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Abstract

Background: Enhancers are non-coding regions of the genome that control the
activity of target genes. Recent efforts to identify active enhancers experimentally
and in silico have proven effective. While these tools can predict the locations of
enhancers with a high degree of accuracy, the mechanisms underpinning the
activity of enhancers are often unclear.

Results: Using machine learning (ML) and a rule-based explainable artificial
intelligence (XAI) model, we demonstrate that we can predict the location of known
enhancers in Drosophila with a high degree of accuracy. Most importantly, we use
the rules of the XAI model to provide insight into the underlying combinatorial
histone modifications code of enhancers. In addition, we identified a large set of
putative enhancers that display the same epigenetic signature as enhancers
identified experimentally. These putative enhancers are enriched in nascent
transcription, divergent transcription and have 3D contacts with promoters of
transcribed genes. However, they display only intermediary enrichment of mediator
and cohesin complexes compared to previously characterised active enhancers. We
also found that 10–15% of the predicted enhancers display similar characteristics to
super enhancers observed in other species.

Conclusions: Here, we applied an explainable AI model to predict enhancers with
high accuracy. Most importantly, we identified that different combinations of
epigenetic marks characterise different groups of enhancers. Finally, we discovered a
large set of putative enhancers which display similar characteristics with previously
characterised active enhancers.
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Background
Regulation of gene expression in eukaryotic cells is a complex process governed by in-

teractions between DNA binding proteins (transcription factors), and the regulatory el-

ements in DNA to which they bind. Mutations in these non-coding regulatory

elements can cause disease states by affecting the spatial and temporal control of gene

expression [1–4]. Identification of regulatory regions and understanding their function

and interactions with transcription factors is not only important to furthering our un-

derstanding of biological systems, but also for providing a better understanding of dis-

ease states.

Cis-acting DNA sequences that increase the transcription of one or more genes are

called enhancers [5, 6]. Unlike promoters that are generally located proximally to the

transcription start site [7], the position of an enhancer relative to its target gene is

highly variable and can occur upstream, downstream, or within introns [6, 8]. To

achieve regulation of distal target genes, enhancers must make 3D contacts with the

promoters of genes that they control [9]. In addition to not having a specific location in

the genome, there is no general sequence code for enhancers and a given enhancer

may only be active only in specific spatial, temporal, or environmental conditions [10].

All of these features complicate the discovery and annotation of enhancers both experi-

mentally and computationally.

Enhancers act as platforms for transcription factor binding and display high DNA ac-

cessibility. However, these regions also exhibit specialised histone modifications, both

overlapping and flanking transcription factor binding sites [11–13]. Several histone

modifications have been linked with enhancer activity in the past. H3K4me1 enrich-

ment has been observed at enhancers and is one of the primary marks used in enhancer

identification [14]. H3K4me3 has been mainly identified at active promoters but has

also been linked with enhancer activity [15]. H3K27ac has been originally identified as

a mark that is used to separate active enhancers from poised enhancers [16], but subse-

quent work has found that H3K27ac alone does not indicate enhancer activity [17–19].

H4K16ac has been associated with active enhancers in mouse embryonic stem cells and

Drosophila cells but is also enriched around the TSS of active genes [19, 20]. In

addition to these histone tail modifications, globular domain modifications such as

H3K122ac have also been used to identify active enhancers that lack some classical

marks of enhancer activity [21]. In addition to histone modifications, active enhancers

are also characterised by the presence of a class of small RNAs called enhancers RNAs

(eRNAs) [22]. While specific epigenetic marks associated with enhancer activity have

been identified, there is no comprehensive combinatorial epigenetic code of enhancers.

Recent methodological advances have made the genome-wide detection of enhancers

possible. Self-transcribing active regulatory region sequencing (STARR-seq) is a mas-

sively parallel reporter assay that is able to identify enhancers based on their genome-

wide activity and provides a quantitative measure of the enhancer activity [23, 24]. This

makes the experimental identification of enhancers easier but does not provide a

complete list of enhancers and mechanistic understanding of why certain regions of the

DNA act as enhancers, while others do not. Despite these improvements in the identifi-

cation of enhancers through high throughput analysis, the specific combination of epi-

genetic factors that determine whether a given region will act as an enhancer are

unclear.
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Computational approaches and, in particular, machine learning (ML) methods have

been applied successfully to the identification of enhancers [19, 25, 26]. These methods

use histone modifications and massively parallel reporter assay for enhancer identifica-

tion as training data. Despite their relative success, ML methods suffer from biases and

seem to identify large numbers of promoters rather than only enhancers [19, 27]. ML

methods (such as artificial neural networks and random forest models) are good at pro-

viding accurate predictions, but the rules and insights which are used to make these

predictions remain unclear. Rule-based explainable AI (XAI) models that generate nat-

ural language “If/Then” rules are classification algorithms that can be used for identify-

ing enhancers using ChIP datasets. By using an XAI method (based on Type-2 Fuzzy

Logic and Multi Objective Multi Constraint Evolutionary Computation), the rules used

to make predictions can be generated, interpreted, and subsequently tested for validity

[28, 29]. This XAI model provides a set of understandable rules and linguistic labels

which can be unpacked and studied to understand the relationships deemed important

for enhancer activity. Therefore, this represents a method that can be used to overcome

limitations of ML approaches.

Here, we apply ML driven XAI models to predict and disentangle the effect of differ-

ent epigenetic modifications on enhancer activity. We train our model in Drosophila

BG3 cells, using histone modifications ChIP and STARR-seq datasets, and use it to pre-

dict enhancers in a different Drosophila cell line, S2. To evaluate the performance, the

XAI model is compared with a traditional Neural Network ML approach and annota-

tion of enhancers by STARR-seq. Using this approach, we successfully trained an ex-

plainable model, that accurately predicts enhancer locations and generalises to other

cell lines without adjustment. Our model also predicted a population of putative en-

hancers not previously annotated by STARR-seq which we further characterise and ex-

plore. Some of the predicted enhancers are longer than 1 Kb and resemble mammalian

super enhancers [30]. Our main aim is to evaluate how successfully the model general-

ises to a cell line that it had not been trained on, and, thus, we only trained the model

in BG3 cells. Nevertheless, the performance of the model in S2 cells, indicates, that the

BG3 rules are generalisable and can explain enhancers in other cell types.

Results
ML and explainable AI can predict STARR-seq enhancers and identify a set of novel

enhancers

ChIP-seq data for histone modifications [31, 32] and STARR-seq enhancer annotations

[23, 33, 34] are combined and tiled into bins covering the Drosophila genome (Fig. 1A).

Using these bins, we trained a traditional machine learning model (neural network) and

an XAI model to predict enhancer locations. The two trained models showed compar-

able accuracy (Fig. 1B). This demonstrates that XAI models display similar performance

to neural networks, while providing the advantage of interpretation of the underlying

results. To investigate how well the ML and explainable AI models generalise, we

trained the models on data from BG3 cells and predicted enhancers in S2 cells using

the corresponding histone modifications ChIP datasets (Fig. 1B). Although the models

had not previously been exposed to data from S2 cells, it performed with a similar de-

gree of accuracy, highlighting its ability to generalise to new cell lines in different
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tissues and developmental stages. Furthermore, we also trained a model on S2 cell data,

but, while this model performed well in S2 cells, it had a very low accuracy in BG3 cells

(Additional file 1: Fig. S1). This indicates that the S2 trained model did not generalise

well, and, thus, we selected the model trained in BG3 cells for the subsequent down-

stream analysis.

For both BG3 and S2 cells, the precision was lower (Fig. 1B), indicating that our ML

and AI models annotated more enhancers compared to STARR-seq. This is in line with

our previous observations that STARR-seq does not generate a complete annotation of

enhancers [35]. It is worthwhile noting that the plasmid used to generate the two

STARR-seq dataset used in our analysis had a high false-negative rate [24].

For the XAI model, we selected bins with a probability threshold of 0.8 or higher (see

Materials and Methods and Additional file 1: Fig. S2) and merged them into regions

that represent the predicted enhancers. In both BG3 and S2 cells, our XAI model iden-

tified the majority of the STARR-seq enhancers and predicted many novel regions

(14,000–18,000) as putative enhancers not previously identified by STARR-seq

(Fig. 1C).

Characterisation of the putative enhancers

We first investigated whether these putative enhancers were previously identified by

other methods, by comparing the overlap between XAI enhancers, STARR-seq and En-

hancer Atlas 2.0 catalogue [26]. Additional file 1: Fig. S3 confirms that most of the pu-

tative enhancers were not previously annotated by other methods (experimental or

Fig. 1 Explainable AI and machine learning models for enhancer identification. A A graphical
representation of our rule based and machine learning analysis. ChIP-seq data for histone modifications and
STARR-seq enhancer annotations are combined and tiled into bins covering the Drosophila genome. Using
these bins, traditional machine learning models (ML) and explainable AI models (XAI) can be trained to
predict enhancer locations. B Confusion matrix statistics from individual bin predictions. TP— true positives
(detected by XAI/ML and STARR-seq), TN—true negatives (not detected by XAI/ML or STARR-seq), FP—false
positives (detected only by XAI/ML), and FN—false negatives (detected only by STARR-seq). Accuracy ((TP +
TN)/(TP + TN + FP + FN)), precision (TP/(TP + FP)), and recall (TP/(TP + FN)) were computed and plotted for
the best performing explainable AI and neural network (NN) models. All models were trained in BG3 cells
and then applied to S2 data. C Overlap between XAI and STARR-seq predicted enhancers in BG3 and S2
cells respectively

Wolfe et al. Genome Biology          (2021) 22:308 Page 4 of 23



computational). Nevertheless, we also observed that our XAI enhancers have a higher

overlap with STARR-seq compared to Enhancer Atlas 2.0. This can be explained by the

fact that enhancers from Enhancer Atlas 2.0 need to be detected by at least two inde-

pendent methods, and, thus, enhancers annotated only by STARR-seq and missed by

other ML or experimental methods are not classified as enhancers.

Enhancers which were detected by both the STARR-seq model and the XAI model

were termed common enhancers and those that were detected only by the XAI model

were termed putative enhancers (Fig. 1C). The putative enhancers display similar his-

tone modifications to the common enhancers, namely: (i) strong enrichment of

H3K18ac, H3K27ac, H3K4me1, H3K4me2, H3K4me3, H3K79me3, H3K9ac, H4K16ac

and H4K8ac; (ii) partial enrichment of H2Bubi, H3K27me1, H3K36me1, H3K79me2,

and H4K20me1; and (iii) depletion of H1, H3, and H3K27me2/3 (Fig. 2A). The deple-

tion of histones (H1 and H3) and polycomb (H3K27me2/3) from enhancers was ex-

pected since active enhancers are located in regions of open chromatin. We only found

negligible differences between the putative and common enhancers. Furthermore, the

observed enrichment and depletion of alternative histone modifications at the putative

enhancers suggest strong validity of these putative enhancers.

Fig. 2 Characterisation of the putative explainable AI predicted enhancers. A log2(observed/expected)
histone modification signal for different groups of regions: (i) enhancers detected by both STARR-seq and
XAI (common enhancers), (ii) enhancers detected by XAI only (putative enhancers), (iii) enhancers detected
by STARR-seq only, and (iv) regions detected by neither. Observed and expected values were computed
using average normalised ChIP enrichment scores. B Top: Overlap between different groups of enhancers
(see A) and genomic features: intergenic, promoter, first intron, other introns, exons, 5′UTR, and 3′UTR.
Bottom: log2(observed/expected) overlaps based on whole genome distribution of the different
annotations. C Histograms containing the size distribution for putative enhancers predicted by the XAI
method in BG3 and S2 cells. Predicted enhancers shorter than 50 bp are considered fragments while
regions above 1 kb are classed as super-enhancers
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The enhancers detected solely by STARR-seq show only partial enrichment of

H3K4me1 and very little enrichment or depletion of any other histone modifications.

This explains why the machine learning and AI models could not identify these en-

hancers based on histone modification code. It is possible that either STARR-seq only

enhancers might not act as true enhancers within the chromatin environment or that

additional histone modifications that we did not include in our analysis characterise

these enhancers (e.g. H3K56ac [36] or H3K122ac [21]).

We also investigated where these putative enhancers are located in comparison to

common enhancers (also detected by STARR-seq). Our results confirm that the major-

ity of putative enhancers and common enhancers are intronic (Fig. 2B). In addition,

there is a specific overrepresentation of putative and common enhancers at 5’UTRs.

These 5′UTRs regions that are annotated as enhancers may represent alternative pro-

moters from the genes [37–39]. Since STARR-seq enhancers are also enriched at 5′

UTR and we trained our model on STARR-seq data, it is not surprising that we predict

these regions as enhancers.

Most putative enhancers fit the expected size based on previously identified en-

hancers (50 bp–1 Kb) (Fig. 2C). Nevertheless, we also identified larger regions that were

classified as enhancers (more than 1 Kb) and we classified them as potential super en-

hancers [30]. It should be noted that common enhancers between XAI and STARR-seq

tend to be longer. As the model predicts individual 10 bp bins, noisy regions in ChIP

signals can lead to small false-positive regions being predicted as enhancers. Thus, en-

hancers shorter than 50 bp are likely to be artefacts, and in the downstream analysis,

we only consider enhancers larger than 50 bp.

Putative enhancers display 3D contacts with promoters of expressed genes

To further investigate whether these putative enhancers control gene expression, we in-

tegrated the putative, common and STARR-seq only enhancer annotation together with

in situ sub-kilobase-pair resolution Hi-C datasets in BG3 [35] and S2 [40] cell lines

with RNA-seq data [41]. Between 25 and 30% of putative and common enhancers are

proximal (within 5 Kb) to a gene promoter, while approximately 70% are not within 5

Kb of promoters however do make 3D contacts with gene promoters that are located

more than 5 Kb away (Fig. 3A). All proximal putative enhancers contact distal genes as

well, indicating that majority of promoters come in 3D proximity to other promoters

[42]. Only a negligible number (less than 2.1% in every cell line) are not proximal to a

promoter or do not have 3D contacts with any distal promoter. In contrast, a signifi-

cantly larger proportion of the genomic background (13.5% in BG3 and 13.1% in S2)

are not proximal to any promoter or do not have 3D contacts with any distal promoter.

The high number of 3D contacts between the genomic background and promoters (3.8

M in BG3 and 4.3M in S2) can be explained by the fact that the genomic background

contains many exons and introns (see Fig. 2B) and expressed genes in Drosophila form

gene domains with many enriched 3D contacts [43].

There is a negligible difference in size between the distal only and proximal putative

enhancers (Fig. 3B). Most importantly, a majority of putative enhancers (approximately

85%) make 3D contacts with promoters of transcribed genes (Fig. 3C). While approxi-

mately 70% of proximal putative enhancers sit within 5 Kb of promoters of transcribed
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genes, 94% of distal only putative enhancers contact promoters of transcribed genes. In

addition, the distal only enhancers also tend to have 3D contacts with promoters of

genes that display higher expression compared to proximal putative enhancers (Fig.

3D). Note that the genomic background has similar high proportions of contacted

expressed genes, which indicates that once a region makes 3D contact with the pro-

moter of a gene, the gene is often transcribed, especially when the region is distal to

any promoters.

One possibility that could explain why the putative enhancers are not detected by

STARR-seq is that these putative enhancers act mainly distally, while enhancers

Fig. 3 Putative enhancers make 3D contacts with expressed genes. A We split enhancers into the
following: (i) proximal if they are located within 5 Kb of a promoter, (ii) distal if they are further than 5Kb
from any promoters and make 3D contact with promoters, (iii) proximal only if they do not have enriched
Hi-C contacts more than 5 kb away but were within 5 Kb of a promoter, and (iv) neither if they are further
than 5Kb from any promoter and do not make 3D contacts with any promoters. Top: Putative, common,
and STARR-seq enhancers have enriched 3D contacts with regions containing proximal (within 5 Kb from
enhancer) or a distal (further than 5 Kb from the enhancer) promoters. We considered the case of BG3 and
S2 cells respectively. Bottom: log2(observed/expected) based on whole genome distribution of the different
annotations. B The size of distal only and proximal putative enhancers in BG3 and S2 cells on log2 scale.
There is negligible difference between distal only or proximal putative enhancers (Mann-Whitney U test of
log2 of size; p value < 1.34 × 10−5 for BG3 and p value = 0.09 for S2). C Majority of the enhancers that make
3D contacts with genes contact expressed genes, but there are significantly more distal only than proximal
enhancers that contact expressed genes (Fisher’s extract test; p value: n.s. ≥ 0.05, *p value < 0.05, ** < 0.01
and *** < 0.001). D Top: Expression (FPKM) for proximal and distal only putative enhancers on log2 scale.
We considered the maximum expression, in the case where promoters of multiple genes were contacted.
There is a higher expression for genes controlled by distal only enhancers compared to proximal ones
(Mann-Whitney U test of log2 of FPKM; p value < 2.2 × 10−16 for BG3 and S2). Bottom: Expression (FPKM) for
proximal and distal only background regions on log2 scale. There is a higher expression for genes
contacted by distal only background regions compared to proximal ones (Mann-Whitney U test of log2 of
FPKM; p value < 2.2 × 10−16 for BG3 and S2). In BG3 cells, distal only enhancers have a mean log2 of FPKM
of 6.08, while distal background regions of 5.82 (p value < 2.2 × 10−16). Similarly, in BG3 cells, proximal
enhancers have a mean log2 of FPKM of 4.59 and proximal background regions of 3.77 (p value < 2.2 ×
10−16). In S2 cells, distal only enhancers have a mean log2 of FPKM of 6.54, while distal background regions
of 5.94 (p value < 2.2 × 10−16). Similarly, in S2 cells, proximal enhancers have a mean log2 of FPKM of 4.86
and proximal background regions of 3.81 (p value < 2.2 × 10−16). Note that in each case, we performed a
Mann-Whitney U test
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detected by STARR-seq mostly act proximally. We found that this is not the case and

both common enhancers between XAI and STARR-seq (Fig. 3 and Additional file 1:

Fig. S4) and STARR-seq only enhancers (Fig. 3 and Additional file 1: Fig. S5) make 3D

contacts with expressed genes. In fact, STARR-seq only enhancers are less proximal to

promoters of genes and have the highest proportion of distal 3D contacts with pro-

moters (74.7% in BG3 and 77.4% in S2) (Fig. 3).

There also exists the possibility that these putative enhancers are redundant en-

hancers. To investigate this, we plotted the enriched Hi-C contacts of putative and

common enhancers to all other predicted enhancers (including both putative and com-

mon) (Additional file 1: Fig. S6). Common enhancers tended to contact more en-

hancers, but whether this is due to the common enhancers themselves generally being

larger or another mechanism is not clear.

XAI provides explainable rules for annotation of enhancers

Figure 4A, B shows the rules identified by our explainable AI model to classify regions

as either enhancers or non-enhancers in Drosophila. The rules were determined to be

the most effective while remaining explainable when constrained to a maximum of

three epigenetic modifications per rule, and a maximum of 50 rules. These parameters

were chosen to ensure that the model was explainable while maintaining a high degree

of predictive power.

Individual classifications of epigenetic marks as low, medium, and high do not have

stringent borders but instead allow for some overlap between classes. These boundaries

vary by mark and are trained when training the model. Interestingly, the rules for en-

hancers contain high levels of H3K4me1 together with either high level of H4K16ac or

H3K18ac, but not with high levels of H3K27ac (Fig. 4A). Nevertheless, 70% of the re-

gions displaying high levels of both H3K4me1 and H3K27ac are selected by our ex-

plainable AI model, and, consequently, can be explained by other combinations of

histone modifications. Interestingly, it was recently shown that H3K27ac is not required

for enhancer activity and its depletion at enhancers in mouse ES cells results in only a

few small changes in gene expression [18].

It is also interesting to note that in mouse ES cells H4K16ac has been found to mark

active enhancers both with and without H3K27ac [20]. However, in Drosophila, it has

been mainly associated with dosage compensation together with MOF [44, 45]. To

avoid biases from dosage compensation effects, our models and predictions were run

only on autosomes, which means that we can identify enhancers in Drosophila that are

characterised by high levels of both H3K4me1 and H4K16ac, similar to those seen in

mammalian systems. We found that approximately 9% of all predicted enhancers in

BG3 cells are characterised by high levels of H3K4me1 and H4K16ac. One example is

rule 47 which triggers when H3K4me1 enrichment is high, H3K16ac is high, and

H2K23ac is low (Fig. 4A).

Figure 4B contains rules used to classify regions as non-enhancers, and, not surpris-

ingly, non-enhancers are depleted in H3K4me1. For example, rule 19 states that if

H3K18ac and H3K4me1 are low, then the region will be classified as a non-enhancer.

Non-enhancers are also characterised by depletion of H3K4me2 and H3K9me2 or en-

richment of H3, H3K27me3 and H3K4me3.
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Interestingly, enrichment of H3K4me3 is usually associated with promoters [12], but

broad H3K4me3 peaks have been previously associated with enhancers [46]. Our re-

sults show that when high levels of H3K4me3 are associated together with depletion of

H3K27me3 or depletion of H2AV, then those regions are classified as enhancers (Fig.

4A). Furthermore, high levels of H3K4me3 together with medium levels of H3K36me1

or H3K18ac characterised regions that are not classified as enhancers (Fig. 4B).

Using the XAI approach allows us to test expert rules. These are rules that are not

generated by the multi objective and multi constraint evolutionary computation based

genetic algorithms when building the model, but which experts in the field considers to

be true. We tested if adding an expert rule “high levels of both H3K4me1 and H3K27ac

define enhancers” improves the model, but we found only negligible improvement in

predictions (less than 0.25%) (Fig. 4C–E). The expert rule that improved the predictions

Fig. 4 Rules explaining enhancer and non-enhancer classification. Individual rules are horizontal lines on
the plot and include up to three epigenetic marks per rule. The colour code represents classification of an
epigenetic mark as high (green), medium (orange), or low (red). A Rules involved in predicting bins as
belonging to enhancers. B Rules that contribute to predicting bins not belonging to enhancers (non-
enhancer). C, D expert rules for enhancers (C) and non-enhancers (D). E Evaluation of the expert rules. We
plot the recall for enhancers and non-enhancers and the average recall.
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most (by approximately 1%) was that “high levels of both H3K4me1 and H3K27ac and

low levels of H3K4me3 define enhancers”.

Epigenetic code of developmental and housekeeping enhancers

Housekeeping enhancers are enhancers expressed across multiple cell types and are

crucial to the correct functioning of the cell, while developmental enhancers are en-

hancers that are cell type specific and are involved in differential gene expression across

various cell types. Previous studies investigated whether different histone modifications

are present at housekeeping and developmental enhancers, and it was proposed that

developmental enhancers are devoid of histone modifications [47]. However, further re-

search found preferential enrichment of H3K4me1 at developmental enhancers and

H3K4me3 at housekeeping enhancers [48]. Using the annotation of housekeeping and

developmental enhancers in S2 cells [34], we created two datasets of enhancers, house-

keeping (10,379) only and developmental (5956) only with less than 5% being super-

enhancers (Fig. 5A). Then, we used these annotations to train XAI models using the

same epigenetic marks as before. Interestingly, we found that the model could not

Fig. 5 Training an XAI model to distinguish between housekeeping and developmental enhancers. A The
developmental and housekeeping enhancers used in the training step and their overlap with predicted
super enhancers. B Confusion matrices statistics from individual bin predictions. Accuracy, precision, and
recall were computed and plotted for the XAI model (see Fig. 1). C ROC curve for developmental vs
housekeeping trained model. C, D Rules involved in predicting bins as belonging to developmental
enhancers (C) and housekeeping enhancers (D); see Fig. 4A, B
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distinguish well between housekeeping and developmental enhancers based on histone

modifications (AUC = 0.55) (Fig. 5B, C). Analysing the rules, we found that indeed

H3K4me2/3, H3K79me2, and H3K9ac are more predictive of housekeeping enhancers

and H3K4me1, H4K16ac and H3K27ac are more important for developmental en-

hancers (Fig. 5D, E). Interestingly, the rule “high levels of H3K4me1 and H3K27ac” was

able to only negligibly improve the model performance for our enhancer annotation

(Fig. 4C), but is associated with developmental enhancers and not housekeeping en-

hancers (Fig. 5D). Altogether, our results support a model where there are marginal

epigenetic differences between housekeeping and developmental enhancers, but these

differences were not sufficient to properly distinguish between the two.

Enrichment of proteins and epigenetic factors at different classes of enhancers

The two groups of enhancers, common and putative, were independently ordered based

on their size. Following this, the distribution of protein and epigenetic marks around

the two groups were plotted. Figure 6A shows that the majority of enhancers in BG3

cells (except some smaller ones) are characterised by the presence of BEAF-32, Cp190,

and Chro. These three architectural proteins have been shown to be involved in 3D

chromatin organisation and chromatin looping in Drosophila [35, 49–51], thus con-

firming the enrichment of 3D contacts with gene promoters observed. CTCF is

enriched mainly at borders of larger common and putative enhancers suggesting

insulation function [52]. Furthermore, we also observed enrichment of cohesin, medi-

ator complex, and Pol II together with divergent transcription and lower levels of H3

and H4 (see Fig. 6), which are all common characteristics of active enhancers [38, 53].

While only larger common and putative enhancers are characterised by high levels of

H3K27ac and H3K4me3, the majority of enhancers display high levels of H3K4me1

(see Fig. 6). This could be explained by the fact that larger enhancers could also

harbour promoters with higher levels of H3K27ac and H3K4me3.

Most enhancers are also characterised by high levels of ISWI and NURF301 (nucleo-

some sliding), WDS (involved in maintenance of H3K4me3), and MOF (enzyme re-

sponsible for acetylating H4K16) together with high levels of HP1c (see Fig. 6A). ISWI

and MOF are involved in nucleosome remodelling and are important to maintain active

chromatin marks and, thus, are expected to be identified at enhancers [54, 55]. The lat-

ter (HP1c) is enriched in euchromatin, explaining its localisation at predicted en-

hancers, and, while it is closely related to HP1a, it does not seem to be involved in

phase separation [56]. Interestingly we observed HP1a depletion inside the enhancers

and its partial enrichment at the borders of larger enhancers, suggesting a potential

mechanism for enhancer and promoter hubs.

Enhancers are often characterised by active transcription, usually divergent transcrip-

tion [57–60]. We observed an enrichment of 3’NT-seq signal across both common and

putative enhancers (Fig. 6A), suggesting that both groups of enhancers are transcrip-

tionally active. Furthermore, both common and putative enhancers display strong bidir-

ectional transcription (Fig. 6A), a characteristic of enhancers [57, 58]. What

differentiates putative and common enhancers is the level of nascent RNA displayed,

with putative enhancers having an intermediary level of nascent RNA, while common

enhancers have the highest level of nascent RNA (Fig. 6E). This result is further
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mirrored by Pol-II signal, which is higher at common enhancers than at putative ones

(Fig. 6E). Altogether, our results show that while putative enhancers display activity,

this is lower than the activity of common enhancers, which can potentially explain why

they were not detected with the original STARR-seq plasmid.

To further evaluate potential subtle differences between the common and putative

enhancers, we trained an additional XAI model to predict whether a given enhancer is

common or putative based on features in Fig. 6A. The model we trained was able to

predict which group an enhancer belonged to with a 77.1% average recall and 0.84

Fig. 6 Enrichment of chromatin features at enhancers in BG3 cells. A We ordered enhancers based on their
size (starting with largest at the top) and split them in common and putative enhancers. We plot profiles ±
5 Kb around the centre of enhancers for: architectural proteins (BEAF-32, Cp190, Chro, CTCF, Nipped-B,
Rad21, SA, Smc1, Fs(1)h, MED1 and MED30), transcription (Pol II and 3'NT-seq), polycomb and
heterochromatin (Pc, HP1a and HP1c), nucleosome remodelling (ISWI, MOF, WDS and NURF301), epigenetic
factors (H3, H4, H3K4me3, H3K4me1, H3K27ac, H3K36me3, H3K79me1 and H4K16ac). We used 3′NT-seq to
call bidirectional enhancers (see Materials and Methods), marked by a green bar, and also plot the
directionality score as the log10 ratio of the nascent RNA signal on the positive and negative strands (with
red indicating higher expression on positive strand and blue higher expression on the negative strand). We
also marked by purple if there are any TAD borders within 2 Kb, using TAD borders annotation in BG3 cells
from [35]. B Confusion matrices statistics from individual bin predictions. Accuracy, precision, and recall
were computed and plotted for the XAI model (see Fig. 1). C ROC curve for common vs putative trained
model. D All dominance 3 and higher rules generated after training a model to identify common vs
putative enhancers. Individual rules are horizontal lines on the plot and include up to three epigenetic
marks per rule. The colour code represents classification of an epigenetic mark as high (green), medium
(orange), or low (red). E The 95th percentile score across the body of each common and putative enhancer
was plotted. Mann-Whitney U test scores can be found on each plot for each group comparison
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AUC using a set of 16 features (Fig. 6B, C). Due to the similarities in function of sub-

units of cohesin and the mediator complex we used a single track for each of the two

complexes (Nipped-B for cohesin and MED1 for Mediator) to prevent rules involving

cohesin or the mediator complex from becoming diluted across several features. In par-

ticular, Nipped-B and SA recruit cohesin to the genome and Rad21 and Smc1 are two

cohesion subunits [61]. Fs(1)h was found to recruit Nipped-B [62] and, thus, was also

not included in the selected features. Mediator (MED1) appeared in 8 of the 11 and

cohesin (Nipped-B) in 5 out of 11 high dominance rules predicting common enhancers.

These features show a similar distribution between common and putative enhancers,

but putative enhancers have a reduced intensity across these tracks (Fig. 6A). Further-

more, we plotted the distributions of all these features at common, putative, and back-

ground regions (Fig. 6E and S7). Our results show that all the cohesin and mediator

subunits display higher enrichment at common enhancers than at putative ones, but

these features are still more enriched in putative enhancers than they are across the

genomic background. We hypothesise that the reduced recruitment of cohesin and me-

diator complex at these enhancers may prevent them to display similarly high activity

as common enhancers. Furthermore, other architectural proteins (BEAF-32, Cp190,

Chro and CTCF) or chromatin remodellers (ISWI, MOF, WDS and NURF301) show

similar strong enrichment at common enhancers and medium enrichment at putative

enhancers (Additional file 1: Fig. S7).

Previously, we found that BG3 specific TAD borders display enhancer like epigenetic

landscape but were not identified as enhancers by STARR-seq [35]. Furthermore, the

enrichment of architectural proteins and common and putative enhancers raised the

question whether these enhancers are associated with TAD borders or not. Neverthe-

less, we found that only a small number of common and putative enhancers are located

within 2 Kb of TAD borders (Fig. 6A).

Combinations of different chromatin modifications can be clustered, and, using Hid-

den Markov Models, a chromatin state map of the cell can be generated [31]. We used

a recent 11 state chromatin state map for BG3 cells [36] and investigated the overlap of

our predicted enhancers with the different chromatin states (Additional file 1: Fig. S8).

Both common enhancers (detected by both STARR-seq and XAI) and putative en-

hancers (XAI specific) are mostly enriched in enhancer, active TSS, and active intron

states and depleted in heterochromatin, polycomb, and basal. The only difference be-

tween common and XAI only enhancers is that the former displays slightly stronger en-

richment in enhancer state and slightly stronger depletion in heterochromatin state.

Enhancers detected by STARR-seq only are enriched only in competent state explain-

ing why the XAI model did not classify them as enhancers.

Finally, to complement the analysis of enriched architectural proteins, we investigated

if there are any transcription factors (TFs) that are preferentially enriched at common

and putative enhancers. Additional file 1: Fig. S9A-B compares enrichment for known

Drosophila TFs between common and putative enhancers in BG3 cells and S2 cells and

shows that majority of enriched TF motifs are shared between common and putative

enhancers. There are, however, several TFs motifs that are preferentially enriched at

putative enhancers (55 in BG3 cells and 17 in S2 cells) and few that are enriched at

common enhancers (21 in BG3 and S2); see Additional file 1: Table S1. We next com-

pared how many of these are common between the two cell lines and found that 5 TF
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motifs are enriched in both cell lines specifically at putative enhancers (Mes2, dl, Asciz,

ERR and USP) and 5 are enriched specifically at common enhancers (cnc maf-S com-

plex, eg, Atf-2, tj and hkb) (Additional file 1: Fig. S9C-F).

Our explainable AI model uncovers a new set of putative enhancers, previously not

identified in two Drosophila cell lines. Using experimental data, we show that these pu-

tative enhancers display similar epigenetic characteristics to enhancers detected by

STARR-seq and make 3D contacts with transcribed genes. Altogether, we could not

identify any significant difference in chromatin and epigenetic modifications between

the putative and common enhancers suggesting that these putative enhancers are a

novel group of previously uncharacterised enhancers.

Discussion
High-throughput enhancer assays (such as STARR-seq or other massively parallel re-

porter assays) have revolutionised the identification of enhancers, but they also suffer

from false positives and false negatives [23, 24, 63–65]. In addition, these methods are

resource intensive, and it is not expected that we will have a STARR-seq genome-wide

annotation of enhancers in every cell, tissue, or disease condition, especially in very

large and complex organisms. For example, to address the difficulty and prohibitive

cost of applying the method genome-wide, STARR-seq can be applied to regions of the

genome where epigenetic marks specific to enhancers are found [66]. In addition, mas-

sively parallel reporter assays approaches only annotate enhancers and do not provide

insights on why those genomic regions were identified as enhancers. Computational ap-

proaches can complement massively parallel reporter assays to annotate enhancers, but

to address these issues, they need to be generalizable and explainable. The former (gen-

eralisation) ensures that once a model is trained in a cell line, tissue, or state, it can be

applied to other cell types, tissues, and conditions without affecting the accuracy of the

predictions. The latter (explainability) ensures that the rules used to classify enhancers

can be accessible and interpreted.

In this manuscript, we use Opaque Box ML based Neural Networks and XAI (based

on Type-2 Fuzzy Logic and Multi Objective Multi Constraint Evolutionary Computa-

tion) models to identify enhancers using STARR-seq enhancer annotation and a set of

epigenetic features (e.g. histones and histone modifications). We train the model on a

subset of regions in one cell line (BG3) and predict the enhancers genome wide in the

same cell line and a different cell line (S2), which the model has not been exposed to

during the training. Our results confirm that both the Opaque Box ML and XAI are

able to predict enhancers with high accuracy and, most importantly, that they are

generalizable (see Fig. 1), demonstrating the ability of the model to predict enhancers

in alternative cell types that were not used to train the model.

Interestingly, we observed a decrease in the precision of these computational models,

meaning that they predict more enhancers than those annotated by STARR-seq. The

critical question is whether these putative enhancers are true enhancers or not. We

know that STARR-seq recovered enhancers are dependent on the plasmid used in the

experiment, suggesting that the plasmid used could lead to an increase in false nega-

tives (true enhancers that are missed) [24]. In particular, the STARR-seq datasets we

used in this study were generated using an older version of the plasmid that has been

shown to miss enhancers [24]. In addition, some of these putative enhancers
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(approximately 2500), albeit not all of them, have been previously characterised as en-

hancers by other methods in Enhancer Atlas 2.0 [26] (Additional file 1: Fig. S3). To val-

idate whether these computationally predicted putative enhancers are true enhancers,

we designed a series of tests. First, putative enhancers share the same epigenetic code

as enhancers identified by STARR-seq (enrichment and depletion of same histone mod-

ifications). Furthermore, majority of these putative enhancers make 3D contacts with

expressed genes. It is known that BEAF-32, Chro, and Cp190 are involved 3D chroma-

tin interactions [35, 49, 50, 67]. The observed enrichment of these proteins at our pre-

dicted enhancers (Fig. 6) and that our predicted enhancers have 3D contacts with

promoters provides a model of how the 3D promoter-enhancer interactions are medi-

ated. Interestingly, both Pol II and divergent transcription were observed at these en-

hancers (Fig. 6). These are features that were previously identified as characteristic of

active enhancers [38, 53], and their enrichment at our predicted enhancers provides

further evidence of the validity of our predicted enhancers.

Enhancer hubs have been previously observed in many organisms and there is evi-

dence that these redundant enhancers have a role in providing robustness in gene acti-

vation [68, 69]. Here, we found that putative enhancers display high number of

enriched contacts with other enhancers, albeit less than in the case of common en-

hancers (Additional file 1: Fig. S6). One possibility is that our putative enhancers are

potentially redundant enhancers that are part of enhancer hubs.

The main difference between the putative enhancers and the ones identified by both

STARR-seq and the XAI models is that the putative enhancers tend to be slightly

smaller (many of them are between 150 bp and 1Kb). Nevertheless, their size is within

the expected size of enhancers [70, 71]. Enhancers detected by both STARR-seq and

XAI are longer (larger than 1 Kb) and could be classified as super enhancers [30] or

stretch enhancers [72]. Super enhancers have not previously been observed in Drosoph-

ila, and, due to their size, they are difficult to verify experimentally. However, the marks

used to predict enhancer activity in this model correspond to the marks expected in ei-

ther large enhancer group [73].

Furthermore, putative enhancers display slightly less enrichment in enhancer chro-

matin state and slightly less depletion in heterochromatin chromatin state compared to

common enhancers. This indicates that while the putative enhancers share the same

epigenetic code as common one, they might have less enrichment of the active chroma-

tin marks. One possibility is that these putative enhancers are not as strong as the com-

mon ones and they might be missed by experimental methods. Alternatively, they

might be primed enhancers [74], enhancers displaying most of the active marks, but

not activating transcription yet. Based on our analysis, we cannot exclude that some of

the putative enhancers are primed enhancers.

Epigenetic code of enhancers

One of the advantages of XAI is that we can see and evaluate the rules used to

predict enhancer activity. Some rules are well described in the literature, for ex-

ample H3K4me1 or H3K27ac being highly enriched [14, 16]. Other rules were

more surprising, for example, H3K23ac has not been extensively studied but it ap-

pears to be one of the stronger negative predictors of enhancer activity according
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to the model, appearing in several rules with a very distinct pattern. Furthermore,

we found that 9% of enhancers display enrichment of H4K16ac that, in Drosophila,

it has been mainly associated with dosage compensation [44, 45]. Nevertheless,

H4K16ac has been found at active enhancers in a mammalian cell line independent

of the presence of H3K27ac [20]. In addition, H3K9ac has been shown to be an

important histone modification located at strong active enhancers in Drosophila

[75], and it appears in two of our detected enhancer rules. Finally, we also ob-

served enrichment of H3K18ac at our predicted enhancers and this mark is known

to be enriched at enhancers in Drosophila [31].

Interestingly, we found that there is no rule in our XAI model where both H3K4me1

and H3K27ac are high (see Fig. 4), despite these marks often being used as a proxy for

enhancer identification (reviewed in [12]). This was puzzling at first so we therefore in-

vestigated how many of our predicted enhancers have high levels of H3K4me1 and

H3K27ac. Interestingly, 70% of our enhancers are characterised by H3K4me1 and

H3K27ac ChIP peaks and adding an expert rule of “enhancers are characterised by high

levels of H3K4me1 and H3K27ac” only improves the model marginally (0.25%). This

suggests that our model captures the regions containing high levels of H3K4me1 and

H3K27ac by different combinations of histone modifications, which could be poten-

tially more selective.

One important question is whether the epigenome can be used to differentiate be-

tween developmental and housekeeping enhancers. Previous studies have provided

contradictory results, and, while one study found that there is very little epigenetic sig-

nal [47], a different study found preferential enrichment of H3K4me1 at developmental

enhancers and H3K4me3 at housekeeping enhancers [48]. Our results support both of

these findings, and while we found that indeed H3K4me2/3 is more important for

housekeeping enhancers and H3K4me1 for developmental enhancers, the epigenetic

codes of housekeeping and developmental enhancers are very similar and there is not

enough information to distinguish clearly between the two.

Associated proteins at enhancers

BEAF-32, Chro, and Cp190 have all been found to be strongly enriched around distal

and proximal enhancers, but this was more prevalent at housekeeping enhancers [48].

We found the enrichment of these architectural proteins at majority of the predicted

enhancers (Fig. 6). CTCF is known to have insulation functions [52] and its presence at

the borders of larger putative and common enhancers, which indicates that it plays a

role in halting the spread of heterochromatin inside enhancers. Interestingly, HP1a is

also enriched at the borders of these enhancers suggesting that heterochromatin is po-

tentially phase separated in order to keep it away from enhancers [56].

Our results show medium enrichment of cohesin (Rad21, Smc1, Nipped-B and SA)

and architectural proteins (BEAF-32, Cp190, Chro and CTCF) [35, 76] at putative en-

hancers. This is in contrast with the higher enrichment of these proteins at common

enhancers (Fig. 6 and Additional file 1: Fig. S7). The lower enrichment of cohesin at

putative enhancers correlates with lower activity (nascent RNA) that can lead to the en-

hancer displaying an activity below the detection threshold of high throughput enhan-

cer assays (such as STARR-seq or other massively parallel reporter assays).
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Interestingly, recent studies have shown that cohesin is required for enhancer activity

in mammalian systems, but mainly for long range enhancer activity [77, 78]. We find

that the 3D genome architecture might play a role in enhancer activity in Drosophila

similarly to mammalian system [61].

Our aim was to investigate if histone modifications are sufficient to predict enhancers

and we did not include TFs in our predictive models. We found that indeed histone

modifications are not only sufficient to recover most of the previously annotated en-

hancers by STARR-seq, but we also predicted many new putative enhancers. To inves-

tigate whether TFs could differentiate between common and putative enhancers, we

tried to identify if there are any enriched motifs at the two classes of enhancers, and we

found that majority of motifs are shared between the two groups of enhancers. Never-

theless, there were five TFs that were enriched preferentially at common in both BG3

and S2 cells (cnc maf-S complex, eg, Atf-2, tj and hkb) and five TFs that were enriched

preferentially at putative in both BG3 and S2 cells (Mes2, dl, Asciz, ERR and USP).

Only eg, hkb, Mes2, and maf-S are expressed in larval central nervous system (from

where BG3 cells are derived), and only dl is expressed in S2 cells [79]. This suggests

that there is only a negligible difference in enriched TF motifs between common and

putative enhancers, and most of those differentially enriched TFs are not expressed in

these two cells.

Conclusions
Here, we use opaque box machine learning (neural networks) and explainable AI

(based on Type-2 Fuzzy Logic and Multi Objective Multi Constraint Evolutionary

Computation) models to successfully identify enhancers based only on epigenetic fea-

tures and using STARR-seq enhancer annotation for training. Our results confirm that

both the opaque box machine learning and explainable AI models can predict en-

hancers with a high degree of accuracy and, most importantly, that both models were

able to generalise to a previously unseen cell line. We identify a novel set of putative

enhancers that display a similar epigenetic landscape as enhancers identified by

STARR-seq, but only intermediary levels of mediator and cohesin complexes and nas-

cent transcription that are all significantly above background levels. Most importantly,

we were able to analyse the rules employed by the explainable AI to identify enhancers

and dissect the combinations of different histone modifications that characterise differ-

ent classes of enhancers.

Methods
Datasets to train Opaque Box ML and XAI models

The Drosophila melanogaster genome (dm6) [80, 81] was tiled into bins of 10 base

pairs (bp) with the sex chromosomes removed to eliminate potential biases arising

from marks involved in dosage compensation mechanisms [44]. ChIP-chip datasets

generated and pre-processed (M values smoothed over 500 bp) by the modEN-

CODE Consortium for histone modifications and histone variants in two D. mela-

nogaster cell lines (BG3 and S2) were downloaded from modEncode [82]. The full

list of datasets used can be found in Additional file 1: Table S2. Enrichment scores

from these datasets were transformed with min-max normalisation and then
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mapped into bins in the tiled genome. Self-transcribing active regulatory region se-

quencing (STARR-seq) datasets for BG3 and S2 cells were obtained from [23,3 3,

34]. STARR-seq peaks were expanded to 400 bp and then mapped to the 10 bp

bins of the tiled genome.

Opaque BoxML and XAI models

One million bins were sampled, maintaining the same ratio of enhancer to non-

enhancer labelled bins found across the entire dataset. The data set was then

split into training and testing datasets where all maintained the ratio of en-

hancers to non-enhancers. Using the Temenos XAI platform (https://logicalglue-

support.helpscoutdocs.com/), neural networks, and type-2 fuzzy logic based XAI

models were trained using the binarised STARR-seq peaks as classification labels

for active enhancers. The best fitting models for each classification method were

selected based on their accuracy, recall, and gini (gini =2 *area under the curve

(AUC)-1) scores across the testing and the overall one million initially uploaded

bins. These models were then used to predict enhancer activity across the previ-

ously tiled dm6 genome in both cell types, and their performance was

compared.

Regions predicted to be enhancers using the XAI model were selected to have a prob-

ability threshold of 0.8 or higher based on Additional file 1: Fig. S2. These regions were

compared to neighbouring regions within 100 bp upstream or downstream. If the com-

bined regions average probability threshold was above 0.8, the bins were merged; if not,

the regions were kept separate.

3D enriched contacts and expression data

The 3D contacts of these potential enhancers were then explored using Hi-C data gener-

ated from [35, 40]. The enriched contacts were extracted with HiCExplorer using the ob-

served/expected ratio method [51]. Promoter locations were defined as being 250 bp

upstream of TSS sites from the dm6 GFF3 annotation [81]. Enhancers occurring in Hi-C

bins with enriched contacts with regions containing promoters were classed as having po-

tential promoter 3D contacts. Where these contacts were within 5 Kb, the contact was

classed as proximal, and where contacts were outside of 5 kb, these were classed as distal.

Expression data (FPKM) from [41] was then examined for genes where the gene’s

promoter made 3D contact with a potential enhancer.

Architectural proteins and transcription and TF enrichment at enhancers

We used the ChIP-chip datasets generated and pre-processed (M values smoothed over

500 bp) by The modENCODE Consortium for BG3 cell lines [31, 32, 83, 84]. The Nip-

pedB ChIP dataset was downloaded from [61]. The full list of datasets used can be

found in Additional file 1: Table S2.

For ChIP-chip occupancy analysis, we sorted the enhancers from the largest (top) to

shortest (bottom) and extracted the ChIP-chip signal within 10 Kb window build around

the enhancer centres. Initial profiles were winsorised (excluded all negative signals and

everything above 95% quantile of positive signals) and rescaled to lie between 0 and 1. For

3′NT-seq profile, enhancers were sorted analogically, i.e., we did not apply the
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winterisation, and we rescaled positive and negative signals separately—positive signals

were rescaled to the interval from 0 to 1; negative signals were rescaled to the interval

from − 1 to 0. The signals of resulting profile belong to the interval from − 1 to 1.

The directionality score computed as log10 of the ratio between nascent RNA levels

in 500 bp on the positive strand downstream of the border and on the negative strand

upstream of the border. 500 bp bins that were 500 bp away were considered in both di-

rections from the enhancer [35]. The directionality score was sorted analogically to the

ChIP-chip profiles with respect to the enhancer sizes. The borders with directionality

score between − 0.5 and 0.5 were treated as bidirectional and were coloured in green.

Non-transcribed, positively transcribed, and negatively transcribed enhancers were

coloured in white. In Fig. 6, we also marked by purple the enhancers that were located

within 2 Kb of TAD borders in BG3 cells [35].

PWM enrichment analysis was performed on putative enhancer regions using the

PWMenrich package in R [85] using MotifDb collection of TF motifs [86]. Significantly

enriched TF motifs were classed as those having a p value of < 0.05 in PWMenrich

when compared to the standard dm6 background.
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