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Abstract

Aggregating transcriptomics data across hospitals can increase sensitivity and
robustness of differential expression analyses, yielding deeper clinical insights. As data
exchange is often restricted by privacy legislation, meta-analyses are frequently
employed to pool local results. However, the accuracy might drop if class labels are
inhomogeneously distributed among cohorts. Flimma (https://exbio.wzw.tum.de/
flimma/) addresses this issue by implementing the state-of-the-art workflow limma
voom in a federated manner, i.e., patient data never leaves its source site. Flimma results
are identical to those generated by limma voom on aggregated datasets even in
imbalanced scenarios where meta-analysis approaches fail.

Keywords: Differential expression analysis, Federated learning, Privacy of biomedical
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Background
The identification of differentially expressed genes or transcripts, e.g., in diseases or in
response to treatment, is a standard but important task in molecular systems medicine.
Differential gene expression analysis compares the expression profiles of two or more

groups of samples to reveal genes with significant differences between the groups. Tech-
nologies for high-throughput gene expression profiling include microarrays and RNA
sequencing, the latter being more widely used in clinical research today. Both are intrin-
sically different, e.g., signal- vs. count-based measurement, and their results subject to
platform-specific biases [1, 2]. Many bioinformatics tools for identifying differentially
expressed genes from such data have been developed [3–9]. These methods differ with
respect to the assumptions about data distribution (e.g., normal vs. Poisson or negative
binomial distribution), the data normalization strategies, and in the test statistic used to
detect differentially expressed genes [10–12].
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One major challenge of differential expression studies is the lack of robustness due to
the high technical and biological variability of the data [13–15], which can be addressed
using various strategies [16–18]. The simplest andmost effective way would be to increase
the sample size [16], which is non-trivial, as data collection is expensive and time-
consuming, sample availability may be limited (e.g. metastatic cancer or healthy tissue
samples are difficult to obtain), or because existing data can not be shared and pooled
as they are subject to personal data protection laws. The latter is of particular concern
for next-generation sequencing data, from which the sample donor can be identified
under certain conditions [19–21]. Although several human-derived expression profiles
are nowadays publicly available, their utility (in particular in clinical settings) is often still
limited for inherent privacy issues. The statistical analysis of expression data may require
relevant clinical metadata, e.g., patient sex, age, weight, ethnicity, and disease status,
which may be identifying when combined. In addition, recent works suggest that patient
genotypes can be predicted from RNA-seq data, making patients identifiable through
expression profiles or eQTL data obtained from open-access sources [22–24]. Schadt et
al. have shown that genotypes can be inferred from expression levels of eQTL-controlled
genes and sensitive information — for instance, medical history, phenotypic traits, and
family relationships can be revealed [22]. Matching predicted genotypes to known ones
allowed for identifying individuals with an accuracy of up to 99% in optimal settings, i.e.,
when the microarray platform, tissue type, and ancestry were the same for expression and
eQTL datasets. Harmanci and Gerstein proposed a measure of individual-characterizing
information leakage and investigated its dependence on genotype predictability given the
expression dataset [23]. They developed a framework to assess privacy risks before pub-
lishing the data. They have also presented a simplified but effective attack scheme where
homozygous genotypes were predicted from extreme gene expression values.
To control the exchange of sensitive molecular profiling data from, e.g., next-generation

sequencing experiments, databases, such as dbGaP [25] or EGA [26], restrict access to
authorized users affiliated with organizations willing to guarantee the legal and secure
use of personal data. Nevertheless, the application procedure needs to be repeated per
study and per database, making this a difficult and time-consuming process, which is also
error-prone if a priori unknown confounder variables are not requested and can thus not
be corrected for in the downstream analysis. Alternatively, when direct access to raw data
is not possible, researchers can combine the results of several studies using meta-analysis
techniques such as Fisher’s method [27], Stouffer’s method [28], RankProd [29], or the
random effects model [30] (REM). Meta-analysis is widely adopted for aggregation of
genome-wide association studies (GWAS) [31] and differential gene expression analysis
results [32, 33] (cf. the “Meta-analysis approaches” section in the “Methods” section for
details). The main disadvantage of meta-analysis tools is that their underlying assump-
tions about the distribution of p-values or effect sizes may not be realistic. Furthermore,
meta-analysis largely ignores possible differences between cohorts (e.g., class imbal-
ance or heterogeneity of covariate distributions) [34] or data processing steps (e.g.,
normalization) [35], which may have a significant impact on the results [34].
Privacy-aware techniques, such as federated learning (FL) [36], differential privacy (DP)

[37], homomorphic encryption (HE) [38], and secure multi-party computation (SMPC)
[39], have recently moved into the focus of research for tasks involving privacy-sensitive
patient data [40]. Note that in this paper, the term privacy-aware [41] designates the
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techniques that avoid sharing raw personal data between collaborating parties. Such
approaches are usually not in conflict with privacy legislation and may thus legally and
practically be applied to real-world medical data. We call such a privacy-aware approach
privacy-preserving (e.g., DP [37]), if it provides a formally proven privacy guarantee that
captures the risks associated with each sample of the dataset.
FL has become increasingly popular in bioinformatics for GWAS [42, 43], survival

analysis [44], and additional challenges in patient data processing [40, 45]. FL implies col-
laborative model training by multiple participants without disclosing private data to any
other party [36]. Instead, each participant only shares intermediate model parameters
while keeping the private data in the local environment (e.g. the legally safe harbors of the
hospitals’ IT system). The local parameters from the clients are aggregated at the server
iteratively to compute a globally optimal model.
DP perturbs the data or results by adding noise to them. Although DP is privacy-

preserving and complementary to FL, it might dramatically impact the accuracy of the
results. HE performs computation on the encrypted data from the participants. It suffers
from two practical disadvantages [46]: it supports a limited number of operations such
as addition and multiplication, and consequently, it requires approximations to compute
non-linear operations (e.g., computing the inverse of covariancematrix in gene expression
analysis), leading to accuracy loss in the final results. More importantly, it is computa-
tionally expensive because a single machine performs operations on a large amount of
encrypted data and might require a sizable amount of memory to process large datasets
[47]. In SMPC, each participant computes secret shares from the data and shares them
with the computing parties. The computing parties calculate the intermediate results and
exchange them among each other to compute the final results. Because SMPC-based
methods send secret shares of the data from the participants to computing parties, they
consume a huge amount of network traffic [48].
FL is a promising alternative to SMPC and HE in terms of performance and scalability.

Unlike HE, it does not increase computational cost much compared to the centralized
method, and unlike SMPC, it transfers only a small number of model parameters through
the network. Similar to HE, SMPC, and meta-analyses, FL is not privacy-preserving like
DP, i.e., the server might reconstruct the raw data using the model parameters obtained
from the clients [49–51]. However, the approaches based on pure HE and SMPC provide
stronger privacy compared to FL-based approaches because they reveal less information
to the third parties.
The privacy of federated methods can be enhanced by applying HE or SMPC on the

shared model parameters. In comparison to purely SMPC- or HE-based methods, hybrid
approaches are computationally efficient because heavy computations are distributed
across the clients. Additionally, they offer enhanced privacy compared to pure FL, because
the original values of the local parameters remain hidden from the server, and only global
parameters are revealed to the server and the clients.
In this paper, we introduce Flimma (federated limma), a novel federated privacy-aware

tool for the identification of differentially expressed genes called Flimma. Our new tool
represents a federated implementation of the popular differential expression analysis
workflow limma voom [52], one of the standard pipelines widely applied in the field
for expression analyses. We have chosen limma voom among other popular count-based
methods, because it is comparably fast without sacrificing accuracy [5]. Besides that,
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Flimma could be easily modified for handling microarray data, since the limma method
was originally designed for such data [53] and only later extended to RNA-seq data via
voom [5].
Flimma is based on HyFed [54], a hybrid FL framework, which applies additive secret

sharing-based SMPC method to avoid disclosing the local model parameters to the
server (see the “Methods” for details). It provides several advantages over the existing
approaches for gene expression analysis (Fig. 1). Unlike limma voom, Flimma enhances
the privacy of the data in the cohorts since the expression profiles never leave the local
execution sites and only aggregated parameters are revealed to the server and the other
local sites. In contrast to meta-analysis approaches, Flimma is particularly robust against
heterogeneous distributions of data (in particular of confounders and class labels) across
the different cohorts, whichmakes it a powerful alternative for multi-center studies where
patient privacy is a key concern.

Results
We applied Flimma and four meta-analyses approaches on two real-world datasets: a
breast cancer expression dataset from TCGA [55] and a skin dataset from GTEx [56]. To
assess Flimma’s power, we model the multi-party setting by randomly partitioning both
datasets into virtual cohorts, while introducing different levels of imbalance w.r.t. target
class labels and covariate distributions. For both datasets, we simulated three realistic
scenarios leading to different levels of sample distribution heterogeneity between local
cohorts. We split the breast cancer dataset such that three virtual cohorts yield different
frequencies of the LumA subtype to simulate an imbalanced distribution of disease sub-
types collected at different clinical centers (Table 1). Inaddition, we partitioned the TCGA
breast cancer dataset according to tissue source sites. Similarly, GTEx skin dataset was
split by the mean ischemic time to illustrate the effect of potential confounders such as

Fig. 1 Gene expression analysis in case of multi-center studies. Bold arrows show the exchange of raw data,
dashed arrows – the exchange of model parameters or summary statistics. Grey areas highlight different
physical locations
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differences in sample collection and/or processing between the participating laboratories
(Table 2).
We then compared Flimma with popular meta-analysis tools using the limma voom

results on the pooled datasets as gold standard. In summary, Flimma obtained the same
results as limma voom in all tests. Across all experiments, the maximal absolute difference
for log-transformed p-values and log-fold-change values computed by Flimma and limma
voom did not exceed 0.1 (Additional file 1: Table S1). In contrast, the results of the meta-
analysis methods diverged from the results of limma voom, and this effect was especially
pronounced in imbalanced scenarios.
One of the main pitfalls of gene expression analysis is the presence of strong batch

effects in the data. Even for technical replicates, gene expression levels measured in two
laboratories may drastically differ due to the difference in sample preparation and library
construction protocols, sequencing platforms, chemical reagents, and many other known
and unknown experimental factors. To demonstrate that Flimma is robust to experimen-
tal batch effects, we applied it to three independent breast cancer datasets generated at
different laboratories.

Evaluation on artificial dataset splits

We compared negative log-transformed p-values computed by all privacy-aware
approaches (i.e., Flimma and meta-analysis methods) with the results obtained by run-
ning limma voom on the combined dataset. For the privacy-aware approaches, we
computed the root mean square error (RMSE), the precision, the recall, the F1 score, the
Pearson and the Spearman correlation w.r.t. the results of the aggregated analysis with
limma voom, which we treated as ground truth.
As shown in Fig. 2, Tables 3-4, Additional file 2: Table S2, and Additional file 3: Table

S3, Flimma produces the same p-values as the aggregated analysis with limma voom in
all scenarios, including the imbalanced ones. This implies that Flimma is robust against
heterogeneous data distributions across the clients. However, this is not the case for the
meta-analysis approaches. In general, their RMSEs increase (and Pearson correlations
decrease) as the scenarios become more imbalanced, and they introduce false positives
and false negatives even in the balanced scenario. In spite of the difference in p-values cal-
culated by all meta-analysis methods, their gene rankings were quite similar to the ranking
produced by the aggregated limma voom (the Spearman correlation varied between 0.74
to 0.99 in all experiments).

Performance for top-ranked genes

Since some research tasks such as biomarker discovery require the identification of a
small number of significantly differentially expressed genes, we investigated how the
performance of the methods varies with altered numbers of selected top differentially
expressed genes after sorting by p-value (Fig. 3 and Additional file 4: Figures S1-2).
Again, Flimma perfectly reproduced the results of aggregated limma voom in all scenarios
and outperformed all meta-analysis approaches. Fisher’s and Stouffer’s methods demon-
strated almost perfect performance in the balanced scenario, but their performance
decreased in the imbalanced ones.
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Fig. 2 The comparison of negative log-transformed p-values computed by Flimma and meta-analysis
methods (y-axis) with p-values obtained by limma on the aggregated dataset (x-axis) in three scenarios on A
TCGA-BRCA and B GTEx skin datasets. Pearson correlation coefficient (r), Spearman correlation coefficient (ρ),
and root-mean squared error (RMSE) calculated for each method are reported in the legend

Splitting TCGA-BRCA by sample source site

TCGA is a multi-center project and tumor samples of TCGA-BRCA datasets were col-
lected at 37 different clinical centers, which can result in some between-center variability.
Therefore, we also evaluated Flimma and its baselines on a more realistic scenario, where
TCGA-BRCA dataset was split according to the sample source sites, but we kept only 14
of the 37 cohorts, such that each cohort contained at least 3 samples of LumA and basal
subtype.
We selected 3, 5, 7, 10, and 14 cohorts such that subtype frequencies, mean stage, and

age are dissimilar across the selected cohorts (cf. Additional file 5: Table S4 for details).We
also added additional terms in linearmodels to account for possible cohort effects. Similar
to the previous experiments, Flimma clearly outperforms all meta-analysis approaches in
terms of RMSE, precision, and recall (Table 5 and Additional file 6: Table S5).

Robustness to batch effects

To demonstrate the robustness of Flimma towards experiential batch effects, we applied
it on three additional publicly available breast cancer cohorts fromGEO: GSE129508 [57],
GSE149276 [58], and GSE58135 [59]. These datasets were independently collected and
sequenced at three different laboratories and subjected to various experimental biases
related to sample preparation, library construction, and sequencing platform (Additional
file 7: Table S6). However, we assumed that collaborating partners can agree to use the
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Fig. 3 The dependency of the F1 score on the number of top-ranked genes considered to be differentially
expressed. Genes were ranked in order of their negative log-transformed p-values decreasing and the
number of top-ranked genes varied between 20 and 3500 (for TCGA-BRCA dataset, A) and 300 (for GTEx Skin
dataset, B) with step 5

same quantification pipeline and therefore obtained uniformly (in silico) preprocessed
raw read counts from ARCHS4 [60].
In contrast to TCGA-BRCA, cohort-specific batch effects in the GEO datasets were

much more pronounced. Principal component analysis revealed that the differences
between samples from different cohorts were much larger than the differences between
subtypes within the same cohort (Fig. 4). In this case, effective adjustment for batch effect
before testing for differential expression is crucial [61]. This can be done in two ways,
either via subtracting the variation explained by batch from the data or via the inclu-
sion of additional variables accounting for batch effects to the model. With Flimma, we
implemented the second approach, as it is preferable for downstream statistical anal-
ysis [62]. Below, we will demonstrate that this approach effectively handles the batch
effects in our breast cancer data sets and gives almost identical results. Several meth-
ods for batch effect correction exist, but not all of them are compatible with limma
voom because the latter is computing count-based statistics. A recently published mod-
ification of the state-of-the-art batch-effect correction method ComBat [63], namely
ComBat-Seq [64], is developed specifically to handle read count data. Hence, we uti-
lized the results of limma voom obtained on the centralized GEO cohort after the
removal of laboratory-specific effects by ComBat-Seq as a gold standard in the following
experiments.
In Flimma, we model the batch effects of datasets by addingm − 1 binary covariates to

the linear model, where m is the number of datasets. Despite the strong batch effects in
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Table 5 RMSE, precision, and recall obtained by Flimma and the meta-analysis tools on TCGA-BRCA
datasets split by tissue source sites

The number of cohorts 3 5 7 10 14

RMSE
Flimma 0.0008 0.0007 0.0008 0.0017 0.0012
Fisher 0.94 1.82 2.53 3.86 5.37
Stouffer 1.47 2.21 2.87 4.26 5.68
REM 2.73 3.68 4.75 7.21 8.50
RankProd 5.16 8.19 11.32 18.92 23.50

Precision
Flimma 1.00 1.00 1.00 1.00 1.00
Fisher 0.85 0.88 0.90 0.93 0.95
Stouffer 0.85 0.88 0.91 0.93 0.95
REM 0.93 0.94 0.95 0.97 0.97
RankProd 0.92 0.87 0.90 0.93 0.95

Recall
Flimma 1.00 1.00 1.00 1.00 1.00
Fisher 0.92 0.95 0.95 0.96 0.97
Stouffer 0.89 0.93 0.94 0.96 0.97
REM 0.93 0.96 0.97 0.98 0.98
RankProd 0.87 0.96 0.96 0.96 0.97

Values corresponding to the best performance over all methods are italicized

the GEO data, Flimma returned nearly the same fold-changes and BH-adjusted p-values
as limma voom run on the same data after batch effect removal by ComBat-Seq (Fig. 5).
Moreover, our results suggest that the approach used by Flimma gives better results than
batch effect correction based on one or several first principal components (Additional
file 4: Supplementary Text and Additional file 8: Table S7).

Fig. 4 PCA projections computed and plotted by proBatch R package [99] of samples from three GEO
cohorts (A, B) and TCGA-BRCA cohorts (C, D) colored according to cohort (A, C) and cancer subtype (B, D)
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Fig. 5 Comparison of the results obtained by Flimma on uncorrected GEO data with the results of limma
voom after batch effect removal by ComBat-Seq

Discussion
In this work, we presented Flimma, a privacy-aware tool for differential expression anal-
ysis. While Flimma results are mathematically equivalent to limma voom, Flimma can
operate on distributed cohorts without the disclosure of sensitive data. To enhance data
privacy, Flimma uses a hybrid federated approach, where the local parameters of the
clients are hidden from the server and only global parameters resulting from the aggre-
gation are disclosed. We employed HyFed to implement Flimma because unlike similar
methods such as [65], it is an open source framework with a Python API (application pro-
gramming interface) to develop hybrid federated tools. Moreover, it supports federated
mode, in which different components can securely communicate over the Internet using
the HTTPS protocol.
In this work, we have demonstrated that Flimma is superior to meta-analyses in imbal-

anced scenarios when the distributions of class labels or covariates are not identical
between cohorts. We have also shown that Flimma is robust to technical batch effects.
One limitation of this work is the absence of a gold standard for the evaluation of

differential expression analysis results. ABCD mixtures used in RNA-seq benchmark
projects [1, 66] are not suitable for this study, since only five or less replicates of each
mixture are sequenced by each participant. Although these projects aremulti-center stud-
ies, such a small number of samples per participating center would not be realistic for
mimicking modern biomedical studies involving human patients. Moreover, with these
artificial mixtures, we could not model biological variability which is intrinsic of real-
world patient-derived data. Therefore, we have only tested Flimma on patient-derived
expression datasets, split them into parts modeling independent cohorts if necessary and
considered the results of limma voom obtained on the combined datasets as ground truth.

Remaining privacy risks

Although Flimma greatly enhances data privacy compared to centralized analysis, it does
not provide a perfect privacy guarantee which quantifies the risk associated with the
individual samples in the dataset. Flimma assumes non-colluding parties, e.g., the aggre-
gator or compensator never exchanges the individual noisy parameters or noise values
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from the clients with each other, and there are more than two clients participating in the
study. Another assumption is honest-but-curious parties, which stick with the protocol
and follow it but try to reconstruct the data from the model parameters.
One possible scenario of such a reconstruction attack is the recovery of the global X

fromXTX by the aggregator, if the number of samples is close to the number of covariates.
However, this is not realistic for differential expression analysis because the former should
be much larger than the latter for a reliable analysis.
Another potential threat is the presence of a column with all 0 but one 1 in the global

design matrix X. In this case, XTY reveals the expression profile of a sample with a non-
zero value in that column. This is also an unlikely scenario because covariate columns
that contain just a single non-zero element are not informative for differential expression
analysis and should not be included in the model.
Since it is impossible to oversee all potentially possible scenarios where reconstruction

might be feasible, the users should be aware that Flimma cannot fully exclude the risk of
reconstruction attacks at intermediate results. Providing a privacy guarantee using DP to
capture the privacy risks of patients in the dataset while preserving the accuracy of the
results in a satisfactory level remains the direction for future research. Note that the risk of
reconstruction attack is not excluded for meta-analysis methods. Although local p-values
and effect sizes appear to be less prone to reconstruction attack than the aforementioned
intermediate global parameters computed by Flimma, no formal proof of this intuition is
provided. Despite that, meta-analyses remain popular approaches that are not in conflict
with privacy legislation. In addition to a reasonable protection of the raw data, Flimma
offers better accuracy than meta-analysis methods.

Future directions

While limma voom is a state-of-the-art method for differential expression analysis that
performs favorably in benchmarks [5], other methods for normalization (e.g., quantile
normalization [67]) and differential expression analysis (such as edgeR [3], DESeq2 [6], or
sleuth [9]) exist and may yield different results depending on the dataset used. We thus
consider extending Flimmawith federated implementations of alternative methods in the
future.
Another prospective direction for future work is the development of accessory tools for

gene expression analysis. This includes for example, federated principle component Anal-
ysis (PCA), useful for quality control, or federated batch effect correction methods, such
as ComBat or RUVSeq [68]. Although we have shown that the current version of Flimma
effectively handles batch effects, other analyses of expression data such as clustering or
classification might require transformed data.
Although limma has been initially developed for differential gene expression analy-

sis, it is widely used for the analysis of various omics data types, e.g., proteomics [69,
70], metabolomics [71], and microbiomics [72]. Therefore, we plan the development of
Flimmamodifications suitable for the analysis of other omics data types in the future.

Conclusions
Flimma is a privacy-aware tool for the federated identification of differentially expressed
genes. It is user-friendly and publicly available at https://exbio.wzw.tum.de/flimma/
including tutorials and a video documentation on its principle and application to real data.

https://exbio.wzw.tum.de/flimma/
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While Flimma results are mathematically equivalent to limma voom, Flimma operates
on distributed cohorts without the disclosure of sensitive data. To enhance data privacy,
Flimma uses a hybrid federated approach, where the local parameters of the clients are
hidden from the server and only global parameters resulting from the aggregation are
disclosed. In contrast to meta-analysis approaches, Flimma is robust against heteroge-
neous distribution of data across the different sites and to technical batch effects. In
summary, Flimma is a promising alternative to meta-analysis methods for multi-center
gene expression projects, as it enhances patient privacy while providing the same results
as a centralized analysis.

Methods
The limma voomworkflow

limma voom is the state-of-the-art method for differential expression analysis. Initially
designed for microarrays [53], it was extended by the voom function, which removes the
mean-variance trend from RNA-seq data and makes it suitable for analysis by limma
[5]. Recently, the authors of limma published an updated guideline on the recommended
limma voom workflow [52]. Data preprocessing steps of this workflow include removal
of weakly expressed genes using the filterByExpr function from the edgeR package, con-
version of raw read counts to log2-transformed counts per million (log-CPM), and
normalization of gene expression distributions. We only differ from this workflow by
using the upper-quartile (UQ) normalization [35] instead of the trimmed mean of M-
values (TMM) normalization [73], since the latter would require disclosing one of the
sample profiles to all participants. Although UQ is not the only normalization method
that could be implemented in a federated fashion, we have chosen it because it is one of
the most widely used in the field [68, 74]. Since no normalization method outperforms
others in all cases [75, 76], we are going to implement more federated normalization
methods in the future. Furthermore, given the matrix of normalized log-CPM values and
the design matrix, voom computes precision weights, which compensate for the mean-
variance bias that is typical for RNA-seq data and thus makes them suitable for use in
limma.

Flimma

Implementation

Flimma is based on HyFed (https://github.com/tum-aimed/hyfed) [77], a hybrid fed-
erated framework implementing an SMPC-like approach to hiding the original values
of the local parameters from the server (Fig. 6) [54]. HyFed comprises four software
components: an aggregator server, a compensator server, a client app, and a web interface.
To start the project, the coordinating user signs into the web interface, creates the

project, sets its parameters (e.g., confounding factors, etc.), and invites the participants.
Each participant receives a token and a project ID from the coordinator and locally runs
the client app to join the study and to select the local dataset. The computations are
orchestrated by the aggregator server, which coordinates the clients, aggregates their local
model parameters to global parameters, and returns global parameters to clients. Unlike
in FL, with HyFed, clients mask their local parameters with noise before sending them
to the aggregator to enhance the data privacy. The noise matrix has the same shape as
the parameter matrix and contains random numbers. The approach to random number

https://github.com/tum-aimed/hyfed


Zolotareva et al. Genome Biology          (2021) 22:338 Page 16 of 26

Fig. 6 The scheme of Flimma.M denotes local intermediate parameters, N denotes local noise. K is the total
number of participants. Note that addition and subtraction may be ordinary or modular, see the “Masking
scheme” section for details

generation depends on the data type of the masked matrix and is described in detail in
the next section. The noise matrix is sent to the compensator server, which aggregates
the noise received from all clients and shares the global noise matrix with the aggrega-
tor. The aggregator calculates noisy global parameters and denoises them, by subtracting
the global noise matrix provided by the compensator from the noisy global parame-
ters. The proposed hybrid approach provides improved privacy, because a reconstruction
attack would require compromising two servers in this case. The aggregator and compen-
sator server components should run in separate machines at distant physical locations.
Ideally, to minimize the risk of reconstruction attacks, they should be controlled by third-
party organizations not connected to any of the study participants. Currently, the publicly
available Flimma web tool is using the aggregator running at the Chair of Experimen-
tal Bioinformatics, Technical University of Munich (Germany), while the compensator
is hosted at the Department of Mathematics and Computer Science at the University of
Southern Denmark (Denmark).
As the original limma voom, each Flimma client accepts a matrix of read counts and a

design matrix, specifying class labels and covariates for each sample. Flimma outputs a
table with p-values, fold-changes, and moderated t statistics for each gene.
Flimma is publicly available at https://exbio.wzw.tum.de/flimma/. The “HowTo” page

provides a quick-start guide for Flimma along with test data and describes input file
formats.

Masking scheme

Flimma employs the local parameter masking approach of HyFed, which treats non-
negative integer-valued parameters and real-valued parameters differently. For masking
non-negative integers, it applies the standard additive secret sharing scheme based on
modular arithmetic over the finite field Zp = {0, 1, p − 1}, where p is a prime number

https://exbio.wzw.tum.de/flimma/
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[39]. The elements of noise matrixNi are drawn from Zp and added to parameters matrix
Mi using modular addition over Zp, i.e., M′

i = (Mi + Ni) mod p. The compensator and

aggregator also use modular addition to compute global noise N =
(

K∑
i=1

Ni

)
mod p

and global noisy parametersM′ =
(

K∑
i=1

M′
i

)
mod p. Finally, the aggregator removes the

global noise from global noisy parametersM = (M′ − N) mod p.
Real-valued parameters are protected by the secret sharing approach based onGaussian

distribution [78, 79]. Noise values are drawn from N
(
0, σ 2) added to local parameters:

M′
i = Mi+Ni. Noise aggregation and compensation is performed using ordinary addition

and subtraction operations, respectively: N =
K∑
i=1

Ni,M =
K∑
i=1

M′
i − N .

The theoretical analysis of information leakage for additive secret sharing based on
modular arithmetics [39] and the real value secret sharing based on Gaussian distribution
[79] using the mutual information criterion [80] are provided in the literature [54]. The
mutual information measures the reduction in uncertainty about one random variable
(e.g., the original values of local parameters Mi) given the knowledge of another random
variable (e.g., noisy local parameters M′

i). Regarding the original and noisy local param-
eters with non-negative integer values, it has been shown that the mutual information
between them is zero, and thus, the noisy local parameters leak no information about
the original local parameters [39]. For real-valued local parameters, however, the upper-

bound on mutual information between Mi and M′
i is:

1
2 log2

(
1 + σ 2

Mi
σ 2

)
, where σ 2

Mi
and

σ 2, indicate the variance of the original values of the local parameters and the variance of
the Gaussian noise, respectively. That is, the maximum amount of information about Mi

disclosed byM′
i depends on

σ 2
Mi
σ 2 .

In practice, Flimma sets p equal to 254 − 33, the largest prime number that can fit in a
54-bit integer, and σ 2 = 1012, which is large enough for typical gene expression from the
privacy perspective. The mean of the Gaussian noise generator has no significant impact
on privacy [79], and therefore, Flimma sets it to zero. To ensure the correctness of the
results for non-negative local parameters, overflow must not occur during the computa-

tion of the aggregated noise, aggregated noisy local parameters, and
K∑
i=1

Mi < p. The value

of p can be set to larger values to support larger integers but at the cost of supporting a
fewer number of clients [54]. Likewise, too large values of σ 2 might impact the precision
of the results. However, we confirmed that with default values of p and σ 2, the differ-
ences between p-values and t statistics computed by Flimma with and without masking
the local parameters never exceeded the 10−8.

Workflow

Flimma implements a federated version of the limma voom workflow, allowing privacy-
aware detection of differentially expressed genes. The scheme of the Flimma workflow is
presented in Fig. 7.
First, genes that do not have sufficient counts for further statistical analysis are removed.

For this, we implemented a federated version of the filterByExprs function [81] from
the edgeR package, which employs two filters: min_total_count filter and CPM cutoff.
The first filter removes genes whose sum of counts over all samples does not exceed
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Fig. 7 The scheme of Flimma workflow. Steps that were reimplemented in a federated fashion are shown in
blue. The names of the functions used in the limma voom workflow are shown on the right of the flowchart

min_total_count threshold. The second filter excludes genes expressed in insufficient
number of samples. It keeps only genes where at least min_n_samples samples pass the
CPM cutoff. This cutoff is calculated as a ratio ofmin_count over the median library size
multiplied by 106, wheremin_n_samples is defined by the smallest group size in the design
matrix. The function parametersmin_count andmin_total_count are set to 10 and 15 by
default and can be adjusted by the user.
UQ normalization performed in the second step of the pipeline requires the exchange

of scaled normalization factors which cannot be used to reveal any private data. The third
and the fourth steps of the workflow resemble the voom and lmFit functions from the
limma package, which are fitting linear regression models. For training the linear regres-
sion model in the federated fashion, Flimma utilizes the same approach described by
[82]. For each gene, each of n clients compute local noisy results

(
Xi)T Xi + Ni

XTX and(
Xi)T Y i + Ni

XTY , where X
i is a real-valued design matrix, Y i is the vector of normalized

log2-CPM values for the gene, Ni
XTX and Ni

XTY are the noise matrices, and i is the index
of a client, and sends them to the server. The compensator summarizes noise from clients
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to global noise

NXTX =
K∑
i=1

Ni
XTX ,NXTY =

K∑
i=1

Ni
XTY ,

and shares it with the aggregator. The aggregator computes global noisy results XTX and
XTY and denoises them:

XTX =
K∑
i=1

((
Xi)T Xi + Ni

XTX

)
− NXTX ,

XTY =
K∑
i=1

((
Xi)T Y i + Ni

XTY

)
− NXTY .

The denoised XTX and XTY are used to compute β , and unscaled standard errors of the
coefficients:

β =
(
XTX

)−1
XTY ,

uSEβ = diag
(
XTX

)
.

Global coefficients β are sent back to the clients, which locally compute fitted log-CPM

Ŷ i = Xiβ ,

and the noisy sums of squared errors

SSEi =
mi∑
s=1

(
yis − ŷis

)2 + Ni
SSE ,

where s is sample index andmi is the total number of samples in the ith client.
The aggregator collects noisy SSEi from clients, receives global noise

NSSE =
∑
i
Ni
SSE

from the compensator, and computes estimated residual standard deviations for each
gene:

σ =

√√√√√√√
∑
i
SSEi − NSSE(∑
i
mi

)
− k

The fifth step involves only β , σ 2, and unscaled standard errors, and therefore does not
require to be federated. All subsequent computations are performed on the side of the
aggregator in the same way as done by the original limma voom.

Meta-analysis approaches

Three classes of meta-analysis approaches can be distinguished: effect size combination
methods, p-value combination methods, and non-parametric methods [33]. Effect size
combinationmethods estimate variances of effect sizes for every gene and compute global
effect sizes as a weighted sum of local effect sizes divided by the sum of all weights. This
class includes the fixed effects model (FEM) and the random effects model (REM), which
differ in the way they compute weights [30]. FEM calculates the weights as the inverse
of the within-study variance. REM assumes that total variance includes within-study and
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between-study variance components and calculates the inverse of their sum. Both meth-
ods calculate p-values given global effect sizes and assuming their normal distribution.
We chose REM since it is more robust to data heterogeneity than FEM and more widely
used [83].
P-value combination methods are based on the assumption that the sum, minimum

or maximum of log-transformed p-values obtained in independent studies follow a cer-
tain distribution [33]. These methods are thought to be more suitable for imbalanced
scenarios than effect size combination methods [84]. From this class of methods, we
chose Fisher’s method [27] because it is most sensitive to small p-values [85] and Stouf-
fer’s method (also known as z-method) [28] since it was shown to be superior to Fisher’s
method in some cases [86].
Non-parametric rank-based methods estimate global permutation-based p-value, by

comparing the sum or the product of ranks obtained for the observed matrix of ranks
with the same summary statistics calculated on shuffled rankmatrices. Although the Rank
Product method [29] is much more computationally expensive than the Rank Sum, the
first gives more robust results [87].
In this work, we used the REM and Fisher’s method from metaVolcanoR package [88],

the implementation of Stouffer’s method fromMetaDE package [89] and RankProd pack-
age [90] for Rank Product method. For all selected meta-analysis methods except REM,
global fold change was calculated as a mean of local fold changes.

Evaluation

The main result of differential expression analysis is a list of genes with p-values and
log-fold changes, reflecting the significance and the strength of differential expression,
respectively. To validate the results of Flimma and demonstrate its advantage over meta-
analysis approaches, we compared the Flimma and meta-analysis results obtained on
artificial dataset splits to the results of limma voom applied on the aggregated datasets.
We chose two large datasets comprising RNA-seq gene expression profiles of human-

derived samples. The first dataset included 850 expression profiles of human breast
tumors from TCGA-BRCA cohort [55], classified as luminal or basal subtypes and anno-
tated with patient age and tumor stage. We searched for genes differentially expressed
between luminal and basal subtypes and included the age of diagnosis and tumor stage as
covariates. The second dataset comprised 1277 skin expression profiles from GTEx [56]
with sun exposure as target class label and patient age and sex as covariates. Each dataset
has been divided into cohorts to model the multi-party setting under various scenarios
(see the “Datasets” section for details).
In all tests, we applied limma voom on the complete dataset and on each of its par-

titions independently. The p-values and effect sizes computed by limma voom on the
aggregated datasets were treated as ground truth, and those obtained on cohorts were
used as input for the meta-analysis methods, which aggregated them to the global
p-values.
To avoid manual execution of Flimma GUI for every test, we used a script perform-

ing exactly the same computations as the web version of Flimma. The code for running
Flimma and its baselines, and the instructions for data download and preprocessing
are available at GitHub (https://github.com/ozolotareva/flimma) [91] and at Zenodo
(doi:https://doi.org/10.5281/zenodo.5711972) [92] under the terms of the Apache 2.0

https://github.com/ozolotareva/flimma
https://doi.org/10.5281/zenodo.5711972
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license. Flimma and themethodology of its evaluation are described in AIMe registry [93]
at https://aime-registry.org/report/v6v9dj.
For each method, we considered a gene determined as differentially expressed, if it has

|log(FC)| > 1, and BH-adjusted p-value< 0.05. For the results produced by each method,
we computed the RMSE, the precision, the recall, the F1 score, the Pearson, and the
Spearman correlation. Since only a small number of the most significantly differentially
expressed genes is of interest for some research tasks, we have also investigated how the
performance of the methods varies with the numbers of top-ranked genes selected.

Datasets

TCGA breast cancer data

Unprocessed read counts summarized to gene-level and clinical annotations of samples
were downloaded from https://gdac.broadinstitute.org/runs/stddata__2016_01_28/data/
BRCA/20160128. 850 expression profiles classified as luminal, or basal-like subtypes and
annotated with the age of diagnosis and tumor stage were kept. Although breast cancer
samples are classified into 4–6 subtypes [94–96], we focused on the most frequent sub-
types for evaluation purposes. Luminal and basal subtypes are well distinguishable at the
level of gene expression [55, 94] (Additional file 4: Figure S3A). We searched for genes
differentially expressed between these subtypes and included the age of diagnosis and
tumor stage as covariates. The luminal subtype is subdivided into luminal A (LumA) and
luminal B (LumB) subtypes [95]. However, the LumA subtype was not included in the
model as a covariate and we modeled the presence of an unknown disease subtype in our
experiments.

GTEx skin data

Raw read counts per gene were obtained from the GTEx v8 portal website (https://www.
gtexportal.org/home/datasets). Expression profiles of sun-exposed and non-sun-exposed
skin samples annotated with mean ischemic time and sex were kept. The resulting dataset
comprises 1277 expression profiles of 677 sun-exposed and 600 non-sun-exposed skin
samples, also annotated with sex and ischemic time. In contrast to the TCGA-BRCA
dataset, a smaller fraction of genes was differentially expressed between sun-exposed and
non-exposed skin samples (Additional file 4: Figure S3B). Besides patient age and sex,
samples were annotated with ischemic time, i.e. the time between patient death or sam-
ple withdrawal and sample fixation, or freezing. Ischemic time was not included in linear
models but varied between cohorts in imbalanced scenarios, thus serving as an unknown
confounder related to differences in sample preprocessing.

Generation of artificially distributed and heterogeneous datasets

To demonstrate the robustness of Flimma, we split both datasets differently in a balanced,
a mildly imbalanced, and a strongly imbalanced scenario. In the balanced scenario, each
sample was randomly assigned to one of three equal-sized cohorts with a similar dis-
tribution of covariates. In the imbalanced scenarios, the fractions of target classes and
the distributions of some covariates differed among cohorts. Cohort sizes were unequal
and related as 1:2:4 and 1:3:9 for the mildly and the strongly imbalanced scenarios,
respectively. In the TCGA-BRCA dataset, we introduced an imbalance of luminal and
basal subtype frequencies and, in addition, changed the frequency of the LumA sub-
type (Table 1). In the GTEx skin dataset, the fraction of sun-exposed skin samples and

https://aime-registry.org/report/v6v9dj
https://gdac.broadinstitute.org/runs/stddata__2016_01_28/data/BRCA/20160128
https://gdac.broadinstitute.org/runs/stddata__2016_01_28/data/BRCA/20160128
https://www.gtexportal.org/home/datasets
https://www.gtexportal.org/home/datasets
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the median of mean ischemic times were made unequal between cohorts in imbalanced
scenarios (Table 2).

GEO datasets

Raw read counts for three breast cancer cohorts from GSE129508 [57], GSE149276 [58],
and GSE58135 [59] were obtained from ARCHS4 [60] (https://maayanlab.cloud/archs4/).
ARCHS4 collected raw reads from publicly available human andmouse GEO datasets and
uniformly preprocessed them. Raw reads from each human-derived sample were pseudo-
aligned against the GRCh38 human reference genome and quantified by kallisto [97].
Since in our experiment we searched for genes differentially expressed between human
breast cancer subtypes, we have chosen datasets comprising patient-derived breast tumor
samples and excluded xenografts and cell lines. We also excluded samples annotated
as cell lines from GSE58135 and post-intervention samples from GSE129508. Intrin-
sic breast cancer subtypes were predicted using the genefu R package [98]. Same as
before, we searched for genes, differentially expressed between the luminal and basal
subtypes. Luminal A subtype and the sequencing center were added to the model as
covariates.
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