipped sequence,

with higher scores indicating higher correlation. The edit distance between each of the

top five scoring barcodes and each 16-bp region of the soft-clipped sequence was calcu-

lated and the barcode having the minimum edit distance was determined. If this best

barcode had an edit distance less than three, it was considered a valid match; otherwise,

the read was discarded from further processing.

Size of the RACK1 amplicon from HEK293T cells aggregated in the distribution with

mean 1126 and 5% and 95% quantiles of sizes length population are 1044 and 1212 re-

spectively, which is the expected range. The mean edit distance of selected barcodes

was 0.51 (Additional file 1: Fig S2). The cell barcode’s position within the soft-clipped

portion of the read was an average of 0.54 bases from the expected position based on

the known single-cell adapter/barcode construct. Overall, the data integration between

single-cell long and short-read data enabled us to assess those cells with an altered tar-

get isoform and their accompanying full transcriptome features.

Using long-read sequencing of target cDNAs, we characterized the transcript isoform

diversity in each individual cell. Prior to this quantification step, the 10 bp UMI se-

quence immediately following each cell barcode was reviewed. For any given set of

reads that had the exact same barcode and UMI, these duplicate sequences were dis-

carded (Methods). To assess the extent of potential UMI sequencing errors, the edit

distance between UMIs in cells was calculated and plotted (Additional file 1: Fig S3).

The edit distance approximated a random distribution with only a few UMIs per cell

having edit distance less than 3 between them. Reads per cell barcode and their associ-

ated isoforms were then aggregated, and hierarchical clustering was used to determine

the distribution of different isoforms among cell subpopulations.

Among the wild-type cells, we determined that nearly all of the cells expressed

the full-length RACK1 isoform. Specifically, 5030 out of 5074 cells had more than

90% of isoforms with full-length RACK1 transcripts. However, for a small subset

(Cluster 2) of wild-type cells, 44 out of 5074 cells demonstrated transcript isoform

heterogeneity, averaging 23% of isoforms skipping one or more exons (Additional

file 1: Fig S4). This result demonstrated how long-read analysis combined with

scRNA-seq characterizes the underlying transcript isoform diversity present within

individual cells.

For the cells transfected with CRISPR targeting the splicing acceptor of RACK1’s

exon 5, 6028 of the 7548 cells had more than 33% of their RACK1 isoforms lack-

ing exon 5. This result showed how long-read analysis directly confirmed the pres-

ence of the genome edit (Fig. 1C). We performed hierarchical clustering based on

the expression levels of the different RACK1 transcript isoforms present in each

cell. A subset of cells (Cluster 1, 4732 out of 7548 cells) contained CRISPR edits

in the splicing acceptor in all three alleles of RACK1. A subpopulation of Cluster 2

cells (1234 out of 7548 cells) had predominantly full-length transcripts (82% on

average), indicating a lack of CRISPR editing. One factor contributing to this sub-

population not being completely homogeneous may be the introduction of ambient

RNA from the highly expressed RACK1 gene being incorporated into the cell drop-

lets and causing some cross-contamination.
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Detection of transcriptional changes by RACK1 isoform perturbation

We studied the downstream transcriptional changes for the CRISPR-transfected cells

with different RACK1 isoforms. For this analysis, we integrated the long-read sequen-

cing of RACK1 cDNA with short-read sequencing of the matching single-cell transcrip-

tomes. This step involved matching cell barcodes between the two data sets as

previously described. Next, we compared RACK1 expression level among the clusters

of cells. The cells lacking edits (Cluster 2) had a 1.53-fold higher level of RACK1 ex-

pression (P = 1.04e−194) compared to the cells in other clusters with edits (Fig. 1C and

Additional file 1: Fig S5). The lower RACK1 expression among CRISPR-edited cells

was likely the result of mis-splicing and nonsense mediated decay (NMD). When we

directly compared gene expression profile of cells with the RACK1 isoform lacking

exon5 (Cluster 1) versus the full-length transcript (Cluster 2), we identified 177 differ-

entially expressed genes including RACK1 (Additional file 5: Table S4 and Additional

file 1: Fig S6).

Altering RACK1 isoform structure with multiplexed CRISPR and single-cell level detection

Given this successful proof-of-concept, we designed a multiplexed CRISPR assay that

targeted different exons in RACK1. We selected gRNAs that target the sequence of spli-

cing acceptor sites of RACK1 exons 2-7. We then transfected a pooled plasmid library

containing these gRNAs into HEK293T cells with stable Cas9 expression (Methods). As

previously described, single-cell cDNA libraries were generated from these CRISPR-

transduced cells. Then, we used long-read sequencing of RACK1 cDNA to determine

isoform representation across individual cells. Our results indicated that the multi-

plexed CRISPR gRNAs generated edits leading to different exon-skipping events (Fig.

1D). The cells in Cluster 3 predominantly expressed full-length RACK1 transcripts

(83% full-length transcripts per cell on average), thus indicating that this subpopulation

had not undergone genome editing. Other cells had reads indicating multiplexed

CRISPR editing of splicing acceptors. For example, cells in Cluster 1 showed evidence

of genome editing in exons 2 to 6 with the disruption of multiple splicing acceptor sites

or large deletions (83% with an exon 2 to 6 skipped transcript per cell on average).

Then, we compared short-read gene expression profiles among the cluster of cells de-

fined by the different RACK1 isoforms (Fig. 1D). Using the short-read data, we com-

pared the RACK1 expression levels between the non-edited cells versus edited cells. As

expected, RACK1 expression among the non-edited cells (Cluster 3) was significantly

higher than CRISPR-edited cells (6.59 fold change, P = 1.85e−9) (Fig. 1E). These experi-

ments demonstrated that our approach allows us to identify CRISPR edits leading to

new transcript isoforms as well as their transcriptional level at single-cell resolution.

Single-cell CRISPR screen for various splicing factors with long-read sequencing

Different splicing factor genes impact the generation of alternative splicing events. We

leveraged this aspect of isoform regulation to demonstrate another application of our

approach. Namely, we determined how different splicing factors affect alternative spli-

cing events of a downstream target gene. This mechanism of isoform generation is par-

ticularly crucial for immune cells where changing the regulator state and increased

functional flexibility is paramount. For this experiment, we chose to study the PTPRC
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gene. Expressed in T cells, PTPRC is a transmembrane phosphatase and its pre-mRNA

alternative splicing is critical for changing T cell regulatory states [14]. PTPRC has five

highly expressed isoforms (Additional file 1: Fig S8). This includes two shorter ones

where there is substantial degree of exon loss and several longer isoforms where the

majority of exons from the variable region are retained. Naïve T cells preferentially ex-

press isoforms including variable exons like RB. On the other hand, activated or mem-

ory T cells undergo more exon skipping and express RO as a major isoform [14].

To study how various splicing factors impact the generation of PTPRC isoforms,

we selected a series of gRNAs targeting a set of 16 splicing factor genes (Add-

itional file 6: Table S5). We chose splicing factors which are expressed and play a

critical role pre-mRNA processing in T cells [1, 15, 16]. For example, CELF2 and

RBFOX2 regulate various pre-mRNA processing and other 14 splicing factors are

known to interact with PTPRC pre-mRNA. We integrated this multiplexed CRISPR

assay with single-cell long-read sequencing and determined how each splicing fac-

tor contributed to changes in PTPRC’s transcript isoform structure. For these ex-

periments, we used the Jurkat human cell lines derived from a T cell leukemia.

This line stably expressed Cas9. We transduced a multiplexed gRNA lentiviral li-

brary targeting 16 splicing factor genes (two gRNAs per gene) and five non-

targeting gRNAs as negative controls (Additional file 6: Table S5). After 14 days,

we harvested the cells, generated single-cell libraries, and conducted sequencing

with both short and targeted long reads of PTPRC.

Direct single-cell detection of CRISPR-induced indel mutations with long-read sequencing

First, we determined which gRNAs were expressed within a given individual cell (Fig.

2A). This method relies on using a primer to polymerase extend over the gRNA adja-

cent to a given cell barcode and then sequencing the product to obtain both in a given

read (Additional file 7: Table S6) [17]. With the paired gRNA and cell barcode se-

quence, one determines the distribution of expressed gRNAs across individual cells. To

assess the reliability of our long-read cell barcode matching process, we amplified our

16 targeted genes, conducted nanopore sequencing, and then identified the CRISPR-

induced mutations at the gRNA target site (Additional file 1: Fig S9). In parallel, we

conducted the single-cell short-read sequencing, determined the gRNA for each cell,

and matched the short with the long-read cell barcodes. Based on this comparative ana-

lysis, CRISPR mutations were introduced at the target site at a significantly increased

rate in cells with the appropriate target gRNA versus cells without the guide (Add-

itional file 8: Table S7).

For example, we confirmed that cells expressing the SRSF5-1 gRNA had a variety of

indels at the targeted Cas9 cleavage site in the transcript. This result contrasted to cells

with other gRNAs which lacked indels in the target (Fig. 2B). Our quantitative analysis

showed that the average mutation rate per cell with SRSF5-1 gRNA was 64.32% com-

pared to 12.73% of cells with gRNAs targeting other genes at SRSF5-1 target site (Fig.

2C). The difference in mutation frequency was evident and highly significant (P = 5.85e

−11) despite the high rate of error in nanopore sequencing. Overall, this result indi-

cated that targeted long-read sequencing identified the CRISPR genotypes and that the

short-/long-read barcode matching was reliable.
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Direct detection of CRISPR-induced PTPRC transcript isoform perturbation using single-

cell long-read sequencing

Next, we conducted long-read sequencing of the PTPRC cDNA amplicon from individ-

ual cells. To amplify a specific cDNA, we used primer pair of 5′ cDNA adaptor and

PTPRC exon7 sequences. To filter out PCR artifact, we only used the reads which align

to both exon3 and exon7 of PTPRC. Overall, 98% of reads covered up to exon1 with

the remaining 2% having a truncation as result of early termination of reverse tran-

scription. We clustered individual cells based on the expressed gRNA sequences target-

ing the different splicing factor genes. We determined the expression and relative ratios

of the five most abundant PTPRC transcript isoforms for these cells using long-read se-

quencing. For each long read, the isoform structure was identified by determining

aligned bases within each exon. The cell barcode was identified using the sequence

matching methodology described earlier. Among the different cells with the CRISPR

gene targets versus the negative control, we compared the average ratio of short PTPR

C isoform category and the fold change differences (Fig. 3A and Additional file 1: Fig

S10). The knock-out of HNRNPLL and SRSF5 reduced PTPRC exon-skipping events,

resulting in lower RO and RB abundance (2.01- and 1.18-fold change respectively). In

comparison, the knock-out of PCBP2 and HNRNPD increased exon-skipping events

resulting in higher RO and RB abundance (1.15- and 1.16-fold change respectively).

Therefore, HNRNPLL and SRSF5 induced exon skipping of PTPRC. In contrast, PCBP2

and HNRNPD inhibited exon skipping. Although HNRNPLL and SRSF5 knock-outs

Fig. 2 a Overview of single-cell CRISPR screen integrated with long-read sequencing. b IGV view of SRSF5-1
target site for cells containing different gRNA sequences. Reads from cells with SRSF5-1 gRNA show CRISPR-
induced insertion (purple) and deletion (black line). CRISPR cut site and analysis window for statistical
analysis are shown. c The percentage of mutated reads per each cell are shown as a box plot
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inhibited PTPRC exon skipping, their isoform expression patterns were significantly dif-

ferent (Additional file 1: Fig S11 and 12). The ratio of RBC was comparable between

the two knock-outs but the ratio of RABC was much higher for the HNRNPLL knock-

out (5.60-fold change, P = 5.90e−37). The consequences of PCBP2 and HNRNPD

knock-outs were nearly equivalent with respect to the expression of the RB isoform (P

= 0.1). However, the PCBP2 knock-out had greater expression of the RO isoform (1.20-

fold change, P = 0.017) (Additional file 1: Fig S13).

Overall, HNRNPLL had the most significant effect on PTPRC isoform

regulation. This result is concordant with previous reporting that HNRNPLL

binds to ESS1 site at PTPRC exon4 [18]. We compared the cells expressing the

nontarget-1 gRNA versus the cells expressing the HNRNPLL-1 gRNA (Fig. 3B). In

comparing the cells with nontarget-1 gRNA, the cells expressing the HNRNPLL-1

gRNA had a significantly different expression patterns and ratios of PTPRC iso-

forms. These cells had a relatively lower expression of RO and RB isoforms

(2.45-fold, P = 1.16e−32).

Confirmation of the result with long-read sequencing by CRISPR RNP experiment

To verify this result as well as demonstrate that this method translates to another

CRISPR delivery method, we selected the HNRNPLL gene for an independent

knock-out experiment. We used an electroporation approach to introduce the Cas9

ribonucleoprotein (RNP) targeting HNRNPLL gene into Jurkat cells (Methods). Six

days after electroporation, we prepared single-cell cDNA libraries from the wild-

type Jurkat cells and KO pool cells. Subsequently, we performed single-cell short-

read sequencing to enumerate RNA expression and long-read sequencing to

determine the PTPRC isoforms per each cell. Similar to the previous single-cell

CRISPR screen result, wild-type cells demonstrated abbreviated transcripts (i.e.,

RO, RB) resembling the isoform profile of naïve primary T cells, while HNRNPLL

RNP-treated cells expressed the longer transcript isoforms (i.e., RABC, RBC) (7.35-fold, P

Fig. 3 a Boxplot showing the ratio of short PTPRC transcript isoform (RO and RB) for cells with gRNAs
targeting indicated genes. P values are calculated in comparison with Nontarget. Genes which have less
than three cells with target gRNAs are not shown. b Heatmap showing proportion of each transcript
isoform (x-axis) with each cell (y-axis) and clustering based on transcript isoform proportion for cells having
indicated gRNA sequence
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< 1.0e−5, Fig. 4B, C). When comparing the RNP versus lentivirus-based HNRNPLL

gRNAs, we observed similar PTPRC transcript structures (Figs. 3B and 4C).

This experimental system had an additional functional readout to assess PTPRC

isoform expression. Exposing Jurkat cells to phorbol 12-myristate 13-acetate (PMA)

and ionomycin induces the expression of shorter isoforms of PTPRC [19]. Taking

advantage of this cellular property, we challenged both CRISPR-treated and

wild-type cells with this small molecule combination then subsequently

performed single-cell sequencing. Overall, our results showed that PMA and

ionomycin stimulation increased the differences in isoform expression between

the wild-type cells and HNRNPLL RNP-treated cells. Most of the stimulated

wild-type cells had RO and RB transcript isoforms. However, the stimulated

HNRNPLL RNP-treated cells had fewer RO and RB transcript isoforms (10.32-

fold, P < 1.0e−5, Fig. 4B, C).

Direct detection of CRISPR-induced MYL6 transcript isoform perturbation

In addition to PTPRC, we analyzed the impact of splicing factors on myosin light

chain 6 (MYL6) transcript isoforms. Exon6 skipping of MYL6 is known to be regu-

lated by various splicing factors (Additional file 1: Fig S14A) [1, 20]. We found that

CELF2 targeted cells had a higher percentage of full-length MYL6 transcript iso-

forms compared to cells targeted by other splicing factors (1.44-fold, P = 1.9e−14,

Additional file 1: Fig S14B), indicating that disrupting CELF2 reduced the occur-

rence of exon-skipping.

Fig. 4 a Overview of splicing factors affect alternative splicing. b Quantification of short transcript isoform
per target gene. For each sample (x-axis), the ratio of transcript isoform RO and RB among all PTPRC
isoforms for cells are shown as box plot. c Heatmap showing proportion of each transcript isoform (x-axis)
with each cell (y-axis) and clustering based on transcript isoform proportion for each sample
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Discussion
When analyzed with short reads, single-cell CRISPR screens do not verify the edit

genotype and miss transcript features due to the limitation on sequence length. Ad-

dressing these limitations, our new methodology leverages long-read sequencing tech-

nology for single-cell CRISPR analysis. As a result, CRISPR edit genotypes are directly

confirmed in the target transcript. Isoform variation and levels of expression become

evident at the resolution of individual cells. In addition to the effect of the knock-out of

splicing factors on transcript isoform generations, we can assess the transcriptomic re-

sult of known exon skipping or intron retention events as shown in Fig. 1. Beyond its

application on identifying transcript isoforms, we demonstrated that this approach also

enables one to directly assess the presence of CRISPR indels in the transcript. The se-

quence of expressed guide RNA in each cell, which defines the analysis window for

CRISPR indels, enables this analysis. Future work will test if this method can also assess

single-nucleotide variants in the transcript.

For this study, we demonstrated that our method can be applied across different

CRISPR transduction approaches including plasmid, lentiviral, and RNP delivery. In the

case of the RNP method, one can use this method to assess individual or sets of cells

directly for the presence of the target alteration. This approach obviates the need for

maintaining the expression of a guide RNA within an individual cell for sequencing as

is required by other single-cell CRISPR methods.

Our approach can be used with CRISPR base editing methodology. Unlike Cas9 nu-

clease which induces a complete gene KO, base editors introduce base substitution.

However, base editors can induce a range of different base substitutions outside of what

was originally planned. This lack of specificity leads to unexpected amino acid substitu-

tions unless there is only one target nucleotide at the site of interest. Combining our

long-read methodology with base editors, we can evaluate in a highly scalable and rapid

fashion those cells with the intended substitution versus those with an unintentional

base change. This feature allows one to determine the phenotypic effects of single base

substitution within the target of interest.

Conclusion
Our approach demonstrates a new methodology for the characterization of CRISPR-

induced transcript isoform modifications. We could detect transcript isoform changes

induced by disruption of splicing sites or knock-out of splicing factors at the single-cell

level. Furthermore, CRISPR-induced mutations could also be detected at the single-cell

level. There are many unresolved questions about the biological effect of specific tran-

script isoform changes or the regulation of various splicing factors. Our method will

enable multiplexed analyses of these questions by using multiplexed single-cell CRISPR

screens.

Methods
Cell culture conditions

HEK293T (ATCC CRL-11268) cells and Cas9-stable HEK293T (T3251; Applied Bio-

logical Materials Inc., Richmond, BC, Canada) were maintained in Dulbecco’s modified

Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS). Jurkat
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(ATCC TIB-152) and Cas9-stable Jurkat (SL555, GeneCopoeia, Inc., Rockville, MD,

USA) cells were maintained in Roswell Park Memorial Institute (RPMI) 1640 medium

supplemented with 10% FBS. Cells were authenticated based on sequencing analysis.

All cells were confirmed by PCR to be free of mycoplasma contamination.

Transfection and electroporation condition

We used 1.2 × 106 HEK293T cells to transfect the Cas9 expression plasmid (1000 ng)

and sgRNA plasmids (1000 ng) using Lipofectamine 2000 (Invitrogen, Carlsbad, CA,

USA) according to the manufacturer’s protocol. For electroporation, 2 × 105 Jurkat cells

were used. We used 1250 ng of TrueCut™ Cas9 Protein v2 (Invitrogen) and then we

used 585 ng of sgRNA which were incubated at room temperature for 10 min before

the electroporation to form the RNP complex. RNP was added to Jurkat cells, resus-

pended in R buffer, and electroporated using Neon electroporation system (1700 V /

20ms / 1 pulse, Invitrogen). Electroporated cells were transferred to a 24-well plate

containing the culture medium. After 6 days of transfection or electroporation, cells

were subjected to single-cell library preparation or stimulation.

Single-cell library preparation

Single-cell cDNA and gene expression libraries are prepared using Chromium Next

GEM Single Cell 5' Library & Gel Bead Kit v1.1 or v2 (10X Genomics, Pleasanton, CA,

USA) as per the manufacturer’s protocol. The cDNA and gene expression libraries are

amplified with 16 and 14 cycles of PCR respectively. The quality of gene expression li-

braries is confirmed using 2% E-Gel (Thermo Fisher Scientific, Waltham, MA, USA).

The libraries are then quantified using Qubit (Invitrogen) and sequenced on Illumina

sequencers (Illumina, San Diego, CA, USA).

Long-read sequencing

From the single-cell full-length cDNA, 25 ng was used to amplify transcripts. Primer se-

quences: Partial_R1 – CTACACGACGCTCTTCCGATCT, RACK1_ex8 – ACACTC

GCACCAGGTTGTCCG, PTPRC_ex7 – CCAGAAGGGCTCAGAGTGGT, MYL6_ex7

- ACACAGGGAAAGGCACGGACTCTGG. KAPA HiFi HotStart ReadyMix (Roche,

Basel, Switzerland) was used for amplification. Extension time was 45 s for PTPRC and

60 s for other genes. Libraries were prepared with 900 fmol of each amplicon for Min-

ION flow cell FLO-MIN106D (Oxford Nanopore Technologies, Oxford, UK) and Pro-

methion flow cell FLO-PRO002 (Oxford Nanopore Technologies) or 80 fmol for

Flongle flow cell FLO-FLG001 (Oxford Nanopore Technologies) using Native Barcod-

ing Expansion and Ligation Sequencing Kit (Oxford Nanopore Technologies) as per the

manufacturer’s protocol. Libraries were sequenced on MinION or Promethion over 48

h.

Lentiviral gRNA library production

The oligonucleotide pool for gRNA library cloning was ordered using IDT oPools Oligo

Pools (Coralville, Iowa, USA). Amplified gRNA cassettes were cloned to lentiGuide-

Puro (Addgene plasmid #52963) using NEBuilder HiFi DNA Assembly Master Mix
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(New England Biolabs, Ipswich, MA, USA). Cloned plasmids were purified and electro-

porated to ElectroMAX Stbl4 competent cells (New England Biolabs).

Lentivirus production

2.0 × 106 HEK293T cells were plated 24 h prior to transfection. Cells were transfected

with lentiviral sgRNA library (2000 ng), psPAX2 (1500 ng, Addgene plasmid #12260),

and pMD2.G (500 ng, Addgene plasmid #12259) using Lipofectamine 2000 (Invitrogen)

according to the manufacturer’s protocol. The viral supernatant was collected after 48 h

of transfection, filtered through a 0.45 μm filter, and used.

Lentivirus transduction

To 1.0 × 105 Cas9-stable Jurkat, the lentiviral supernatant and 8 μg of polybrene

(Sigma-Aldrich, MO, USA) were added and the mixture was centrifuged at 800g for 30

min at 32 °Celsius. After that, cell pellets were resuspended to fresh media and plated

in a 6-well plate. After 72 h, transduced cells were selected by puromycin (Life tech-

nologies, CA, USA).

Guide RNA sequencing

The sgRNA direct capture was performed using Chromium Next GEM Single Cell 5'

Library & Gel Bead Kit v2 (10X Genomics) as previously described [17]. Then, 6 pmol

of gRNA scaffold binding primer (oJR160) was added to RT master mix directly before

droplet generation. After cDNA amplification, we performed 0.6X left-sided SPRI

cleanup reaction for cDNAs and 0.6X–1.8X double-sided SPRI selection for gRNA

using SPRIselect (Beckman Coulter Life Sciences, CA, USA). The sgRNA fractions were

amplified by primers oJR163 and oJR163 (Additional file 7: Table S6) and sequenced

with gene expression library.

Single-cell transcript isoform analysis

Short-read transcripts

Basecalling for 5′ gene expression libraries was performed using cellranger 3.2 (10X

Genomics) mkfastq, followed by alignment to reference genome GRCh38, and tran-

script quantification using cellranger count. In preparation for integrated analysis, the

transcript count matrices generated by cellranger were processed by Seurat 3.0.2 [21].

QC filtering removed cells with fewer than 100 or more than 8000 genes, cells with

more than 30% mitochondrial genes and cells predicted to be doublets by DoubletFin-

der [22]. Additionally, any genes present in 3 or fewer cells were removed. Dimension

reduction was performed using principal component analysis (PCA) and UMAP with

30 principal components and cluster resolution of 0.8.

Long-read transcripts

Basecalling was performed using guppy 4.5.4 [11] and alignment to the reference gen-

ome GRCh38 using minimap2 v2.17 [12]. A custom python script utilizing pysam and

the exon coordinates for the gene of interest (RACK1, PTPRC, or MYL6) identified

reads which span exon1 through exon8 for RACK1, exon3 through exon7 for PTPRC,

or exon5 through exon7 for MYL6. For each read, exons which were present in the
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transcript were identified and recorded: for example 1234-678 indicated a RACK1 tran-

script which skips exon 5.

Integration of long and short reads

Using knowledge of the adapter/cell barcode/UMI structure in the reads as well as the

valid filtered single-cell barcodes from short-read sequencing, the putative long-read

barcode is identified. This process involves evaluating the soft-clipped portions of the

aligned long reads, which are extracted utilizing the pysam module in a custom python

script. A second custom python script used a machine-learning approach to identify

the barcode. First, the list of valid short-read barcodes was vectorized using the Count-

Vectorizer function from the Scikit-learn python module, with a kmer length of 8 to

create a reference list. For plus strand genes such as PTPRC, the left soft-clipped region

of each aligned read was then vectorized in the same way and compared to the created

reference using a cosine similarity metric also from Scikit-learn. Similarly, for minus

strand genes such as RACK1, the right soft-clipped region of each aligned read was

evaluated by matching the reverse-complement of the soft-clipped sequence to the ref-

erence list.

For each read, the barcodes with highest cosine similarity to the reference list were

evaluated further. Edit distance to each of the top five reference barcodes having a non-

zero cosine similarity score was calculated for each 16-bp window across the soft-

clipped search sequence. The barcode with lowest edit distance (and in cases of a tie,

the highest cosine similarity score) was selected for final filtering. If the sequenced

cDNA barcode had an edit distance < 3 from the reference short-read barcode, it was

considered a matching barcode; otherwise, the read was not considered a match to any

of the short-read barcodes and was excluded from further integrated analysis. Per the

10X single-cell library preparation process, we know that the 10 bp UMI is located dir-

ectly adjacent to the 16-bp cell barcode. Having established the start position of the

best matching barcode as above, the start position of the UMI can be deduced. For

reads sharing the same barcode, their 10 bp UMI is evaluated and any exact matches

discarded as duplicates. We are unable to use UMI sequences whitelisted from the

short reads due to the much sparser gene expression per cell over the entire transcrip-

tome, versus the long reads for which our genes of interest are amplified. Output from

the barcode matching script was then summarized using awk and bash commands to

provide transcript counts per isoform exon pattern identified from the initial long-read

processing for each barcode. A clustered heatmap was generated in R using heatmap.2,

cutree, and dendextend, showing the proportion of each isoform per cell barcode. The

isoform cluster for each barcode was then added to the Seurat object as a metadata col-

umn using AddMetaData, to enable this categorization to be used in subsequent

visualization plots.

CRISPR-induced mutation analysis

For each gRNA, we set the analysis window as 2 bp around the Cas9 cleavage site. For

each aligned long read, we extracted alignment positions and aligned bases within the

analysis window. Sequences which perfectly matched the reference sequence were con-

sidered wild-type and sequences with insertions, deletions, or base substitutions were
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assigned as mutations. We performed this analysis for each gRNA for each cell and

summarized the mutation rates per gRNA.

Guide RNA in vitro transcription

sgRNA was in vitro transcribed by T7 RNA polymerase using the MEGAshortscript T7

kit (Invitrogen) according to the manufacturer’s protocol. Templates for sgRNA were

generated by extension of two complementary oligo nucleotides. Transcribed RNA was

purified by column purification. Purified RNA was quantified by Qubit 4 Fluorometer

(Invitrogen).

Jurkat cell stimulation

2 × 106 Jurkat cells were stimulated with eBioscience™ Cell Stimulation Cocktail (Invi-

trogen) using half of the recommended concentration in a 6-well plate for 24 h. Stimu-

lated cells were subjected to single-cell library preparation.
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