
METHOD Open Access

Accurate long-read de novo assembly
evaluation with Inspector
Yu Chen1,2, Yixin Zhang3, Amy Y. Wang2,4, Min Gao2,5 and Zechen Chong1,2*

* Correspondence: zchong@uabmc.
edu
1Department of Genetics, Heersink
School of Medicine, University of
Alabama at Birmingham,
Birmingham, AL 35294, USA
2Informatics Institute, Heersink
School of Medicine, University of
Alabama at Birmingham,
Birmingham, AL 35294, USA
Full list of author information is
available at the end of the article

Abstract

Long-read de novo genome assembly continues to advance rapidly. However, there
is a lack of effective tools to accurately evaluate the assembly results, especially for
structural errors. We present Inspector, a reference-free long-read de novo assembly
evaluator which faithfully reports types of errors and their precise locations. Notably,
Inspector can correct the assembly errors based on consensus sequences derived
from raw reads covering erroneous regions. Based on in silico and long-read
assembly results from multiple long-read data and assemblers, we demonstrate that
in addition to providing generic metrics, Inspector can accurately identify both large-
scale and small-scale assembly errors.

Keywords: De novo assembly, Long reads, Assembly evaluation, Assembly error,
Genome assembly

Background
Whole-genome de novo assembly is essential for investigating species without reference ge-

nomes and is critical for characterizing the full spectrum of genetic variants for species with

a reference genome [1–8]. With the advancement of long-read sequencing technologies,

long reads are becoming more accurate, much longer, and more affordable [9, 10]. Accord-

ingly, numerous long-read whole-genome de novo assemblers [11–19] have been devel-

oped and are widely applied to small-scale [20–22] and consortium projects [3, 4, 23].

Despite these advancements, it is challenging to achieve high-quality assembly, even

for long reads. The algorithms of assemblers differ greatly, and each assembler typically

includes a wide range of parameters. Moreover, the input data may originate from in-

dividual or multiple platforms with varying read lengths. For long-read assemblers, the

input may include hybrid reads, long noisy reads (PacBio raw CLR or Nanopore), HiFi

reads, reads from trio samples, and other types. Additional complexity due to ploidy,

genetic diversity, heterozygosity, repetitive sequences, and sequencing depth of se-

quenced genomes make de novo assembly even more challenging.

De novo assembly quality assessment is therefore essential both for users to obtain

optimal assembly results and for developers to improve assembly algorithms. In the

short-read era, Assemblathon [24, 25] guided best practices for de novo assembly.
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However, there are limited toolsets that can evaluate long-read assemblies.

QUAST-LG [25, 26], an extension of QUAST [27], is able to evaluate large gen-

ome assemblies. It accepts sequencing data from multiple platforms and can gener-

ate reports with rich assembly metrics as well as plots. However, QUAST-LG relies

heavily on existing reference genomes, which limits its application in species with-

out a reference genome or for samples that differ substantially from reference ge-

nomes. In addition, the misassembly evaluation of QUAST-LG is easily affected by

the presence of genetic variants. Although it accepts raw reads as input, only Illu-

mina data will be used to call structural variations (SVs) with GRIDSS [28], while

long reads can only be used to report simple read statistics. Even if short reads are

provided, due to the insufficiency of detecting SVs from short reads [3], it is chal-

lenging to evaluate assembly errors.

Merqury [29], inspired by KAT [30], is a reference-free toolkit for evaluating assem-

bly quality (QV), completeness, and phasing based on the k-mer spectra. By comparing

k-mers in assemblies to raw reads, Merqury can estimate base-level accuracy and com-

pleteness. Nevertheless, Merqury requires high-accuracy reads as input, such as Illu-

mina data, which limits its application on long-read-only assembly results. While it

provides base-level error estimates, Merqury cannot explicitly validate structural errors.

BUSCO [31] is a rapid and accurate method for assessing genome assembly and an-

notation completeness based on evolutionary ortholog genes. However, BUSCO evalu-

ates conserved genomic regions and is not informative on the most divergent

sequences in the genome.

Assembly polishing following de novo assembly is a typically used approach for

improving assembly quality for downstream genomic analysis. Most current polish-

ing algorithms correct assembly errors based on read-to-assembly alignment, as

used in Racon [32], Pilon [33], GCpp [34], and CONSENT [35]. Other algorithms

use k-mer-based approaches, such as POLCA [36] and ntEdit [37]. Nanopolish [20]

and Medaka [38] polishing methods have been designed particularly for Oxford

Nanopore data. Most polishing methods target small-scale errors for correction,

while polishing performance on a larger scale remains unknown due to a lack of

efficient evaluation methods. Another limitation is that these polishing methods

often require excessive computational resources for large genomes, such as mam-

mal genomes.

We have developed Inspector [39] to comprehensively evaluate assembly quality and

identify assembly errors in haploid and diploid genomes. Instead of relying on reference

genomes, Inspector evaluates assemblies with only third-generation sequencing reads,

which are the most faithful representations of target genomes. By aligning sequencing

reads to the contigs with minimap2 [40], Inspector generates read-to-contig alignment

and performs downstream assembly evaluation (Fig. 1). Statistical analysis is initially

performed to assess contig continuity and completeness. Structural assembly errors

and small-scale assembly errors are identified from read-to-contig alignment and

distinguished from genetic variants based on the ratio of error-containing reads. In-

spector includes a targeted error correction module that addresses identified errors

to improve local assembly quality. The output of Inspector includes an evaluation

summary report, list of structural errors, list of small-scale errors, read alignment

file, and evaluation plots.
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Results
Small-scale assembly errors and structural assembly errors

We have classified assembly errors into two groups, small-scale errors (< 50 bp) and

structural errors (≥50 bp). Small-scale errors consist of three types: base substitution,

small collapse, and small expansion (Additional file 1: Fig. S1). Small-scale errors can

be directly inferred from the pileup results of read alignments and filtered based on the

number of error-supporting reads (“Methods”). We also have defined four types of

structural assembly errors: expansion, collapse, haplotype switch, and inversion (Add-

itional file 1: Fig. S2). Collapse and expansion are reported when part of the target gen-

ome sequence is incorrectly collapsed or expanded in the assembly. For example,

collapse and expansion can occur within repetitive regions, as the presence of repeat

units often forms bifurcated paths on assembly graphs, which are difficult to resolve.

Haplotype switches occur at heterozygous SV breakpoints, when two haplotypes are

Fig. 1 Inspector workflow for evaluating of de novo assembly results. By mapping the long reads to the
contigs, besides basic statistic assembly evaluation metrics, Inspector calculates and reports precise
structural errors and small-scale errors. The identified errors can also be corrected by Inspector to generate
more accurate contigs
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different. The assembler fails to reconstruct either haplotype but instead generates a se-

quence somewhat between the two haplotypes. In these cases, reads from one haplo-

type will suggest a “Collapse,” and reads from the other haplotype will suggest an

“Expansion.” Inversions occur when a section of the target genome sequence is inverted

in the assembly.

Benchmark with simulation

To benchmark the accuracy of assembly error detection of assembly evaluators, we

compared Inspector with two other long-read assembly evaluators, Merqury and

QUAST-LG, on the simulation dataset. We simulated a human genome from the refer-

ence genome (GRCh38) and introduced 1,000,000 single nucleotide and 20,000 struc-

tural variants. The SV size spectrum follows a geometric distribution similar to a real

human genome [1] (Additional file 1: Fig. S3). A total of 2000 structural errors and ap-

proximately 580,000 small-scale errors (base substitutions and 1 bp indels) were ran-

domly embedded into the simulated assembly (Additional file 2: Table S1). PacBio

CLR-like reads and HiFi-like reads were simulated by PBSIM [41] and provided for In-

spector to identify assembly errors. The reported assembly errors and problematic k-

mers were compared to the ground truth to assess the accuracy of error identification

for each evaluator.

Under the default settings, Inspector achieved the highest accuracy (F1 score) for as-

sembly error detection in both haploid and diploid genomes (Table 1). For structural

errors, Inspector correctly identified over 95% of simulated errors with both PacBio

CLR and HiFi data. It achieved slightly better accuracy when working with HiFi data

than CLR, as HiFi reads contain fewer sequencing errors. The precision was over 98%

in both haploid and diploid simulations, although the number of SVs was approxi-

mately ten times greater than the true structural errors. For small-scale errors, the ac-

curacy of Inspector was over 99% when working with HiFi data. The recall for small-

scale error detection was lower (~ 86%) for CLR data, due to the lower signal-to-noise

ratio caused by a higher sequencing error rate. In particular, the recall for base-

substitution error was higher than for small collapse or expansion, as the latter two

subtypes are more susceptible to sequencing errors (Additional file 1: Fig. S4). Most

false-negative small-scale errors exhibited a lower ratio of error-supporting reads and

were filtered out by Inspector for failing to reject the null hypothesis of the binomial

test. The precision of small-scale error detection was over 96% for both PacBio CLR

and HiFi data, benefiting from the stringent filter implemented in Inspector. Merqury

Table 1 Assembly error identification accuracy in simulated assembly

Haploid Diploid

Recall/% Precision/% F1 score/% Recall/% Precision/% F1 score/%

Inspector structural – CLR 96.76 100.0 98.35 95.98 98.48 97.21

Inspector structural – HiFi 97.64 100.0 98.80 97.61 98.87 98.23

Inspector small-scale – CLR 86.84 99.53 92.75 86.60 96.99 91.50

Inspector small-scale – HiFi 98.99 99.65 99.32 98.91 99.62 99.26

Merqury 71.01 91.66 80.03 70.92 91.63 79.95

QUAST-LG 5.73 5.96 5.84 7.08 8.48 7.72
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identified ~ 71% of the assembly errors with a precision of ~ 91.6% on both CLR and

HiFi data. Merqury failed to detect more small collapses than base substitution and

small expansions, and over 70% of Merqury-missed small-scale errors were located in

repeat regions (Additional file 1: Fig. S5). QUAST-LG had much lower recall and preci-

sion than Inspector and Merqury, as some misassemblies were indeed caused by SVs

(18% in haploid and 36% in diploid). In both haploid and diploid simulated assemblies,

Inspector detected the structural assembly errors and small-scale errors with the high-

est accuracy among the three evaluators.

Human genome assembly evaluation

We next performed whole-genome de novo assembly on a real human genome and evalu-

ated the assembly results. We used an Ashkenazi Jewish sample, HG002, from Genome in

a Bottle (GIAB) for the analysis. This sample has been sequenced by multiple platforms,

including PacBio CLR, PacBio HiFi, Oxford Nanopore, and Illumina. There are experi-

mentally or multiple-platform validated SNP/indel callset and SV callset at high-

confidence regions publicly available for this sample [42–44], which enables the validation

of identified assembly errors. We tested five state-of-the-art assemblers, Canu [14], Flye

[15], wtdbg2 [16], hifiasm [19], and Shasta [17], on the PacBio CLR (~70×), HiFi (~55×),

and Nanopore (~60×) dataset, if applicable. Besides Inspector, we have applied Merqury

and QUAST-LG to evaluate and compare the assembly results (Table 2).

Inspector first estimated assembly continuity. Most assemblies contained a total of

2.7–3.0 giga base pairs, close to the reference genome, suggesting that these assemblers

can reconstruct the overall structure of the target genome using long reads. Based on

the maximal contig length and the N50, the sequence length of the shortest contig at

50% of the total contig lengths, Flye achieved the best continuity in the PacBio CLR

and Nanopore datasets, while hifiasm outperformed the other assemblers in the HiFi

dataset. Inspector then aligned the sequenced reads to contigs and identified assembly

errors from read-to-contig alignments. Canu introduced the fewest structural errors as

well as small-scale errors in CLR and HiFi assemblies. Hifiasm achieved results similar

to Canu. Nanopore assemblies contained much more structural errors and small-scale

errors than CLR and HiFi assemblies. This was likely due to the higher error rate of the

Nanopore sequencing data. Flye generated the most accurate assembly among the four

assemblers with Nanopore data. Note that the assemblers were tested using their de-

fault or recommended parameters. Optimized de novo assembly results by fine-tuning

the parameters of individual assemblers may render different evaluation results.

For an overall evaluation of assembly quality, we introduce the Quality Value (QV)

score. QV score is calculated based on the identified structural and small-scale errors

scaled by the total base pairs of the assemblies (“Methods”). In general, PacBio HiFi as-

semblies demonstrated higher QV scores than CLR and Nanopore assemblies. Canu

achieved the highest QV score in PacBio CLR and HiFi datasets, and Flye outperformed

other assemblers in Nanopore dataset. We also evaluated all assemblies using Merqury.

QV scores calculated by Merqury highly correlated with Inspector’s results (Additional

file 1: Fig. S6). QUAST-LG was also used to evaluate the assemblies. As the SVs were

not excluded from the misassembly list, the total number of misassemblies was much

larger than Inspector’s result in all assemblies.
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When the reference genome is available, Inspector can also assess the assembly syn-

teny by aligning contigs to the reference genome. Based on the contig-to-reference

alignment, Inspector computes NA50 (N50 calculated on the basis of aligned blocks in-

stead of contig lengths), contig mapping ratio, and reference genome coverage for each

assembly, reflecting the completeness of the assembly. Inspector also generates N1-

N100 plots (Additional file 1: Fig. S7) and Dotplot (Additional file 1: Fig. S8) to reflect

the consistency between the assembly and reference genome

NA50 and reference genome coverage in HiFi assemblies were larger than the CLR

and Nanopore assemblies, which suggests that HiFi assemblies were more complete

and more consistent with the reference genome. Because the reference genome is dif-

ferent from the evaluated genome, these statistics may be slightly affected by genetic

variants. Overall, we found that HiFi assemblies were more accurate and complete than

CLR and Nanopore assemblies, suggesting that better assembly results can be achieved

from long and accurate sequences.

Distinguish assembly errors from genetic variants

Inspector distinguishes assembly errors from genetic variants mainly from the number of

reads that support the error. We identify them as “error-supporting” reads. The expected

ratio of error-supporting reads is higher for assembly errors than genetic variants (Add-

itional file 1: Fig. S9, S10). For small-scale errors, Inspector counts the number of reads

supporting errors and contigs, and then performs binomial test to select assembly errors

with significant p values depending on the input data (“Methods”). For structural errors, a

stringent filter of assembly errors is designed to sift out SVs based on the ratio of error-

supporting reads and other features such as read mapping quality. We have defined the

false discovery rate (FDR) of assembly error in HG002 as the errors that are actually gen-

etic variants. We compared the identified assembly errors to the high-confidence variant

callsets and computed the FDRs in each assembly. Inspector efficiently distinguished

small-scale and structural (collapse and expansion) assembly errors from genetic variants,

with an average FDR of 2.88% and 1.15%, respectively (Table 3). The FDR for Merqury

and QUAST-LG were both higher than for Inspector. We also evaluated accuracy for

haplotype switches and validated that over 90% of the reported events occurred near het-

erozygous SV breakpoints (Additional file 2: Table S2).

We further characterized the structural errors identified from these assemblies (Fig. 2a).

The error patterns varied among the assemblers and among different data types.

For example, Flye consistently showed a predominance of haplotype switches, sug-

gesting a possible systematic error when assembling the heterozygous regions. In

addition, Canu and wtdbg2 showed more collapses in Nanopore assemblies than

PacBio CLR and HiFi assemblies. This may be due to a higher deletion error rate

in Nanopore data, in contrast to a higher insertion error in PacBio data. In general,

structural errors were dominated by relatively small errors, with 84.8% of structural

errors shorter than 500 bp (Fig. 2b). Collapses accounted for 88.9% of structural er-

rors that were larger than 1 kbp. Inversion errors were much rarer than the other

three types and were usually large in size (493 kbp on average). The error pattern

of small-scale errors also varied among assemblers but showed more consistency

within the same data type (Additional file 1: Fig. S11).
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To assess the effect of sequencing depth on Inspector’s evaluation performance, we

merged three HiFi datasets from GIAB and downsampled to a series of depths ranging

from 10× to 100×. We evaluated the same assembly with these downsampled HiFi data-

sets. The number of assembly errors reported by Inspector was stabilized when the se-

quencing depth was higher than 30× (Additional file 1: Fig. S12), which suggests that

the sequencing depth has minor effect on Inspector’s error detection, and a 30× dataset

is sufficient for accurate assembly evaluation with Inspector.

Fig. 2 Characterization of structural assembly errors in HG002 assemblies. a Pie charts showing the
proportion of four types of structural errors identified in Canu, Flye, wtdbg2, hifiasm, and Shasta assemblies
with CLR, HiFi, and Nanopore datasets, respectively. The number of assembly error is also marked on each
sector. b Size distribution of identified structural assembly errors in all HG002 assemblies

Table 3 False discovery rate of assembly errors in HG002 assemblies

Inspector Merqury QUAST-LG

Small-scale Structural

CLR Canu 3.57 –a 14.36 35.23

Flye 5.77 0.00 21.93 51.65

wtdbg2 0.94 0.00 15.33 38.37

HiFi Canu 6.21 –a 3.61 38.96

Flye 0.41 0.00 56.13 52.64

wtdbg2 0.90 2.38 72.64 64.23

hifiasm 8.85 0.00 9.99 51.63

Nanopore Canu 1.01 0.00 3.89 23.16

Flye 1.28 7.69 5.22 52.39

wtdbg2 0.72 0.00 6.37 12.32

Shasta 1.96 0.32 5.15 46.68

Mean 2.88 1.15 19.51 42.48
aAssemblies with no structural error located in the benchmark regions of HG002 are marked with “–”
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Assembly errors are enriched in repetitive regions

Inspector reports precise locations of structural and small-scale errors, which allows us

to further annotate assembly errors from each assembly result. We projected the coor-

dinates of identified assembly errors to the reference genome and annotated these as-

sembly errors (“Methods”). To ensure accurate repeat analysis, we used HiFi data to

identify small-scale errors in all assemblies. We found that both structural errors and

small-scale errors were enriched in the repetitive sequences (Fig. 3a). Given that ap-

proximately 55% [45] of the human genome is annotated as repetitive sequences [45],

we observed a significantly higher proportion of structural (82.09%) and small-scale

(73.61%) errors located in repetitive regions, suggesting that repeats remain challenging

for long-read de novo assembly. We further examined the seven types of repetitive se-

quences that each account for more than 1% of the reference genome (Additional file

1: Fig. S13). We found that both structural and small-scale errors were enriched in sim-

ple repeats. The average percentage of structural errors located in simple repeats was

45.9%, which was a ten-fold enrichment compared to the genome baseline. Small-scale

errors were also enriched in LINE, SINE, LTR, and DNA repeat elements for these as-

semblies as a whole. We observed an overall lower percentage of errors located in the

Fig. 3 Enrichment of assembly errors in repetitive regions. a Proportion of assembly errors located in
repetitive regions in each assembly. Dashed line indicates fraction of human reference genome annotated
as repeats. P values were calculated by one-sample t-test to compare the proportion of assembly errors
with the baseline. b Repeat annotation of structural and small-scale errors for five assemblers
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segmental duplication and satellite regions, although some assemblies showed a higher-

than-expected assembly error rate.

We next characterized the repeat-associated assembly errors for the five tested as-

semblers. The composition of different types of repeats was relatively consistent for

small-scale errors among the five assemblers tested (Fig. 3b), with majority of errors lo-

cated in LINE, SINE, simple repeat, and LTR regions. When separating assemblies from

three different data types, we observed consistent patterns in CLR assemblers and

Nanopore assemblies (Additional file 1: Fig. S14). In the four HiFi assemblies, there was

strong enrichment of simple repeats in the Flye assembly, suggesting that Flye may

have worse base accuracy when resolving simple repeat regions than other genomic re-

gions. For the structural errors, both Flye and Shasta (merely applicable to Nanopore

data) demonstrated strong enrichment in simple repeats than the other three assem-

blers (Fig. 3b). This enrichment is consistent in PacBio CLR, HiFi, and Nanopore as-

semblies for Flye (Additional file 1: Fig. S15). Taken together, Inspector revealed the

enrichment of assembly errors in repetitive regions and distinct repeat enrichment pat-

terns of different assemblers, which provides guidance for further development and im-

provement of assemblers.

Assembly error correction

Equipped with the coordinates of assembly errors, Inspector includes an error correc-

tion module for improving assembly quality, which facilitates downstream analysis. The

error correction module eliminates highly confident assembly errors (Fig. 4a). Small-

scale errors are corrected by replacing misassembled bases at reported locations. Struc-

tural errors are corrected by performing local de novo assembly around each error

(“Methods”). Because the local assembly utilizes sequencing reads from only this locus

(and from only one haplotype for haplotype switches), the newly generated contig can

reconstruct the target genome more accurately and can therefore fix structural assem-

bly errors.

We evaluated genome polishing performance of the Inspector error correction mod-

ule and six state-of-the-art alignment-based polishing methods, including Racon, Pilon,

GCpp, Medaka, Nanopolish, and CONSENT on HG002 assemblies from Canu, Flye,

wtdbg2, hifiasm, and Shasta. We used one HiFi dataset of HG002 for polishing and

used another HiFi dataset to evaluate the original and polished assemblies to avoid bias

(“Methods”). After polishing with HiFi reads, Inspector corrected most structural errors

among four tested polishing tools in the CLR and HiFi assemblies, while GCpp cor-

rected most structural errors in the Nanopore assemblies (Fig. 4b). Nevertheless, in

CLR and HiFi assemblies, there were more structural errors after polishing with Racon,

Pilon, and GCpp, suggesting that these polishing methods can correct structural errors

in lower-quality assemblies but may introduce more structural errors in relatively ac-

curate assemblies. For small-scale errors, Inspector, Racon, and GCpp achieved higher

error correction rates than Pilon in most assemblies (Fig. 4c). GCpp introduced more

small-scale errors in the HiFi assemblies. Based on the increased QV score after polish-

ing, Inspector outperformed other polishing methods in CLR and HiFi assemblies,

while Racon achieved the best QV score improvement in Nanopore assemblies (Add-

itional file 1: Fig. S16a). Estimation of QV score with Merqury also supported that
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Inspector and Racon achieved the highest assembly quality among the tested polishing

methods (Additional file 1: Fig. S16b).

When polishing the assemblies with CLR and Nanopore reads, Racon, CONSENT,

and Medaka introduced new structural errors after polishing the CLR and HiFi assem-

blies (Additional file 1: Fig. S17). The number of small-scale errors in CLR and HiFi as-

semblies was also increased after polishing with noisy reads, especially with Nanopore

reads. Inspector and Pilon reduced assembly errors or introduced the fewest errors

when given noisy reads as inputs for polishing. Compared with polishing using CLR

and Nanopore reads, Inspector achieved the highest error correction rate using HiFi

reads for both small-scale errors (Additional file 2: Table S3) and structural errors

(Additional file 2: Table S4), owing to the highest base accuracy of the HiFi dataset.

We also evaluated short-read polishing on the HG002 assemblies. Although the

small-scale errors were reduced in all assemblies (Additional file 1: Fig. S18a), the num-

ber of structural errors increased in most assemblies after short-read polishing with

Racon or Pilon (Additional file 1: Fig. S18b). QV scores estimated by Inspector and

Merqury were both increased in CLR and Nanopore assemblies but showed minor or

no improvement in HiFi assemblies (Additional file 1: Fig. S18c), suggesting that add-

itional high-accuracy short-read datasets can only improve the quality of assemblies

generated from noisy long reads.

In addition to the human genome, we also tested the Inspector error correction mod-

ule on the genome of Anna’s hummingbird (Calypte anna) [46]. We performed whole-

genome assembly with Canu, Flye, and wtdbg2 and corrected identified assembly errors

using Inspector. The number of structural errors and small-scale errors both dropped

after Inspector error correction, with increased QV scores for all assemblies (Additional

Fig. 4 Improved assembly accuracy after error correction. a Methods of assembly error correction for small-
scale and structural errors. b, c Number of corrected structural (b) and small-scale errors (c) in HG002
assembly. Negative values indicate more assembly errors after the polishing process
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file 1: Fig. S19). We also compared the original and Inspector-corrected assemblies to

the curated genome to validate that the structural errors in the original assemblies were

accurately corrected by Inspector (Additional file 1: Fig. S20). Taken together, the error

correction module of Inspector can improve assembly quality by correcting both struc-

tural and small-scale errors and can achieve better error correction efficiency than

other polishing methods in more accurate assemblies.

Runtime and memory usage

Inspector and other assembly evaluation and polishing methods were tested on Intel

Xeon E5-2680 v3 CPUs with 2.5 GHz. It took 13.6 h to evaluate a human genome as-

sembly (Canu assembly of HG002) using 50× PacBio HiFi dataset with peak memory of

35 GB (Additional file 2: Table S5). The error correction of this assembly took 26 min

with peak memory of 17GB (Additional file 2: Table S6).

Discussion
We have developed a reference-free long-read de novo genome assembly evaluator, In-

spector, which reports exact locations, sizes, and types of assembly errors without being

affected by genetic variants. In addition, Inspector improves assembly results by cor-

recting discovered errors. These features are unique to Inspector and have not been

achieved by other available assembly evaluators. We also performed detailed error ana-

lysis on different assemblers applied to different datasets. As expected, errors appear

predominantly in repetitive regions. However, not all types of repeats are enriched with

assembly errors. This information is important for the investigation of systematic de-

fects in assembler algorithms. Therefore, Inspector can provide guidance for users and

developers on achieving optimal assembly results.

Inspector implements multi-thread processing for read alignment, assembly error

identification, and assembly error correction. For identification and correction of as-

sembly errors, Inspector processes one contig per thread, which largely reduces run-

time and memory usage. The read alignment by minimap2 is the most time-consuming

step in Inspector evaluation (accounting for approximately 70% of total runtime).

Therefore, the runtime of Inspector largely depends on the sequencing depth of the in-

put dataset. The total runtime for Inspector is longer than for Merqury and QUAST,

but it requires much less memory (Additional file 2: Table S5). For assembly error cor-

rection, the runtime of Inspector depends on the number of structural errors present

in the assembly, as Inspector performs local assembly for each error. Inspector used

shorter computing time and less memory than Racon, Pilon, GCpp, and Medaka (Add-

itional file 2: Table S6), benefiting from known the error positions from previous evalu-

ation results. Nanopolish and CONSENT both required excessive computing resources

for whole-genome polishing (requiring over 10 days for polishing one human genome)

and thus were tested on only one contig.

Detecting assembly errors from read-to-contig alignment is a challenging problem

similar to detecting genetic variants from read-to-reference alignment. Identification of

small-scale error is extremely challenging with error-prone reads. The abundance of se-

quencing errors not only introduces ambiguity in read alignment but also reduces sig-

nal strength during error detection. To ensure high precision of assembly error
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detection, Inspector applies a stringent filter to exclude heterozygous variants, which

will lead to a lower recall for small-scale errors in the CLR data, as shown in Table 1.

In the real PacBio datasets, the HiFi data also reported lower QV score and more as-

sembly errors, especially small-scale errors, than the CLR data. This is because the ac-

curate HiFi reads are more sensitive for detecting errors. Advanced algorithms for

better characterization of small-scale variants can improve the sensitivity of error detec-

tion from noisy sequencing data. When available, we will include this enhancement in

future Inspector releases.

In this work, we have described our methods for benchmarking and analysis of hu-

man and Anna’s hummingbird genomes. Inspector can also be applied to other species

with monoploid or diploid genomes. The principles of structural error identification

and binomial testing for small-scale errors are both designed with the assumption that

a genome is diploid. These principles are also applicable to a haploid genome, which

can be considered as an extreme case of a diploid genome with only homozygous bases.

Evaluation for species with higher ploidy levels may not be as accurate under the

current version. With further development, we plan to expand the application of In-

spector to species with polyploid genome in future versions.

Conclusions
This paper presents a reference-free evaluation method for de novo assembly. Inspector

can report the precise locations and sizes for structural and small-scale assembly errors

and distinguish true assembly errors from genetic variants. With its error correction

module, Inspector can improve the assembly quality by correcting the identified assem-

bly errors. These functions exceed those achieved by existing assembly evaluators. In-

spector is an accurate assembly evaluator, which can facilitate future improvement of

de novo assembly quality.

Methods
Overview of Inspector

Inspector is a tool for evaluating long-read de novo assembly results. As shown in Fig.

1, inspector consists of the following main functions: (1) standard assembly metrics; (2)

structural error identification; (3) small-scale error identification; and (4) assembly

error correction. Inspector also introduces a Quality Value (QV) to estimate the overall

assembly quality. Given a reference genome, Inspector can assess synteny by aligning

contigs to the reference genome. The detailed methods and implementation are de-

scribed below.

Contig continuity and read alignment

Inspector first calculates standard assembly statistical metrics and then evaluates contig

continuity based on the lengths of all contigs. Standard statistical metrics include num-

ber of contigs, total bases in the assembly, longest and second longest contig lengths,

and N50, which reflect continuity of assembly results.

The statistics of read-to-contig alignments are also calculated to assess assembly

quality, including read mapping rate, read splitting rate, and average alignment depth.

Read mapping rate indicates the proportion of reads that can be aligned to assembled
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contigs. A higher read mapping rate suggests better completeness of the assembly,

while a lower mapping rate suggests that parts of the genome have not been recon-

structed in the assembly. The read splitting rate is the proportion of aligned reads that

have split alignments. A low read splitting rate indicates better consistency between

reads and assemblies and fewer large assembly errors. In contrast, a high splitting rate

suggests that there are more assembly errors which have caused the divergence be-

tween reads and assembled contigs. The average alignment depth is calculated as total

length of aligned reads divided by total contig length. For good assembly, average align-

ment depth should be similar to sequencing depth of input reads.

Structural assembly errors

Inspector detects structural assembly errors (≥ 50 bp) based on disagreement between

reads and assembled contigs. The first step is to scan all read alignments for raw error

signals of expansion (gap in read alignment), collapse (extra sequence in read), and in-

version (inverted read alignment). Density-based clustering is then performed inde-

pendently for each type of structural error. Instead of setting a fixed window size for

clustering raw signals, Inspector’s density-based clustering utilizes adjustable window

size to tolerate larger shifts of raw signal positions within repetitive regions while keep-

ing tight window size for clear genomic regions. Expansions and collapses are merged

to identify haplotype switches, in which expansions overlap with collapses. To remove

noise caused by sequencing errors or incorrect read alignments, Inspector filters out

candidates with numbers of supporting reads below a threshold value (three by

default).

To remove false-positive candidates caused by genetic variants, Inspector includes a

filter based on the ratio of error-supporting read, local coverage, and read mapping

quality. The ratio of error-supporting read is the fundamental criterion and computed

with the number of error-supporting reads divided by the local coverage. As shown in

Additional file 1: Fig. S9, read alignments at homozygous variants do not show incon-

sistency with the contig, as both haplotypes are the same as the contig sequence. Het-

erozygous variant regions show an alternative allele in about 50% of reads (from one

haplotype). However, at true assembly error regions, both haplotypes are different from

the contig, including the haplotype switch, leading to a theoretical ratio of about 100%

for error-supporting reads. The ratio of error-supporting read for assembly errors can

be lower than 100% in practice due to sequencing errors or inaccurate read alignments

but are still higher than heterozygous variants, as shown in Additional file 1: Fig. S10.

The filter also discards candidates with extremely high coverage or poor average read

mapping quality to ensure the reported assembly errors are confident. By default, In-

spector reports coordinates on contigs for all assembly errors in BED format, which

can be easily loaded to visualization tools such as IGV [47].

Small-scale assembly errors

Inspector identifies small-scale assembly errors (< 50 bp) to estimate the base accuracy

of an assembly. Samtools [48] is used to generate pileup information for each contig

based on read-to-contig alignments. Inspector then scans pileup results for candidate

small-scale errors in regions that are enriched with mismatches or indels. All bases with
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less than 20% of reads supporting a small-scale error were excluded to remove most

noise caused by sequencing errors. Similar to structural errors, a true small-scale error

is expected to be supported by reads from both haplotypes (100% of reads), while mis-

matches or indels caused by heterozygous variants are supported by only one haplotype

(50% of reads). For a given position on the assembly, each aligned read is treated as an

independent experiment, containing either the same or a different base (or indel) with

the base in the contig. All bases in the reads at this position follow a binomial distribu-

tion, with n being the number of reads and p being the probability that the base is a

different base from the contig. Inspector performs a one-tailed binomial test for each

candidate position to distinguish small-scale errors from genetic variants. The null hy-

pothesis of the binomial test is that the probability of a read that contains a different

base against the contig is 0.5 (genetic variant at this location), and the alternative hy-

pothesis is that the probability is higher than 0.5 (small-scale error at this location). A

significant p value from the binomial test would reject the null hypothesis and support

that there is a small-scale error at the tested position. The p value of binomial test is

computed as:

p value ¼
Xnreads

i¼nsupp

Binomial ijp ¼ 0:5; n ¼ nreadsð Þ

where nreads is the total number of reads aligned to this position and nsupp is the num-

ber of reads supporting the mismatch/indel. The probability of a read to support an

error used in binomial test is set to 0.5 for high-accuracy HiFi data, and set to 0.4 for

low-accuracy data (CLR and Nanopore), considering the sequencing error rate of 15–

20%. Candidates with significant p values (< 0.01 for HiFi and < 0.05 for CLR and

Nanopore data) are reported as small-scale errors. Similar to structural errors, small-

scale errors are also reported in BED format.

Assembly quality estimation

Structural and small-scale assembly errors are used to estimate the overall accuracy of

an assembly result. Given a list of structural errors and small-scale errors of the assem-

bly, the total bases of assembly error, NErr, can be calculated as:

NErr ¼ NExp þ NCol þ NHer þ NSmall þ nInv

where NExp , NCol, NHer, and NSmall are the total bases affected by expansions, collapses,

haplotype switches, and small-scale errors, while nInv is the total number of inversion

errors. Since the number of total bases in an assembly, Nasm, is usually very large, NErr

can be considered as the expectation of incorrect bases. Thus, the estimated error rate,

E, can be defined as:

E ¼ NErr

N asm
¼ NExp þ NCol þ NHer þ NSmall þ nInv

Nasm

The Phred quality score is computed as QV = − 10log10E.
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Assembly error correction

Inspector includes an error correction module to address identified structural and

small-scale assembly errors. For small-scale errors, Inspector substitutes problematic

bases with bases supported by the majority of reads. For structural assembly errors, In-

spector collects the error-supporting reads and performs a local de novo assembly with

Flye (v2.8.3) [15] for each assembly error. In particular, for haplotype switches, In-

spector only collects reads from one haplotype to perform the local assembly. For each

structural error, the local assembly uses the reads from the region around the error and

from the same haplotype, which simplifies the assembly process and can therefore gen-

erate a more accurate contig than whole-genome de novo assembly. For structural er-

rors located within repetitive regions, Inspector collects reads only from the current

repeat unit without interference from other repeat units, increasing the accuracy of

local assembly at repetitive regions. Inspector aligns the new contigs from local assem-

blies to the original contigs and substitutes the sequences flanking each error with new

sequences from the local assembly results.

Reference-based mode

To assess the synteny of an assembly with a known reference genome, Inspector in-

cludes a reference-based module to evaluate assembly quality. The module aligns con-

tigs to the reference genome with minimap2 [40] preset parameter “-x asm5.” Statistics

for contig-to-reference alignment are calculated, including contig alignment NA50,

contig mapping rate, and reference genome coverage. A Dotplot is generated based on

contigs and reference alignment results. In addition, structural errors and small-scale

errors are detected. Inspector reports coordinates on the reference genome and on the

contig for all assembly errors. Note that assembly errors detected from contig-to-

reference alignment also include genetic variants of the sequenced genome (including

SVs, SNPs, and indels) and substitutions.

Simulation benchmark

To benchmark the evaluation accuracy of Inspector, testing used a simulated human

whole-genome assembly containing both structural and small-scale assembly errors. A

total of 1,000,000 SNPs and 20,000 SVs (deletions and insertions) were introduced into

autosomes and X chromosome of human reference genome hg38. In total, 67% of all

variants were randomly assigned as heterozygotes and 33% as homozygotes. PBSIM

[41] was used to simulate 50X PacBio CLR-like and HiFi-like reads with options

“--data-type CLR --model_qc model_qc_clr --length-mean 15000 --length-sd 3000 --ac-

curacy-mean 0.85” and “--data-type CCS --model_qc model_qc_ccs --length-mean

15000 --length-sd 3000 --accuracy-mean 1.00,” respectively. The mean base accuracy

was 0.85 for CLR-like reads and 0.98 for HiFi-like reads according to the log file from

PBSIM. Assembled contigs were simulated by splitting the simulated human genome at

“N” bases. Small fragments shorter than 10,000 bp were excluded. A total of 2000 struc-

tural errors (900 expansions, 900 collapses, 190 haplotype switches, and 10 inversions)

and about 580,000 small-scale errors (50% base substitution, 25% 1-bp expansion, and

25% 1-bp collapse) were spiked in as the ground truth. A haploid human genome was

also simulated by selecting only haplotype 1 from the diploid simulation.
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Inspector was applied with default settings. The reported structural and small-

scale errors were compared to the ground truth to calculate recall, precision, and

F1 score (2�recall�precisionrecallþprecision ). Human reference genome hg38 was provided to QUAST-

LG as the reference. Although the minimum length for structural errors was 50 bp

in simulated assemblies, QUAST-LG can only report the coordinates of extensive

misassemblies longer than 85 bp. These extensive misassemblies were compared

with a subset of ground-truth structural errors that were longer than 85 bp to as-

sess the accuracy of QUAST-LG. Since Merqury requires high-accuracy reads as

input data, the simulated HiFi dataset (with sequencing error rate < 2%) was pro-

vided to Merqury to identify erroneous k-mers that were only present in the as-

sembly but not in the input reads. A series of overlapping k-mers were merged

into one single event for the benchmark.

Whole-genome de novo assembly of HG002

Whole-genome de novo assembly was performed for HG002 with PacBio CLR, HiFi

(15-20 kb), and Nanopore datasets. The expected genome size was set to 3.1G for all

assemblers. Canu (v2.0) was run with options “-pacbio” for the PacBio CLR and “-pac-

bio-hifi” for the PacBio HiFi dataset. The Canu assembly of the Nanopore dataset was

obtained from a previous publication [17]. Contigs marked with “suggestBubble = yes”

were removed from evaluation. Flye (v2.8.2) was run with options “--pacbio-raw” for

the CLR, “--pacbio-hifi” for the HiFi, and “--nano-raw” for the Nanopore dataset, re-

spectively. Wtdbg2 (v2.5) was run with options “-p 17” for the CLR and Nanopore data-

sets, and preset “-x ccs” for the HiFi dataset. Hifiasm (v0.13) was only applied to PacBio

HiFi datasets with the default settings. The Shasta assembly of Nanopore dataset was

also obtained from a previous publication [17]. All assemblies were evaluated by In-

spector with default settings. CLR assemblies were evaluated with the raw CLR dataset,

HiFi assemblies were evaluated with the HiFi dataset (15-20 kb), and Nanopore assem-

blies were evaluated with the raw Nanopore dataset.

Other assembly evaluation tools

QUAST-LG (v5.0.2), a reference-based approach, and Merqury (v1.1), a k-mer based

approach, were also used to evaluate assemblies. For QUAST-LG, GRCh38 was pro-

vided as the reference genome. QUAST-LG was run with command:

“quast-lg.py contig.fa -o output/ -r hg38.fa -m 10000 - × 86”

The number of misassemblies included both extensive and local misassemblies, and

number of mismatches included both mismatches and indels.

For Merqury, a meryl database was first generated with approximately 50× Illumina

paired-end reads with k-mer size of 21 bp. Merqury was then run based on the Illumina

meryl database to evaluate HG002 assemblies with default settings:

“meryl k = 21 count output read-db.meryl allread.fa”

“merqury.sh read-db.meryl contig.fa output”
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The assembly-only k-mers were collected from Merqury’s output and the overlapping

k-mers were merged into a single event.

Benchmark of assembly error in HG002

The false discovery rate of assembly errors was calculated by comparing reported as-

sembly errors to the genetic variant callset of HG002. Coordinates of assembly errors

were projected to the human reference genome based on contig-to-reference align-

ment. Matched base pairs between contigs and the reference genome were stored in a

hash table. The corresponding reference coordinate of an assembly error can be in-

ferred from the hash table according to its assembly coordinate. Small-scale errors were

compared to the small variant callset (v4.2.1) from GIAB. Since the high-confidence SV

callset is only available in “benchmark regions” of HG002 [43], structural assembly er-

rors located only in benchmark regions were compared to the SV callset to calculate

FDRs.

Coordinates of misassemblies reported by QUAST-LG were extracted from filtered

contig alignment. Misassemblies located within benchmark regions were compared to

the SV callset for FDR assessment. Assembly-only k-mers from Merqury’s output were

merged and projected to the reference genome. FDR was computed by comparing the

locations of k-mers to the merged variant callset (SVs and small variants).

Down-sampling of HG002

To evaluate the robustness of Inspector, three HiFi datasets (11 kb, 15 kb, and 15–20

kb) of HG002 were merged to generate a HiFi dataset with an ultra-high depth. It was

then downsampled to a series of depths, ranging from 10× to 100×, by randomly select-

ing reads. Depth was determined as total number of base pairs in reads divided by the

human genome size (3.1 Gbp). Inspector was applied to identify assembly errors using

default settings to validate its robustness in addressing datasets of varying depth.

Repeat annotation of assembly errors

Coordinates of assembly errors were projected to the human reference genome. Those

assembly errors located in unaligned parts of the assembly cannot be projected to the

reference genome and therefore were excluded from analysis. Repeat annotation of all

assembly errors was performed by a custom Python script, which compared reference

coordinates of assembly errors to the genomic repeat annotation downloaded from

UCSC Genome Browser [49].

Polishing of HG002 assemblies

Inspector correction and other polishing methods were tested on HG002 assemblies.

The error correction module of Inspector was tested with PacBio CLR (70×), PacBio

HiFi (15–20 kbp, 51×), and Nanopore (53×) datasets with default settings. The input

datatype was specified for each dataset to enable accurate local assembly in the struc-

tural error correction process. Racon (v1.4.20) and Pilon (v1.24) were tested with Pac-

Bio CLR, PacBio HiFi, and Nanopore datasets with default settings. GCpp (v 2.0.2) was

tested with downsampled raw subreads of PacBio HiFi dataset (70×). Medaka (v 1.4.3)

polished HG002 assemblies with Nanopore datasets with the options “--model r941_
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min_high_g303 --batch 200 --bam_chunk 2000000.” Nanopolish (v0.13.3) was tested

with Nanopore dataset using default settings. CONSENT (v2.2.2) polished HG002 as-

semblies with PacBio CLR datasets with options “--windowSize 50000.” Nanopolish and

CONSENT were tested on only one contig (10Mbp in length) per assembly due to the

excessive requirement of computational resources for whole-genome correction. The

input read alignment files for Racon, Pilon, Medaka, and Nanopolish were aligned by

minimap2 and sorted by Samtools sort. The read alignment files provided to GCpp

were aligned by pbmm2 and sorted by Samtools. All polishing tools were tested with

only one round of the polishing process. We also polished the HG002 assemblies with

Illumina dataset (downsampled to 50×) to assess the improvement of assembly quality

from short reads. The original and polished assemblies were evaluated using Inspector

with a merged HiFi dataset (11 kbp and 15 kbp, total of 58×) and using Merqury with

meryl database generated from Illumina dataset.

Whole-genome assembly of Anna’s hummingbird sample

The PacBio CLR (~70×) data of Anna’s hummingbird (Calypte anna) was downloaded

from the Vertebrate Genomes Project and used to for whole-genome de novo assembly

with Canu, Flye, and wtdbg2 with genome size of 1.1 Gbp. Inspector was run with de-

fault settings to evaluate and correct errors for the three assemblies. The curated as-

sembly was obtained from GenomeArk as the ground truth. The uncorrected and

corrected assemblies were compared to curated assembly with Mauve [50] to visualize

structural errors before and after Inspector error correction.
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