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Abstract

Alternative splicing (AS) is an important aspect of gene regulation. Nevertheless, its
role in molecular processes and pathobiology is far from understood. A roadblock is
that tools for the functional analysis of AS-set events are lacking. To mitigate this, we
developed NEASE, a tool integrating pathways with structural annotations of protein-
protein interactions to functionally characterize AS events. We show in four
application cases how NEASE can identify pathways contributing to tissue identity
and cell type development, and how it highlights splicing-related biomarkers. With a
unique view on AS, NEASE generates unique and meaningful biological insights
complementary to classical pathways analysis.
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Background
Alternative splicing (AS) boosts transcript diversity in human cells [1] and thus con-

tributes to tissue identity [2], cell development [3], and pathology in, e.g., cardiomyop-

athy [4], muscular dystrophy [5], or autoimmune diseases [6]. It is estimated that up to

30% of disease-associated genetic variants affect splicing [7]. RNA sequencing tech-

nologies (RNA-seq) allow the quantification of different types of AS events and detect

splicing abnormalities in disorders. However, RNA-seq utility is currently limited by

our incomplete understanding of the functional role of specific exons or the transcripts

they contribute to.

A major challenge in AS analysis is the functional interpretation of a set of events,

including isoform switching events and differentially spliced exons. The usual approach

is to perform gene set enrichment or overrepresentation analysis [8–10]. This ap-

proach treats all genes affected by AS equally, neglecting that some AS events may not

be functionally relevant at the protein level [11] or result from noise in the splicing
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machinery [12]. Furthermore, functional differences between protein isoforms remain

uncertain in many cases. A promising strategy to identify relevant AS events is to focus

on those that lead to meaningful changes in the protein structure. Recent studies have

shown that AS has the potential to rewire protein-protein interactions by affecting the

inclusion of domain families [13] and linear motifs [14] or by activating nonsense-

mediated decay [15].

This motivated the creation of databases and tools that predict the consequences of

individual AS events or isoform switches. IsoformSwitchAnalyzeR [16], tappAS [17],

DoChaP [18], and Spada [19] support transcript-level (as opposed to exon-level) ana-

lysis to identify isoform switches and their impact on the translation and the resulting

isoforms features, such as domains, motifs, and non-coding sites. Exon Ontology [20]

and DIGGER [21] support exon-level analysis to identify exon skipping events and their

possible impact on the protein structure and function. Spada and DIGGER further con-

sider the impact of AS on protein-protein interactions.

Most existing tools allow investigating AS-driven changes in an explorative fashion

but tools for systematic analysis of functional effects of AS are lacking. Exon Ontology

performs statistical tests to identify enriched features within a set of skipped exons.

One example is domain families affected by AS across proteins more frequently than

expected. However, none of the existing tools offer a systems biology view to specific-

ally highlight functional consequences of AS events.

To tackle these limitations, we developed the first tool for functional enrichment of AS

events. NEASE (Network-based Enrichment method for AS Events) first detects protein

domains affected by AS and then uses protein-protein interactions (PPI) integrated with

domain-domain interactions (DDI) [21], residue-level, and domain-motif interactions

(DMI) [22] to identify interaction partners likely affected by AS. Next, it employs an edge-

level hypergeometric test for gene set overrepresentation analysis. This approach is new

in the way genes are selected for the enrichment test. Rather than considering only differ-

entially spliced or expressed genes, which is currently the most common strategy, NEASE

uses network information to select genes that are likely affected in the interactome. This

is also superior to a simple network enrichment analysis, as we consider only those edges

for which an AS contribution seems relevant and for which false positive results are less

likely. We evaluated NEASE using multiple datasets from both healthy and disease co-

horts. We show that the NEASE approach complements gene-level enrichment, and even

outperforms it in scenarios where gene-level enrichment fails to find relevant pathways.

Moreover, NEASE generates unique and meaningful biological insights on the exact im-

pact of AS. Furthermore, since the statistical approach is network-based, NEASE can

prioritize (differentially) spliced genes and find new disease biomarkers candidates in case

of aberrant splicing. The NEASE Python package, freely available at https://github.com/

louadi/NEASE, provides multiple functions for a deeper analysis and visualization of af-

fected protein domains, edges, and pathways (individually or as a set).

Results
Overview of NEASE

NEASE uses a hybrid approach that combines biological pathways with PPIs and DDIs

to perform functional enrichment of AS. First, we use the structural annotation of
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known isoforms by mapping protein domains from the Pfam database [23] to the corre-

sponding exons (Fig. 1A). Second, we construct a structural joint graph as previously

reported [21] by enriching the BioGRID PPI [24] with DDIs (from DOMINE [25] and

3did [26]), DMIs from the Eukaryotic Linear Motif resource (ELM) [22], and interface

residues from the Protein Data Bank (PDB) [27] (see Methods). In the joint graph, pro-

tein features such as domains, motifs, and residues are mapped to their mediated

Fig. 1 Overview of NEASE. A Annotated exons are mapped to Pfam domains, motifs, and residues. The
joint graph of PPIs, DDIs, DMIs, and co-resolved structure is used to identify the interactions mediated by
these features. B For a list of exons/events, NEASE identifies interactions mediated by the spliced protein
features and pathways that are significantly affected by those interactions. C NEASE provides a corrected p
value, in addition to an enrichment score (NEASE Score) for every pathway (see the “Methods” section). The
user can further focus on an individual pathway, where NEASE can prioritize genes and find new
biomarkers. In this example, the gene G3 was not part of the enriched pathway A but it has the largest
number of affected interactions with genes from the pathway

Louadi et al. Genome Biology          (2021) 22:327 Page 3 of 22



interactions. Thus, NEASE provides an exon-centric view of the interactome and ad-

dresses the limited exon-level annotation. Exons are represented by the features they

encode, and interactions between features are represented by edges. In this way, the im-

pact of AS can be seen as an edgetic change in the network. Analyzed AS events are

viewed as a set of affected edges that represent gained or lost PPIs.

We then perform statistical tests to find enriched pathways and most likely respon-

sible genes (Fig. 1B). Following, (differential) splicing analysis, a one-sided hypergeo-

metric test is used to test for enrichment of a given pathway or gene set by considering

all edges affected by AS in an experiment. A similar test is applied for each spliced gene

to prioritize the most relevant events/genes that are affecting a pathway. We further

introduce a weighted score (NEASE score) that penalizes hub nodes that are more

likely to be connected to the pathway of interest by chance. Notably, this approach also

considers genes that are not part of the existing pathway definition but show a signifi-

cant number of interactions with the pathway, highlighting new putative biomarkers

(see Methods and Additional file 1: Figure S6, for details).

The Python package provides an interactive analysis. Using a list of exons or events,

users can run a general enrichment on 12 different pathway databases (collected from

the ConsensusPathDB resource [28]), followed up by a specific analysis and

visualization for a single affected pathway or module of interest (Fig. 1C). To provide

analysis for individual isoforms and events, we linked NEASE to our previously devel-

oped database DIGGER, which provides an isoform- and exon-centric view of the inter-

actome [21].

To check if the structurally annotated PPI is more biased to hubs than the standard

PPI network, we computed the node degree distribution of the network before and

after filtering for the structure evidence. As shown in Additional file 1: Figure S1, the

two histograms show similar trends with an overall smaller number of edges in the

structurally annotated PPI. The latter has a maximum node degree equal to 424, com-

pared to 2887 in the full PPI. This observation shows that the structurally annotated

PPI does not increase the bias towards hub genes of the interactome.

NEASE gives insights into the role of the muscle- and neural-specific exons

Recent studies suggest that the regulation of AS occurs in a tissue-specific manner and

leads to remodeling of protein-protein interactions [29]. Understanding the functional

impact of co-regulated exons is critical in understanding gene regulation. We applied

NEASE to tissue-specific exons reported in VastDB, a resource that provides informa-

tion on multiple types of AS events detected by RNA-seq from different tissue types

and developmental stages [30]. We extracted 2831 exon skipping events and Percent

Spliced In values (PSI) from 12 different human tissue types (Additional file 7, see

Methods). We then performed hierarchical clustering on the z score standardized PSI

values (Fig. 2A). The heatmap shows two distinct clusters, where neural-specific and

muscle-specific (merged with heart-specific) exons are dominant.

Next, we extracted 56 skipped exons with a high PSI in the muscle tissues and 62

skipped exons with a high PSI in the neural tissues (z score ≥ + 2, see the “Methods”

section). We checked how many of these events are overlapping with protein features.

As shown in Fig. 2B, 27% of the upregulated exons in muscle tissues (13) and 28% of
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the upregulated exons in the neural tissues (17) overlap with protein features. NEASE

also provides statistics of how many of these domains have known binding partners in

the joint graph. In the two sets, around 60% of the affected domains have known inter-

actions in our joint graph: 8 binding domains in the muscle tissues and 10 binding do-

mains in the neural tissues (Additional file 2: Tables S4, S5 and Additional file 3:

Tables S8, S9). We further identified one affected motif in the gene ATP2B1 in neural

exons. For these groups of events, the exact protein complexes involved can be identi-

fied, and NEASE statistical analysis can be performed to determine affected pathways.

However, it is important to keep in mind that not all affected domains are necessarily

interacting domains but could also be regulating gene expression by binding to DNA

or RNA [31].

Fig. 2 Analysis of tissue-specific exons. A Heatmap and hierarchical clustering of standardized PSI values
obtained from VastDB. The heatmap only shows events with a standard deviation of PSI values ≥ 20. The
heatmap shows that clusters of exons upregulated in neural tissues and muscle/heart tissues are dominant
(clusters C1 and C3). B NEASE analysis shows that 28% and 27% for both neural and muscle upregulated
exons, respectively, are encoding protein features: domains, linear motifs, and residues. For these subgroups
of events, the exact protein complexes involved can be identified, and NEASE enrichment can be
performed. C, D Comparison between gene-level enrichment and NEASE enrichment for the two sets
of exons
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First, we ran a gene set overrepresentation analysis (one-sided hypergeometric test),

which we refer to as gene-level enrichment, to detect enriched pathways (see the

“Methods” section). Next, we applied NEASE to the same genes to detect pathways af-

fected by AS. Unlike the gene-level enrichment, the results obtained from NEASE in

both sets better explain the functional role of the regulated exons (Fig. 2C, D). We also

compared with the results from the Network Enrichment Analysis method NEA [32].

NEA is a PPI-based approach that considers all edges for statistical tests. In contrast,

NEASE considers only AS-affected edges. For a fair comparison, we run NEA with the

same PPI network (BioGRID) and same pathways databases (see the “Methods” sec-

tion). The results of NEA did not improve over the classic gene-level enrichment (Add-

itional file 1: Figure S2), which suggests that our exon-specific approach helps to

narrow down the exact complexes/pathways affected by AS and reduces false positives.

To further validate the robustness of the enrichment obtained by NEASE, we further

conducted permutation tests. Here, our null hypothesis is that the tissue-specific exons

are not different from a random set of exons in terms of the quality of the functional

enrichment (measured as the p values of the hypergeometric test). For a more realistic

scenario, our background set of exons considers only exon skipping events that can ac-

tually be found in these tissues (see the “Methods” section for details). This approach

will also help evaluate our methods against known and unknown biases. The empirical

p values of the permutation test, which indicate the chance of finding an enrichment p

value as low or lower than the one reported by NEASE, are 0.0008 and 0.0001 for

neural and muscles upregulated exons, respectively. These results further demonstrate

the robustness of our analysis.

The upregulated exons in heart and muscle tissues were enriched in “Muscle Con-

traction” pathways (Fig. 2C and Additional file 2: Table S7 ), while, in the gene-level en-

richment, the pathways were related to very common subcellular functions such as the

Golgi apparatus, which also is an organelle for collecting, modifying or destroying pro-

tein products (Fig. 2 C and Additional file 2: Table S6). NEASE provides detailed infor-

mation about the affected domains and their interaction partners (Additional file 1:

Table S1). The domain Tropomyosin (Pfam id: PF00261), which is part of the gene

TPM1, e.g., is involved in the regulation of muscle contraction via actin and myosin.

GAS2 (Pfam id: PF02187) is a domain of DST, a dystonin encoding gene, which plays a

role in maintaining the integrity of the cytoskeleton. AS affects its binding with the

gene CALM1 that encodes a calcium-binding protein involved in various calcium-

dependent pathways like muscle contraction [33].

The exons upregulated in neural tissues showed enrichment in the synaptic

vesicle cycle pathway responsible for the communication between neurons (Fig.

2D). Gene-level enrichment performed on par with NEASE, resulting in the same

pathway but with a lower rank and significance (adjusted p values: 1.494631e−16

using NEASE and 0.0039 using gene-level, Additional file 3: Tables S10 and S11).

Notably, NEASE also detected an enrichment in “oxidative phosphorylation”, which

is the initiator for powering all major mechanisms mediating brain information

processing [34]. The neuron’s energy demands are remarkable both in their inten-

sity and in their dynamic range and quick changes [35–38]. Therefore, AS could

modify oxidative phosphorylation to serve tissue-specific needs. Experimental stud-

ies have also found that several key enzymes in “oxidative phosphorylation” are
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spliced, e.g., pyruvate kinase (PKM) that shifts from the PKM2 to the PKM1 iso-

form [39, 40]. NEASE also provides a detailed view on the affected mechanisms,

such as an exon skipping event in the gene ATP6V0A1 overlapping with the V_

ATPase_I domain (PFAM id: PF01496) and affecting the binding with seven other

proteins from the complex vacuolar ATPase (V-ATPase) (p value: 5.853289e−17,

Fig. 3, Additional file 1: Table S2 ). V-ATPase is required for synaptic vesicle exo-

cytosis [41] The a1-subunit of the V0 domain in ATP6V0A1 was recently shown

to be highly expressed in neurons and to be essential for human brain develop-

ment [42, 43]. In another example, NEASE identified two co-regulated events of

the genes CLTA and CLTB (Fig. 3). CLTA and CLTB genes are involved in

Clathrin-dependent endocytosis which forms clathrin-coated vesicles. Both genes

play a major role in forming the protein complex of the coated vesicle. Both events

affect the same domain Clathrin light chain (Pfam id: PF01086). The Clathrin light

chain domain binds to CLTC and CLTCL1 which are the Clathrin heavy chain

genes (p value: 6.943483e−05). These results suggest that the formation of this

complex is co-regulated by AS. A similar finding about the role of the Clathrin

light chain in neurons was also described in [44]. NEASE highlights these co-

regulated events at the network level (Fig. 3). As a sanity check, we manually

checked the PSI values of these critical events identified by NEASE in the

Genotype-Tissue Expression data set (GTEx), a comprehensive resource for tissue-

specific gene expression and regulation [45]. VastDB includes the quantification of

PSI values from 8378 samples (49 tissues and 543 individuals) from GTEx version

6 on their website (https://vastdb.crg.eu/). As shown in the examples in Additional

file 1 Figures S4 and S5, the exons are confirmed to be highly upregulated in their

respective tissues. The analysis generated from VastDB using NEASE agrees with

the latest studies at transcriptomics and proteomics levels that emphasize the cru-

cial role of AS in the function and development of brain and heart tissues [46–48].

Fig. 3 NEASE visually highlights the impact of the AS regulation at the interactome level. The gray nodes
represent proteins from the pathway and the red nodes represent genes with AS events. Red edges
represent the affected interactions for the nodes with known DDIs, DMIs, or co-resolved structures. The
visualization of the pathway “Synaptic vesicle cycle” from the KEGG database for the exons upregulated in
the neural tissues shows that the splicing in the genes CLTA and CLTB is co-regulated and affects the
interactions of the same complex. Similarly, NEASE highlights the importance of the domain ATP6V0A1
which is upregulated in neural tissues and binds seven proteins from the “Synaptic vesicle cycle” pathway
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NEASE reveals splicing-related differences of reticulated and mature platelets

AS does not only drive tissue-specific regulation but also plays a major role in cell dif-

ferentiation and maturation. To illustrate an example of the utility of NEASE in such

studies, we used the RNA-seq data set from [49] which compares the transcriptome

profiles of reticulated platelets and mature platelets from healthy donors. Reticulated

platelets are younger [50], larger in size, and contain more RNA [51]. Moreover, they

have a prothrombotic potential and are known to be more abundant in patients with

diabetes, acute or chronic coronary syndrome, and in smokers [51–53]. Additionally,

elevated levels of reticulated platelets in peripheral blood are predictors of insufficient

response to antiplatelet therapies (e.g., aspirin and P2Y12 inhibitors) and are promising

novel biomarkers for the prediction of adverse cardiovascular events in different patho-

logical settings [52, 54]. A strong enrichment of pro-thrombotic signaling in reticulated

platelets was observed in healthy donors [49]. Comparative transcriptomic analysis re-

vealed a differential expression of several pathways in addition to an enrichment of pro-

thrombotic pathways and transcripts of transmembrane proteins as the collagen

receptor GPVI, the thromboxane receptor A2 and the thrombin receptors PAR1 and

PAR4. Gene set enrichment analysis indicated an upregulation of entire prothrombotic

activation pathways as the thrombin PAR1 and integrin GPIIb/IIIa signaling pathway in

reticulated platelets.

Since AS has been described to occur in platelets [55], we wanted to investigate the

splicing patterns between the previously defined reticulated and mature platelet sub-

groups. Using MAJIQ [56] (see the “Methods” section), we found 169 differentially

spliced genes. From 25 affected protein domains, 17 have known interactions (68% of

affected domains, Fig. 4A, Additional file 4: Tables S12 and S13). Other affected protein

features include 6 residues involved in PPIs and one linear motif in the gene PAWR.

We observed that the enrichment at the gene-level using the Reactome [57] database

ranks general cellular pathways higher, including “Membrane Trafficking” and “Vesicle-

mediated transport,” and “Golgi-to-ER retrograde transport.” An exception is the “Cir-

cadian Clock” pathway, which is hypothesized to be related to platelet activation [58]

(Fig. 4B). The pathway “Platelet activation, signaling and aggregation” was less signifi-

cant in gene-level enrichment (adjusted p value: 0.061, Additional file 4: Table S14)

compared to NEASE enrichment (adjusted p value: 0.004, Additional file 4: Table S15).

Using NEASE, we obtained more meaningful results and unique pathways. As shown

in Fig. 4C, the most significant pathways in reticulated platelets are G Protein-Coupled

Receptor-related. G proteins are essential in the second phase of platelet-dependent

thrombus formation [59]. Furthermore, GPCR isoforms are known to have distinct sig-

naling properties [60]. Other relevant pathways associated with platelet activation are

“Hemostasis,” “Thromboxane signaling through tp receptor,” and “Platelet homeosta-

sis.” The full tables for enrichment at the gene level and using NEASE are available in

the Additional file 4: Tables S14 and S15. The upregulation of these pathways in reticu-

lated platelets emphasizes their previously described prothrombotic phenotype and

their involvement in several downstream signaling processes.

We also looked at the individual AS events driving this enrichment. For each affected

feature, NEASE tests if it significantly interacts with the GPCR downstream signaling

pathway (Additional file 4: Table S16, see the “Methods” section). Figure 4C illustrates

affected genes and their p value ranking. The top gene is GNAQ (G-protein subunit
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alpha q), which is known to be involved in signal transduction in platelets leading to

platelet activation [61]. The regulation of the G-protein alpha subunit can be an indica-

tion that compared to mature platelets, reticulated platelets are more involved in vari-

ous signal transduction pathways related to, e.g., pro-thrombotic processes [51].

PRKCA, which also showed different splicing patterns between the two platelet sub-

groups, plays a major role in the platelet formation process by modulating platelet

function [62], megakaryocyte function, and development [63] and negatively regulates

pro-platelet formation [64]. Moreover, the regulation of PRKCA binding in reticulated

platelets might refer to the young nature of reticulated platelets, which have undergone

the pro-platelet formation process more recently than mature platelets [50, 65].

NEASE characterizes complex disorders such as Multiple Sclerosis

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the cen-

tral nervous system. Early in the disease course, MS is characterized by focal le-

sions in the brain induced by an influx of systemic inflammatory cells. These

active lesions infiltrated by immune cells and activated microglia are characterized

by inflammatory demyelination and axonal loss [66]. The surrounding white matter

tissue is termed normal-appearing white matter due to diffuse pathology without

focal lesion activity and dense immune activity [67]. The etiology of MS remains

unknown. Recently, a systematic literature review found 27 genes that were alterna-

tively spliced in MS patients [68].

We used RNA-Seq of macrodissected areas from postmortem white matter tissue of

patients with progressive MS [69]. We compared normal-appearing white matter and

active lesions regions from postmortem white matter brains of MS patients. We found

Fig. 4 A 15 % of differentially spliced exons, between reticulated and mature platelets, are known to
encode protein features. For this subset of exons, NEASE enrichment can be performed. B Gene level
enrichment of all differentially spliced exons in the Reactome database fails to capture the most relevant
pathways. C In contrast, NEASE shows an enrichment of the GPCR downstream signaling and other related
pathways that are well known to be important in platelet activation. D A further look at the genes driving
the enrichment of the GPCR pathway shows the most relevant genes affected by AS
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109 differentially spliced genes with 19 affected domains and one linear motif with

known interactions, in addition to 6 known interacting residues. In total, NEASE iden-

tified 156 affected interactions (Additional file 5: Tables S17 and S18).

Gene-level enrichment ranks high pathways likely irrelevant that are involved in

muscle contraction, cardiac conduction, and membrane trafficking, with the exception

of Ca2+ ion flow across membranes (Additional file 5: Table S19). Ca2+ is an essential

signal molecule for all cell activity. Although deregulation of calcium signaling is re-

lated to the pathogenesis of multiple diseases [70], including neurological disorders

[71], it is not specific to neuronal tissues. In line with the neurodegenerative and

immune-mediated features of MS, NEASE found unique enriched pathways related to

brain network signaling and neuronal pathways “Neurotransmitter receptors and post-

synaptic signal transmission,” “Transmission across Chemical Synapses,” “Activation of

NMDA receptor and postsynaptic events,” “MAPK family signaling cascades,” “Neur-

onal System”), as well as pathways related to immune responses (“interleukin-17 signal-

ing,” “Toll-Like Receptor 10 (TLF10) Cascade”) (Table 1 and Additional file 5: Table

S20). Two other pathways were related to the uptake of anthrax or bacterial toxins.

This could be a result of clean-up from toxic inflammatory processes or increased pres-

ence of invaders due to the leaky brain-blood-barrier in MS [72–74]. Additionally, it

also supports the theory of infections as the trigger of lesion damage in MS [75].

As shown in Table 1, the pathway “Uptake and function of anthrax toxins” has the

best overall adjusted p value, calculated only based on the total number of edges affect-

ing the pathway. When we also included the number of significant genes and calculated

Table 1 NEASE enrichment obtained from AS comparison between normal-appearing white
matter and acute lesions, from multiple sclerosis patients. The highly enriched pathways belong to
Neurotransmitter receptors, MAPK, and bacterial infection. Most of these pathways are hallmarks of
MS. The NEASE score is obtained after combining the p value with the number of significant
genes. The latter is obtained after individual tests for each gene in the column “Spliced genes” (see
the “Methods” section)

Pathway
name

Spliced genes
(number of interactions
affecting the pathway)

p value adj p value NEASE score

Neurotransmitter receptors and
postsynaptic signal transmission

GRIA1 (7), ATP2B1 (2), BRAF
(4), MAP2K4 (1), GRIN1 (4)

4.38e−09 0.000004 16.71

Uptake and function
of anthrax toxins

ATP2B1 (1), BRAF (5), MAP2K4 (3) 2.98e−09 0.000004 14.76

Transmission across
chemical synapses

GRIA1 (7), ATP2B1 (2), BRAF (4),
MAP2K4 (1), GRIN1 (4)

5.65e−08 0.000010 14.49

Uptake and actions
of bacterial toxins

ATP2B1 (1), BRAF (5), MAP2K4 (3) 3.46e−08 0.000009 12.92

Neuronal system GRIA1 (7), ATP2B1 (2), BRAF (4),
MAP2K4 (1), GRIN1 (4)

8.71e−07 0.000122 12.11

MAPK family signaling cascades MYH10 (2), ATP2B1 (1), BRAF (17),
MAP2K4 (5), GRIN1 (3)

1.52e−06 0.000184 10.07

Activation of NMDA receptor
and postsynaptic events

GRIA1 (2), ATP2B1 (1), BRAF (4),
MAP2K4 (1), GRIN1 (3)

2.12e−06 0.000241 9.82

FCERI mediated MAPK activation MYH10 (1), BRAF (7), MAP2K4 (8) 2.52e−07 0.000038 9.33

RAF/MAP kinase cascade MYH10 (1), ATP2B1 (1), BRAF (16),
MAP2K4 (4), GRIN1 (3)

1.00e−06 0.000130 8.48

Signaling by moderate kinase
activity BRAF mutants

MYH10 (1), BRAF (14), MAP2K4 (2) 8.30e−09 0.000004 8.08
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NEASE scores (see the “Methods” section), NEASE ranks the pathway “Neurotransmit-

ter receptors and postsynaptic signal transmission” first, and moves pathways such as

“Transmission across Chemical Synapses” and “Neuronal System” higher in the rank.

These observations illustrate the usefulness of the NEASE score as a complement to

the global edge-based enrichment.

Two of the most significant genes in the “Neurotransmitter receptors” pathway were

GRIN1 and GRIA1 (Additional file 5: Table S21). GRIN1 encodes GluN1, which is one

of the two obligatory subunits for the NMDAR1 receptor, whereas GRIA1 encodes the

AMPAR1 subunit. Their ligand is glutamate, and they are both ionotropic receptors

and have been associated with MS disease severity [76–78]. Interestingly, AS of

MAP2K4 appeared in both brain-related and immune-related pathways, significantly

enriched in active lesions vs normal-appearing white matter (Table 1). MAP2K4 is a

mitogen-activated protein kinase (MAPK) orchestrating multiple biological functions

[79, 80]. AS of MAP2K4 has been found in rheumatoid arthritis [81], as well as in path-

ways of patients with other autoimmune diseases [82]. MS also precedes autoimmune

attack, and therefore AS of MAP2K4 in active lesions detected with NEASE may repre-

sent dysregulated immune responses originating from the infiltrating immune cells or

inflammatory-activated brain cells. This is supported by previous studies that found (i)

overactivity of MAPK pathways in microglia (the resident immune cell of the brain)

during neurodegeneration [83, 84], and (ii) increased phosphorylation of MAPK kinases

in the systemic immune cells of MS patients [85, 86]. A recent study also characterized

activated MS-specific pathways in immune cells from blood using phosphoproteomics.

Here, MAP2K4 and its interaction partners (e.g., TAK1) were present in MS-specific

signaling activity [87]. Future functional studies on the AS of MAP2K4 may help ex-

plain if AS could be the reason for increased phosphorylation and overactivity detected

in MS. AS of MAP2K4 could result in switching protein conformation, increasing sus-

ceptibility to phosphorylation, or changing the downstream protein cascade.

With NEASE, we were able to specifically detect AS of genes and related path-

ways already known to be dysregulated within MS from excitotoxicity to inflamma-

tion. The detected AS genes in active lesions vs normal-appearing white matter

demonstrate how major components in signaling activities may be fine-tuned/chan-

ged from regulation of a homeostatic state to an inflammatory state. Combining

NEASE with functional experiments to understand the biological impact of AS

could fuel new therapeutic opportunities for complex neurological diseases as MS.

Novel developments in genome-editing tools and gene-specific strategies have made

it possible to use antisense oligonucleotides or small modulators for splice modifi-

cation. This is already used in the rare neuromuscular disease, spinal muscular at-

rophy, where an antisense oligonucleotide binds to a site near splicing to ensure

the inclusion of an exon during the splicing event [78].

NEASE finds new biomarker candidates for dilated cardiomyopathy

AS might play a role in driving dilated cardiomyopathy (DCM) [88]. DCM is a common

heart muscle disease that is often diagnosed with structural abnormalities resulting in

impaired contraction. Previous studies have shown a large number of differentially used

exons in DCM patients [4, 10]. In this analysis, we used a list of 1212 differentially used
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exons between DCM patients and controls as reported by Heinig et al. [10]. 29% of

these exons overlap with protein features, including 230 domains and 15 linear motifs.

(Additional file 6: Tables S22 and S23). In this exon set, both the gene level enrichment

and NEASE show very similar results (Additional file 6: Tables S24 and S25). In both

methods, we found that the list of exons was enriched in the dilated cardiomyopathy

(DCM) pathway from KEGG, as well as, “Adrenergic signaling in cardiomyocytes” and

“Regulation of actin cytoskeleton”.

In contrast to gene-level enrichment analysis, NEASE is able to score the contribu-

tion of alternatively spliced genes that are interacting with but are not part of the DCM

pathway, allowing us to highlight putative biomarkers (Table 2, Additional file 6: Table

S26, Additional file 1: Figure S3). The Myosin head domain from the gene MYO19 in-

teracts with 6 other genes associated with DCM: (1) MYL2, which triggers contraction

after Ca+ activation [89]; (2–5) TPM1/TPM2/TPM3/TPM4, which encode the TPM

protein—the main regulator of muscle contraction [90]; and (6) ACTG, which encodes

actin. Interestingly, MYO19 has not been investigated for its role in DCM, while its

interacting genes are associated with DCM [91–94]. Additionally, the gene OBSCN has

one affected interaction with the TTN gene [95]. The TTN gene itself is also differen-

tially spliced and associated with DCM [95]. OBSCN was recently reported as a new

DCM candidate [96, 97]. Another interesting example is CACNA1C (Calcium Voltage-

Gated Channel Subunit Alpha1 C), an already known DCM candidate [98]. The differ-

entially spliced exon overlaps with the domain Ion_trans (Pfam id: PF00520) which is

essential for myocyte contraction [99]. The affected interaction identified is with the

ryanodine receptor 2 (RYR2). In striated muscles, the excitation-contraction coupling is

mediated by this complex [100]. Both CACNA1C and RYR2 are part of the KEGG

DCM pathway [101]. Alterations in ryanodine receptors were repeatedly reported to be

related to heart failure [102–104].

Discussion
In spite of its importance for biomarker and therapeutic target discovery, differential

AS is still not a routine part of transcriptome analysis. A key reason for this could be

the lack of suitable methods and software tools for AS-specific functional analysis. Our

method NEASE closes this gap and provides a unique view on the impact of AS com-

plementary to functional insights gained from traditional gene-level enrichment ana-

lysis. We applied NEASE to four diverse data sets and show that its results generate

Table 2 Enrichment of the pathway “Dilated cardiomyopathy (DCM)” from KEGG for the exons
differentially used in DCM patients. The table shows the most significant genes (p value< 0.05) (see
the “Methods” section)

Differentially
spliced genes

DCM
associated

Percentage of affected edges
associated with DCM

P value Affected binding (edges)
associated with DCM

MYO19 No 6/51 0.000002 MYL2, TPM4, TPM3, TPM2,
TPM1, ACTG

OBSCN No 1/2 0.014 TTN

USP49 No 1/4 0.028 PRKACA

CACNA1C Yes 1/4 0.028 RYR2
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novel disease-relevant insights and provide valuable context to prior findings on altered

RNA- and protein-expression levels consistent with recent literature.

In many cases, NEASE improves over gene-level enrichment analysis focusing on dif-

ferentially spliced genes. One potential reason for this could be that not all AS events

are necessarily functional [11, 12]. NEASE mitigates this by focusing on AS events that

affect protein domains. However, it is important to keep in mind that this is not the

only way to define functional AS events. AS also affects interacting disordered regions

[14] or facilitates nonsense-mediated decay [105].

AS events could also lead to completely different functions or interactions [106], e.g.,

two isoforms can have different interaction partners depending on the inclusion or loss

of a single domain [13]. Such changes in the interactome can not be captured with

gene-level enrichment which has a strict focus on nodes rather than edges. With

NEASE, we could show that integrating structural information at the exon level and

PPI networks helps to identify the functional impact of differentially spliced and co-

regulated exons. In practice, we consider both approaches as complementary and rec-

ommend running gene-level and edge-level enrichments together (both supported by

the NEASE package). Note that while our analysis focuses on exon skipping events as

the most studied event type, our method is generally agnostic to the event type.

NEASE relies on structurally annotated interactions and existing pathway annota-

tions from databases such as KEGG [101] and Reactome [57]. Leveraging reliable

structural information and established pathways likely removes many false positive

PPI from considerations. While the structural annotations are generally of high

quality, it should be noted that their coverage is still limited and, thus, the number

of exons considered in our method is comparably low. For instance, the percentage

of considered exons, in our example datasets, ranges between 15 and 30%, which is

still far from being a global analysis of AS. Expanding the annotations at isoform-

level and more widespread availability of structural information will greatly raise

the usefulness of NEASE in the future. We also emphasize that while all events

can potentially affect protein interactions on the domain level, not all AS events

yield functional isoforms and other processes such as nonsense-mediated decay

need to be considered as well. In the future, further progress is urgently needed to

link transcriptomics and proteomics for better characterization and understanding

of the exact impact of AS events. With our current approach, a large fraction of

the PPI network remains unexplored, suggesting that adapting de novo network

enrichment methods such as KeyPathwayMiner [107] towards AS could be a prom-

ising research direction to uncover previously unknown disease mechanisms.

NEASE currently considers the immediate neighborhood of a pathway in the PPI

network. When carefully considering the expected increase in false positives, one

could also increase the size of the pathway neighborhood using, e.g., a fixed radius

for shortest paths. While these are attractive approaches, the biases of the PPI to-

wards hubs, as well as the high number of false (or missing) edges of PPI, in its

current form, make such approaches hard to control and statistically challenging.

Even though NEASE is relatively conservative, we demonstrated that it is simple,

robust, and generates meaningful and interpretable results. Thus, it provides an un-

precedented opportunity to understand the functional impact of tissue-, develop-

mental- and disease-specific AS in a system biology manner.
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Conclusions
While a plethora of gene set enrichment methods have been proposed in recent years,

AS is typically not addressed specifically. Thus, NEASE closes an important gap in

functional enrichment analysis of transcriptomics data. The analyses described here,

confirm the widespread impact of AS in multiple biological processes and disorders. In

the future, we plan to extend NEASE with further model organisms and to add struc-

tural annotations covering more types of AS events. Finally, we plan to integrate

NEASE with the DIGGER web tool [21] for seamless downstream analysis of AS in the

web browser with the vision of establishing functional AS event analysis as a routine

step in the transcriptomic analysis.

Methods
NEASE data sources

We construct a human structurally annotated PPI as described previously [21]. Briefly,

we integrate DDI and PPI information into a joint network where DDIs were obtained

from 3did (v2019_01 [26]) and DOMINE (v2.0 [25] including high- and mid-

confidence interactions) and PPIs were obtained from BioGRID 3.5 [24]. In summary,

out of 410,961 interactions from the human interactome 52,467 have at least one do-

main interaction. The linear motif instances and their interactions were downloaded

from the ELM website and mapped to the respective exons. We found 3926 PPIs that

are confirmed by at least one source of DMI. Position-specific PPI based on experimen-

tally resolved structure from the PDB was obtained from [21]. In total, 16,161 PPIs

were enriched by at least one residue-level interaction. From the combination of all

these resources the final structurally annotated graph contained in total 60,235 interac-

tions. Each one of these interactions is annotated with one or multiple levels of evi-

dence (DDIs, DMI, residues). The mapping of exons to their protein features was

performed using the Biomart mapping table, Pfam, and ELM annotations [22, 23, 108].

We obtain the biological pathways with their gene list from KEGG [57] and Reactome

[101] integrated into the ConsensusPathDB database [28].

Statistical tests and pathway scores

Gene-level enrichment is performed using a hypergeometric test from the package

GSEAPY (a Python wrapper for Enrichr [109]) by considering all genes with (differen-

tial) AS events. Network enrichment analysis at the gene level was performed using the

EviNet web server (www.evinet.org), which is an implementation of the randomization

algorithm NEA [32]. To achieve a fair comparison with NEASE, we run NEA using

BioGRID as a PPI database and Reactome and KEGG as pathways references to match

the exact conditions of the NEASE analysis.

For NEASE enrichment, we filtered the PPI graph G=(V, E), where V is the set of

genes and E is the set of edges, to a subgraph G′=(V′, E′) containing only structurally

annotated interactions E′ and their nodes V′. An interaction is considered structurally

annotated if it is supported by at least one of these resources: domain-domain interac-

tions, motif-domain interactions, or residue-level interactions. For a submitted query

list of exons, NEASE first identifies affected domains, linear motifs, and residues that

overlap with the exons and their interactions. Let N be two times the number of edges
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in G′ (the degree of the network) and n be the number of affected edges from the

query. These edges are then considered using a test modified from [110]. For every

pathway P with degree K, let k be the number of affected edges that are connected to

P. We model X whose outcome is k as a random variable following a hypergeometric

distribution:

X � Hypergeometric n ¼ number of affected edges;K ¼ degree of P;N ¼ degree of G0ð Þ

where k is considered as the number of observed successes out of n draws, from a

population of size N containing K success. Subsequently, NEASE tests if the number k

is significant using a one-sided hypergeometric test (over-representation). In contrast

to the test proposed in [110], our test only includes structurally annotated edges and

the ones likely to be impacted by AS in order to improve the signal-to-noise ratio. For

illustration purposes, in the example of Fig. 1B, the overall number of affected edges by

AS is n=7, and K=11 is the total degree of pathway A (11 possible success), the number

of affected edges that are linked to the pathway is k=4. The enrichment p value of path-

way A corresponds then to the significance of this last number. After testing for mul-

tiple pathways, the obtained p values for the edge-level enrichment are corrected, using

the Benjamini-Hochberg method [111]. The detailed pseudocode of this algorithm is

explained in Additional file 1: Figure S6, Algorithm 1.

For a pathway of interest, a similar test can be applied to determine if a splicing event

significantly affects interactions of a specific gene with this pathway (Additional file 1:

Figure S6, Algorithm 2 and Fig. 1B, C). Here, n is the number of all affected interac-

tions (edges) of a spliced gene and k is the number of affected interactions (edges)

across genes that are linked to the pathway of interest. In the example of Fig. 1B, C, the

gene G2 can be connected to pathway A just by chance due to its high number of af-

fected interactions. For this reason, it is ranked lower than the genes G3 and G4.

As a result, for every pathway, NEASE provides an overall p value, as well as the most

significant genes. Since the p value only depends on the overall number of affected

edges but not on the number of genes, the p value can be heavily influenced by hub

genes. To reduce this influence, an optional score (NEASE Score, Eq.: 1) can be com-

puted by NEASE to scale the natural logarithm of the p value with the total number of

significant genes using a cutoff from the user (for instance p value ≤ 0.05):

NEASE score ¼ −
ffiffiffi

g
p � log10 pvalueð Þ ð1Þ

where g is the total number of significantly connected genes obtained after testing in-

dividual spliced genes. Thus, the NEASE Score prioritizes pathways that are affected by

a larger number of spliced genes rather than pathways that have a larger number of af-

fected interactions (edges). The user can choose to rank enrichment based on the ad-

justed p value or by the NEASE score.

For permutation tests, the set of highly confident 2831 exon skipping events obtained

after the initial quality filtering is considered as the background set of exons. We com-

pared the enrichment obtained in the pathways “Muscle Contraction” and “Synaptic

vesicle cycle” from the set of exons upregulated in muscles/heart and neural tissues re-

spectively, with 10,000 random sets of exons of the same size and then derived distribu-

tion of p values. The empirical p values were then obtained by asking how likely it is to
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obtain a p value as low or more extreme than the one reported by NEASE in the ori-

ginal set of neural and muscles upregulated exons.

VastDB events processing

PSI values of the exon skipping events from VastDB were quantified by the developers

using vast tools [30, 112]. In our analysis, we extracted the PSI values for 32 experiments

belonging to 12 main tissues: muscles/heart, neural (whole brain, cortex, and peripheral

retina), placental, epithelial, digestive (colon and stomach), liver, kidney, adipose, testis,

immune-hematopoietic, and ovary. We then filtered out the events with low read cover-

age (VLOW) and performed hierarchical clustering of standardized values (z scores). For

every exon, we calculated the mean of PSI values from the samples of the same tissues.

To extract muscles/heart and neural-specific exons and to ensure that we only consider

functional events, we applied two filters: namely that the exon PSI value in the relevant

tissue is higher than 20 and that the z score is higher than 2.

RNA-Seq analysis

Raw RNA-Seq reads for two types of platelets and multiple sclerosis patients were down-

loaded from the GEO repository (access numbers: GSE126448 and GSE138614 ). The num-

ber of samples and sequencing depth are reported in Additional file 1: Table S3. RNA-Seq

reads were aligned to the reference human genome (hg38) using STAR 2.7 [113] in a 2-pass

mode and filtered for uniquely mapped reads. Differential AS analysis was performed by

MAJIQ [56] with default parameters, and with a threshold of P(dPSI > 20%) > 0.95.

NEASE: The Python package

NEASE’s Python package relies on NumPy [114], pandas [115], NetworkX [116], SciPy

[117], and Statsmodels [118]. The gene-level enrichment is also supported in the

NEASE package using the Python implementation of Enrichr [109]. To speed up the

edge hypergeometric test, the total degree of every pathway in the structural PPI, as

well as the overall degree of the network were pre-computed. For visualization, we use

the complete PPI (not the structural PPI) and extract connected subnetworks from

each pathway as well as spliced genes and their interactions with the extracted mod-

ules. The position of nodes is computed using the Fruchterman-Reingold force-

directed algorithm implemented in NetworkX [119]. The interactive visualization for

individual genes and events is implemented with information from the DIGGER data-

base and the Plotly package.

The package provides the option to automatically filter exons that are likely to dis-

turb the open reading frame of the transcript based on the prediction in [30]. In the

case of multiple AS events affecting the same genes, we consider every event individu-

ally and identify all protein features. The standard input of the package is a DataFrame

object with the exon coordinates and Ensembl IDs of the genes. The package also sup-

ports the output of multiple AS differential detection tools such as rMATs [120],

Whippet [121], and also tools that are event-based such as MAJIQ [56] where NEASE

only considers annotated exons. NEASE is released as open-source under the GPLv3 li-

cense and is available at (https://github.com/louadi/NEASE). Step-by-step tutorials for

running NEASE are available at (https://github.com/louadi/NEASE-tutorials).
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