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Abstract

Background: The diversity of genomic alterations in cancer poses challenges to fully
understanding the etiologies of the disease. Recent interest in infrequent mutations,
in genes that reside in the “long tail” of the mutational distribution, uncovered new
genes with significant implications in cancer development. The study of cancer-
relevant genes often requires integrative approaches pooling together multiple types
of biological data. Network propagation methods demonstrate high efficacy in
achieving this integration. Yet, the majority of these methods focus their assessment
on detecting known cancer genes or identifying altered subnetworks. In this paper,
we introduce a network propagation approach that entirely focuses on prioritizing
long tail genes with potential functional impact on cancer development.

Results: We identify sets of often overlooked, rarely to moderately mutated genes
whose biological interactions significantly propel their mutation-frequency-based
rank upwards during propagation in 17 cancer types. We call these sets “upward
mobility genes” and hypothesize that their significant rank improvement indicates
functional importance. We report new cancer-pathway associations based on
upward mobility genes that are not previously identified using driver genes alone,
validate their role in cancer cell survival in vitro using extensive genome-wide RNAi
and CRISPR data repositories, and further conduct in vitro functional screenings
resulting in the validation of 18 previously unreported genes.

Conclusion: Our analysis extends the spectrum of cancer-relevant genes and
identifies novel potential therapeutic targets.

Background
Rapid developments in sequencing technologies allowed comprehensive cataloguing of

somatic mutations in cancer. Early mutation-frequency-based methods identified

highly recurrent mutations in different cancer types, many of which were experimen-

tally validated as functionally important in the transformation process and are com-

monly referred to as cancer driver mutations. However, the biological hypothesis that

recurrent mutations in a few driver genes account fully for malignant transformation

turned out to be overly simplistic. Recent studies indicate that some cancers do not
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harbor any known cancer driver mutations, and all cancers carry a large number of

rarely recurrent mutations in unique combinations in hundreds of potentially cancer-

relevant genes [1–7]. These genes are part of a long tail in mutation frequency distribu-

tions and referred to as “long tail” genes.

Many long tail mutations demonstrated functional importance in laboratory experi-

ments, but studying them all and assessing their combined impact is a daunting task

for experimentalists. This creates a need for new ways to estimate the functional im-

portance and to prioritize long tail mutations for functional studies. A central theme in

finding new associations between genes and diseases relies on the integration of mul-

tiple data types derived from gene expression analysis, transcription factor binding,

chromatin conformation, or genome sequencing and mechanistic laboratory experi-

ments. Protein-protein interaction (PPI) networks are comprehensive and readily avail-

able repositories of biological data that capture interactions between gene products and

can be useful to identify novel gene-disease associations or to prioritize genes for func-

tional studies. In this paper, we rely on a framework that iteratively propagates infor-

mation signals (i.e., mutation scores or other quantitative metrics) between each

network node (i.e., gene product) and its neighbors.

Propagation methods have often leveraged information from genomic variation, bio-

logical interactions derived from functional experiments, and pathway associations de-

rived from the biomedical literature. Studies consistently demonstrate the effectiveness

of this type of methods in uncovering new gene-disease and gene-drug associations

using different network and score types. Nitsch et al. [8] is one of the early examples

that used differential expression-based scores to suggest genes implicated in disease

phenotypes of transgenic mice. A study by Lee et al. shortly followed to suggest candi-

date genes using similar propagation algorithms in Crohn’s disease and type 2 diabetes

[9]. Other early works that use propagation account for network properties such as de-

gree distributions [10] and topological similarity between genes [11–13] to predict pro-

tein function or to suggest new candidate genes.

Cancer has been the focus of numerous network propagation studies. We divide

these studies into two broad categories: (A) methods that initially introduced network

propagation into the study of cancer, often requiring several data types, and (B) recent

methods that utilize genomic variation, often focusing on patient stratification and gene

module detection (for a complete list, see [14]).

Köhler et al. [15] used random walks and diffusion kernels to highlight the efficacy of

propagation in suggesting gene-disease associations in multiple disease families includ-

ing cancer. The authors made comprehensive suggestions and had to choose a rela-

tively low threshold (0.4) for edge quality filtering to retain a large number of edges

given the limitations in PPI data availability in 2008. Shortly afterwards, Vanunu et al.

[16] introduced PRINCE, a propagation approach that leverages disease similarity infor-

mation, known disease-gene associations, and PPI networks to infer relationships be-

tween complex traits (including prostate cancer) and genes. Propagation-based studies

in cancer rapidly cascaded to connect gene sequence variations to gene expression

changes using multiple diffusions [17]; to generate features used to train machine learn-

ing models that predict gene-disease associations in breast cancer, glioblastoma multi-

forme, and other cancer types [18, 19]; or to suggest drug targets in acute myeloid

leukemia by estimating gene knockout effects in silico [20].
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Hofree et al. introduced network-based stratification (NBS) [21], an approach that

runs propagation over a PPI network to smoothen somatic mutation signals in a cohort

of patients before clustering samples into subtypes using non-negative matrix

factorization. Hierarchical HotNet [22] is another approach that detects significantly al-

tered subnetworks in PPI networks. It utilizes propagation and scores derived from

somatic mutation profiles as its first step to build a similarity matrix between network

nodes, constructs a threshold-based hierarchy of strongly connected components, then

selects the most significant hierarchy cutoff according to which mutated subnetworks

are returned. Hierarchical HotNet makes better gene selections than its counterparts

with respect to simultaneously considering known and candidate cancer genes, and it

builds on two earlier versions of HotNet (HotNet [23] and HotNet2 [24]).

These studies have addressed varying biological questions towards a better under-

standing of cancer, and they have faced limitations with respect to (i) relying on mul-

tiple data types that might not be readily available [17, 18], (ii) limited scope of

biological analysis that often focused on a single cancer type [17, 20], (iii) suggesting

too many [20] or too few [19] candidate genes, or (iv) being focused on finding con-

nected subnetworks, which despite its demonstrated strength as an approach to study

cancer at a systems level might miss lone players or understudied genes [17, 22–24].

To address these issues and parallel the emerging focus on long tail genes and non-

driver mutations [2, 4, 5, 25–29], we build on the well-established rigor of propagation

and introduce a new approach that particularly prioritizes rarely to moderately mutated

genes implicated in cancer. Our analysis spans 17 cancer types and relies centrally on

two data types: mutation frequency and PPI connectivity data. We hypothesize that a

subset of long tail genes, originally with low mutation frequency ranks, can leverage

their positionality in PPI networks and the mutational burden within their extended

neighborhoods to play an important role in cancer as signaled by the much higher indi-

vidual ranks they attain after propagation. These genes are not merely pinpointed based

on their high post-propagation ranks, but rather on the strong improvement in their

pre- and post-propagation ranking difference that exceeds stringent measures. Hence,

we describe these genes throughout this paper as upward mobility genes (UMGs). To

the limits of our knowledge, this is the first propagation approach that focuses entirely

on long tail genes.

We efficiently identify a considerable number of UMGs (n = 28–83 per cancer

type) and demonstrate their functional importance in cancer on multiple levels.

Using somatic mutation data from the TCGA and two comprehensive PPI net-

works with significant topological differences, STRING v11 and HumanNet v2, we

detect UMGs in BRCA, CESC, CHOL, COAD, ESCA, HNSC, KICH, KIRC, KIRP,

LIHC, LUAD, LUSC, PRAD, READ, STAD, THCA, and UCEC. These genes reveal

a significant number of regulatory pathway associations that would be overlooked

when relying on known driver genes alone. Furthermore, in silico analysis demon-

strates that UMGs exert a highly significant effect on cancer cell survival in vitro

with cancer type specificity, and they outperform genes suggested by other network

methods with respect to this impact on cancer cell survival. We then validate a

previously unreported subset of the identified genes in vitro through siRNA knock-

out experiments. Finally, we perform an analysis of UMGs’ positionality in a com-

bined STRING-HumanNet v2 PPI network to classify each UMG as a potential
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cancer driver, drug target, or both. Together with known drivers, we hope that

UMGs will draw a more complete portrait of the disease.

Results
Overview

First, we generate PPI networks specific to each of the 17 cancer types in the

TCGA using only genes that are expressed in a given cancer type (Fig. 1a and

Additional file 1: Table S1). We use the STRING and HumanNet v2 networks

that have different topologies and information channels for constructing the net-

works and use only high-quality edges. We then perform propagation over each

network, where each sample’s somatic mutation profile includes a quantized posi-

tive value ∈ [1, 4] for genes with mutations, and 0 otherwise (Fig. 1b). Next, we

perform the Mann-Whitney U test to assess the significance of propagation-based

rankings by measuring the enrichment of known functionally important COSMIC

genes towards higher ranks in post-propagation lists. Results demonstrate high

statistical significance across all studied cohorts (p < 10−5, Additional file 2: Table

S2) demonstrating the validity of the method to identify genes with functional

importance. We then calculate the difference in pre- (i.e., raw mutation fre-

quency) and post-propagation ranking for each gene. Genes that move up in the

rank order in the post-propagation list are called UMGs. We construct a prelim-

inary UMG list for each cancer cohort based on the stringent final rank cutoff

and upward rank increase (i.e., upward mobility) threshold. In this paper, genes

whose rank significantly improves during propagation and land in a pre-defined

top block of post-propagation ranked lists are retained (Fig. 1c). Using this strat-

egy, our approach focuses on long tail genes and excludes frequently mutated

genes (including classical cancer drivers) that occupy high ranks before propaga-

tion and therefore cannot meet the upward mobility threshold. We identify

UMGs separately for each of the 17 cancer types. To further filter UMGs for po-

tential functional importance, we remove genes with minimal or no impact on

corresponding cancer cell survival after gene knockdown in the Cancer Depend-

ency Map Project (DepMap) [30]. This step eliminates 4–13% of UMGs (Fig. 1d).

We finally analyze the biological and topological properties of the shortlisted

UMGs on pan-cancer and cancer type levels (Fig. 1e).

Fig. 1 Schematic overview of the UMG identification strategy
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UMGs across 17 cancer types

We report 230 UMGs across 17 cancer types. UMG lists capture the expected bio-

logical heterogeneity of cancer types: 76 genes (33%) are specific to one cancer type,

116 (50.4%) to 2–9 types, and only 38 (16.5%) to 10 or more types (Additional file 3:

Table S3). The longest list of UMGs corresponds to CESC (n = 83 genes) and the

shortest to CHOL (n = 28). Hierarchical complete linkage clustering of cancer types

(right of Fig. 2) using UMG list membership and DepMap dependency scores of the

genes (which reflect their importance in cell growth) reveals interesting patterns. Simi-

lar to results based on driver gene sets identified in [7], subsets of squamous (ESCA,

HNSC, and LUSC) and gynecological (BRCA, CESC, and UCEC) cancers cluster to-

gether. Close clustering results also correspond to the lung (LUAD and LUSC) and

colon and rectum (COAD and READ) as tissues of origin, while others match with the

rates of driver mutations across cancer types (i.e., Fig. 1d in [7]), particularly (i) STAD

and CESC; (ii) KIRP, READ, and COAD; and (iii) LUSC, LUAD, HNSC, ESCA, and

LIHC, suggesting similarities between driver and long tail mutational patterns. Interest-

ingly, UMGs specific to a single cancer type (left of Fig. 2) include a considerable

Fig. 2 Distribution of UMGs across 17 cancer types. Right: genes in 2 or more cancer types. The
dendrogram is based on the hierarchical clustering of heatmap rows. Each heatmap value corresponds to a
percentage-based score of a cancer type’s cell lines whose survival is negatively impacted by a gene’s
knockout. For each value, the maximum percentage across RNAi and CRISPR experiments is selected. Left:
cancer type-specific genes. The histogram throughout the plot corresponds to the normalized rank of each
UMG in the lists it belongs to
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number of genes whose products have similar functions such as COL4A1 and COL1A1

that encode different types of collagen (specific to ESCA), and triplets of genes that en-

code proteins in the 26S proteasome complex (PSMC1/2/3, specific to UCEC) and

mitogen-activated kinases (MAPK1 and MAP2K1/2, specific to THCA). Functional

gene clusters shared among cancer types include DYNC1LI2/I2/H1 that encode differ-

ent components of the cytoplasmic dynein 1 complex and PPP1CC/1CA/2CB/2CA that

encode subunits of protein phosphatase enzymes. The circos plot [31] of Fig. 2 shows

the distribution of UMGs across cancer types, their relative ranks within UMG lists,

and their impact on cancer type-specific cell survival.

UMGs reveal known and novel cancer-pathway associations

Biological enrichment analysis of UMGs, separately and in combination with known

drivers, confirms some already known functional importance of the UMGs and sug-

gests new associations between cancer types and biological pathway alterations. UMGs

analyzed alone or together with known cancer drivers have statistically significant asso-

ciations (Benjamini p-adjusted < 0.05) with most of the oncogenic pathways (8 out of

10) curated by Sanchez-Vega et al. [32] (Fig. 3a). These results indicate that UMGs are

members of known biological pathways and can broaden the study of biological pro-

cesses that contribute to malignant transformation. This is particularly relevant in can-

cers where driver gene-based pathway associations revealed only a few relevant

pathways (e.g., KICH and CHOL in [7]). Interestingly, the p53 pathway has only a small

number of associations with UMGs in contrast to the many associations we detected

with the TGF-beta and Hippo signaling pathways. Other known cancer pathways are

also altered by UMGs and include Notch, HIF-1, and mTOR. Notably, the number of

cancer type-specific pathway associations does not correlate with the size of UMG lists.

For example, KICH, which has one of the smallest lists of UMGs (n = 41 genes), has a

sizeable set of pathway associations, while CESC with the largest UMG list (n = 83) has

considerably fewer associations. These findings suggest greater diversity in altered bio-

logical processes that lead to the development of KICH compared to CESC.

On the pan-cancer level, we partitioned enrichment results for all 230 UMGs into 9

major functional clusters based on biological function (Fig. 3b). Using EnrichmentMap

(EM) [33], we built a network of intra- and inter-cluster similarity measured through

gene overlap between enrichment entities (i.e., pathways, biological processes, and mo-

lecular functions; the “Methods” section). Connectivity patterns within the EM network

provide insights into the sets of entities and UMGs. Within the clusters, we identified

biological entities with high connectivity (red labels, Fig. 3b). These entities include

oncogenic pathways, such as PI3K-AKT, RAS, and mTOR, and important biological

processes including cell matrix adhesion and chromatin remodeling. Their high con-

nectivity is often driven by a selected subset of UMGs with high frequency in their con-

stituent edges (Table 1). Subsets of these frequent UMGs encode subunits of proteins

and members of protein complexes with a strong association with cancer (e.g., PIK3R2/

R3/CB/CD’s products in phosphatidylinositol kinases (PI3Ks) [34], and IKBKB/G’s

products that are regulatory subunits in an inhibitor of the Nuclear Factor Kappa B

kinase (NFKB) [35]). Given their significant and wide range of biological functionality,

these genes constitute a potential subset of potent drug targets. A similar analysis on
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KEGG mega-pathways corresponding to diseases and infections revealed another subset

of frequent UMGs and demonstrated that UMGs are generally important genes that

participate in broader biological processes than cancer alone (Fig. 3c, Table 1). Ob-

served associations include well-studied ones between multiple cancers and hepatitis C

Fig. 3 Biological enrichment results for UMGs at cancer type and pan-cancer levels. a UMGs uncover known
and novel associations between cancer types and biological pathways. Enrichment analyses are performed for
each cancer type’s combined list of UMGs and drivers. Shown results correspond to significant pathway and
molecular function associations exclusively uncovered by UMGs. b Pan-cancer analysis of all 230 UMGs allows
for the identification of biological pathways, processes, and functions strongly associated with UMGs (in red)
that suggests potential therapeutic targets. c A similar analysis to b on clusters of KEGG mega-pathways
uncover disease-disease and disease-infection associations pertaining to UMGs
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[36], type II diabetes mellitus [37, 38], and HTLV-I infection [39], and new ones such

as the potential association with COVID-19 [40].

UMGs impact survival of cancer cells in vitro

To assess the functional importance of UMGs in cancer cell survival in vitro, we ob-

tained their cancer type-specific dependency scores from the DepMap project. DepMap

reports results on the comprehensive genome-wide loss of function screening for all

known human genes using RNA interference (RNAi) and CRISPR to estimate tumor

cell viability after gene silencing in hundreds of cancer cell lines. The CRISPR dataset

includes 990 cell lines, and the RNAi dataset includes 712 cell lines [30]. A dependency

score of 0 corresponds to no effect on cell viability, and a negative score corresponds to

impaired cell viability after knocking down the gene; the more negative the dependency

score, the more important the gene is for cell viability. We used the most recent data

release that accounts for batch and off-target effects and therefore provides more ac-

curate estimates of functional impact [41].

We found that cancer type-specific mean dependency scores of UMGs are higher

(i.e., more negative) than non-UMGs’ across all 17 cancer types, and in both CRISPR

and RNAi experiments. This indicates that knockout of UMGs consistently yields a

stronger negative effect on cancer cell survival than that of non-UMGs (Mann-Whitney

U test, p < 5 × 10−3, Additional file 4: Table S4, the “Methods” section).

Our UMG detection method is entirely focused on prioritizing long tail genes for

functional importance. Most existing network methods focus their assessment on unco-

vering known cancer genes or are geared towards other goals—such as detecting sub-

networks that maximize coverage of mutational profiles or are highly mutated—and

therefore may be less efficient to prioritize long tail genes. To have a better understand-

ing of the specifications of UMGs, we compared their impact on the survival of cancer

cell lines to that of non-driver genes selected by five other methods. Three of these

methods are propagation-based and include FDRNet [42], Hierarchical HotNet (HHot-

Net) [22]—in 3 different settings, and Zhou et al.’s propagation algorithm that resem-

bles random walk with restart—in its original and edge-normalized settings [43]. The

other two include nCOP [44], a non-propagation network method that recently

Table 1 Frequent UMGs driving high connectivity within EnrichmentMap functional clusters

Functional cluster Frequent UMGs

Known cancer-related PIK3R2, PIK3R3, AKT1, IKBKB, MAPK1, MAPK3, PIK3CB, PIK3CD, MAP2K1, MAP2K2

Proliferation CCND1, BUB1B, CDC16, ANAPC4, ANAPC7, CDC23, CDC26, CDC27, CUL3, TGFB1,
AURKA, CDK1, CDK2, CDK4, CCNB1, NDC80

Adhesion ITGB1, ITGB5, RHOA, SRC, ITGA2, ITGA4, VCL

Transcription and translation RUVBL2

Binding SRC, RELA

Immune system TRAF6, MTOR, IRF4, IKBKB, IKBKG

Cancer mega-pathways CCND1, PIK3R2, PIK3R3, GRB2, EGFR, AKT1, MAPK1, MAPK3, PIK3CB, SOS1, PIK3CD,
MAP2K1, MAP2K2

Other diseases and infection
mega-pathways

CASP3, MAPK14, CASP8, PIK3R2, PIK3R3, TRAF6, AKT1, MAP3K7, IRF3, IKBKB, IKBKG,
MAPK1, MAPK3, PIK3CB, RELA, MAPK8, PIK3CD, MAPK9
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demonstrated an ability to uncover non-driver genes across multiple cancer types, and

MutSig [45], which identifies genes mutated more often than expected in a given co-

hort. HHotNet reported statistically significant results after the integration over both

PPI networks in only 5 out of the 17 cancer types. Hence, we included two other set-

tings (largest and all subnetworks) where the method was able to report statistically sig-

nificant results in one network. FDRNet successfully generated results on STRING, and

its reported results across cancer types are based on this network (the “Methods”

section).

Almost all methods’ generated gene sets had a knockdown negative impact on cancer

cell survival, but UMGs had the strongest impact across cancer types and in both

CRISPR and RNAi experiments (Fig. 4a). The median percentage-based score of cell

lines negatively impacted by UMGs’ knockout is also consistently higher than that for

genes selected by the other methods in 28 out of the 34 cancer type-assay combinations

(Fig. 4b), with the remaining 6 including 4 ties. Notably, a number of UMGs have an

extremely strong negative impact on cell survival across cancer types. For instance,

PRAD, READ, and THCA sets include genes with mean DepMap CRISPR score < −2

in their cell lines, and all other cancer types except HNSC include genes with score <

−1.7. Similar results were also obtained for these comparisons before the optional Dep-

Map filtering step that only removed 4–13% of UMGs (Additional file 5: Fig. S1). As

FDRNet, HHotNet, Zhou et al., nCOP, and MutSig do not solely focus on long tail

genes and gene sets generated by these methods include known cancer drivers, we per-

formed the same comparisons after including known cancer-specific drivers from all

gene lists, which also produced similar results (Additional file 5: Fig. S2). Concurrently

including both subsets of UMGs (pre-DepMap filtering and drivers) produced similar

results across cancer types as well (Additional file 5: Fig. S3).

Fig. 4 Comparisons with other methods. a UMGs demonstrate a considerably stronger (CRISPR- and RNAi-
measured) impact on survival of cancer cell lines than other non-driver genes suggested by HHotNet (in 3
settings), FDRNet, Zhou et al. (in its original and edge-normalized settings), nCOP, and MutSig. Higher
negative values indicate a greater negative effect on cell survival after gene knockdown. b UMGs’ strong
impact on the survival of cancer cell lines is significantly broader than that of genes selected by other
methods. The median percentage-based score of cancer cell lines negatively impacted by UMGs’ knockout
is consistently higher with cancer type specificity
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UMGs as “weak drivers” and potential novel drug targets

The aim behind identifying UMGs is to expand the repertoire of cancer-relevant genes

in line with recent studies whose results defy the neutrality of long tail genes or passen-

ger mutations in carcinogenesis [2, 4, 5, 25–29]. In this section, we categorize each

UMG as a potential “weak driver” that may complement known drivers, a candidate

drug target whose inhibition could arrest cancer growth, or both, based on positionality

in PPI networks relative to currently known drivers.

In the propagation framework we use, two of the most important factors that deter-

mine a node’s score after convergence are the number of high scoring nodes within its

neighborhood and the connectivity of these neighbors. For a node to rank higher, the

best case scenario involves having near exclusive connections with multiple neighbors

(k ≥ 1 steps) whose initial scores are high. We examine these properties of each cancer

type’s UMGs. We use a composite PPI network that merges signals from STRING and

HumanNet v2 by including the union of high-quality edges of both networks. Figure 5

shows a representative network that corresponds to BRCA, with all others included in

the supplement (Additional file 5: Figs. S4-19). For convenience in visualization, we in-

clude immediate neighborhoods of each node and the UMG-driver edges only.

The first category of UMGs includes genes connected to high scoring known drivers

(Fig. 5 left side, olive and orange edges). By virtue of sharing connections with these

frequently mutated drivers, this subset of UMGs likely includes cancer type-specific po-

tential drug targets. The most promising UMG drug target candidates are those con-

nected to high degree, high scoring drivers (via olive edges). Building on the same

reasoning, low scoring drivers might not be the dominating force driving cancer across

the majority of samples. UMGs connected to these low scoring drivers (Fig. 5 right side,

dark blue and purple edges) constitute the second category and are considered poten-

tial supplementary drivers that enhance the driver function. The third category includes

UMGs with nearly no observed mutations in the TCGA cohort (i.e., very low initial

score). These UMGs often form a small subset and are likely to be drug targets or false

positives limited by the size of the cohort under study. In Fig. 5 (and Additional file 5:

Figs. S4-19), they can be distinguished by their lack of node border (e.g., 6 genes in Fig.

5: NUP37, UBE21, POLR2E, IRF7, BIRC5, and EIF4E). The fourth category includes

UMGs with positive initial score and no connections to driver genes (Fig. 5, top right

grid). These genes’ positive scores and connectivity with non-drivers significantly lift

their rank during propagation and render them potentially overlooked weak drivers.

While most UMGs are designated either potential drug targets or weak drivers, others

are connected to multiple types of driver genes and accordingly might be considered

for both (e.g., RBBP5 with multi-colored edges in Fig. 5). We also point out the well-

connectedness of many UMGs, which in part allows them to have enough upward mo-

bility to be detected by our approach. Yet, UMGs tend to have a considerably smaller

number of neighbors compared to very well-studied drivers such as TP53, PIK3CA, and

BRCA1.

UMGs bridge gaps in the literature and suggest novel genes

The study of cancer has long been interdisciplinary, often in the realms of various sci-

entific and medical spheres. Disciplinary paradigms evolved over time to produce
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varying types of associations between genes and cancers. To further estimate the func-

tional importance of UMGs, we manually cross-referenced our UMG lists with publica-

tions and found that a large percentage of UMGs have been previously reported to play

a role in cancer based on functional experiments. This percentage is as high as 85% of

UMGs in cancer types like BRCA. Surprisingly, the same percentage drops to only 31%

when we used CancerMine to find literature-based associations. CancerMine is an au-

tomated tool that applies text mining on existing literature to report drivers, oncogenes,

or tumor suppressors across cancers. Similar results were obtained across cancer types

(Additional file 6: Table S5).

Screening experiments validate 18 new genes in vitro

We performed a series of siRNA knockdown experiments in vitro to validate the Dep-

Map results and to confirm the functional importance of selected UMGs. We selected

29 UMGs that have not been reported in the literature to be tested in gene knockdown

experiments in the context of any cancer phenotype (the “Methods” section). We used

7 cell lines representing 3 types of cancer, namely H460 and HCC1299 from the lung;

MDAMB231, MDAMB468, BT549, and HCC187 from the breast; and DU145 from

prostate cancer.

Experimental results further underscore the efficacy of UMG detection to uncover

functionally important long tail genes. The knockdown of 18 out of these 29 UMGs

(62%) significantly decreased cell survival in 1 to 5 cell lines exceeding the threshold of

3 standard deviations with respect to negative control samples (the “Methods” section,

Fig. 5 PPI network analysis of the relationships between UMGs (white nodes) and known driver genes (red)
in breast invasive carcinoma (BRCA) suggests roles of UMGs. Driver genes are split into categories based on
initial mutation score and node degree: (i) high score, high degree (bottom left); (ii) high score, low degree
(top left); (iii) low score, low degree (top right); and (iv) low score, high degree (bottom right). UMGs
connected to driver subsets (i) and (ii) (olive and orange edges) and ones with no mutation score (e.g.,
POLR2E) are likely to be drug targets. UMGs connected to (iii) and (iv) and ones without connections to
drivers (top right corner, e.g., DSN1) are likely to be “weak drivers.” Other cancer types’ results are available
in Additional file 5: Figs. S4-19
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Additional file 7: Table S6). We note that several UMGs demonstrated cell line specifi-

city while others had a more widespread effect (affects 5/7 cell lines). These newly

cancer-relevant genes have already known functions in regulating immune response

(AP2M1, DCTN1, CCT4, DYNC1I2, and DYNC1LI2), kinase binding (DLG3), cell cycle

progression (SEC13, ANAPC7, CDC26, PSMC3, PPP1CC), DNA repair (PPIE, RFC5,

POLR2E, and POLR2L), cell death (VAPA), and mRNA splicing (SF3A2). The list also

includes PNPLA2, which encodes for an enzyme associated with transacetylase activity.

Discussion
Biological analysis of UMGs demonstrates strong correlations with studies performed

on known cancer drivers. It also unlocks a wide range of potential associations between

key pathways and cancer types and allows for classifying UMGs based on their central-

ity to biological functions, which in turn opens the door for a more informed drug tar-

getability. Based on their network positionality, we propose that UMGs include “weak

drivers” and cancer type-specific drug targets. Manual curation of the literature con-

firmed that many of our UMGs were previously implicated in cancer biology in various

ways, but we also identified previously unstudied potential cancer-relevant genes. Yet,

results suggest that we have not reached a point of data saturation with respect to ana-

lyzing long tail genes. The generation of new and larger datasets will likely improve

UMG prioritization for rare cancer types such as cholangiocarcinoma (CHOL) and

chromophobe renal cell carcinoma (KICH). As the functional importance and centrality

of known and new cancer-relevant genes changes, network propagation results and

UMG rankings will likely follow suit. This was already evident in our PPI positionality

analysis: with 3 or less known genes identified in KICH and READ in Bailey et al. [7]

and COSMIC [46], respectively, most of these cancer types’ UMGs belong to the third

and fourth categories (near-zero mutation scores and no connections with drivers,

Additional file 5: Figs. S9 and S16). Another example is CHOL, with its small cohort

that brings most UMGs into the third category (no observed mutations, Additional file

5: Fig. S5).

In their current arrangement in the circos plot of Fig. 2, we also posit that the confi-

dence associated with UMGs increases in a roughly clockwise direction, with the high-

est confidence to be associated with cancer type-specific genes. The incorporation of

additional functional genomics data (e.g., noncoding mutations and methylation data),

coupled with improvements in the accuracy of reported PPIs, will strengthen our

knowledge on the role of UMGs and long tail genes more broadly. Finally, we note that

bridging gaps across disciplines is often essential to biomedical knowledge production.

The oncogenic validation of potential drug targets in UMGs also remains central to

changing their status from potential to clinically actionable ones.

Conclusions
In this paper, we describe a new network propagation-based approach that is particu-

larly well suited to estimate the functional importance of rarely mutated long tail genes

in cancer. The method is computationally efficient and is based on change in ranking

before versus after network propagation. We show that upward mobility genes that at-

tain significant improvements in mutation score-based ranking after propagating

through PPI networks are enriched in functionally relevant genes. By virtue of high
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post-propagation ranks, cancer-related biological function, and significantly strong im-

pact on cancer cell line survival, our approach prioritizes long tail genes across 17 can-

cer types. To reduce false positivity rate, we integrate results over two major PPI

networks, filter out nodes whose genes are unexpressed in each cancer type’s tumor

samples, and statistically validate rankings and cell survival impact. Computational and

in vitro analyses further highlight the importance of reported genes and open the door

for an expanded spectrum of gene cancer relevance.

Methods
Mutation matrix generation

Variants from the TCGA MC3 somatic mutation dataset (n = 3.6 M) are used to gener-

ate initial scores for each of the 17 cancer types. A sample-gene matrix for each cancer

type includes mutation counts restricted to splicing and coding exonic variants. Counts

are then normalized by gene length, and each resulting non-zero value is finally con-

verted to a discrete number in {1, 2, 3, 4} based on its position with respect to 50th,

70th, and 90th percentiles in the cancer type-specific normalized mutation frequency

distribution. Gene ranks before and after propagation are calculated based on the mean

frequency within each cohort.

PPI network processing

We adopt the broad definition of protein-protein interactions that encompasses direct

physical interactions alongside indirect functional ones derived from co-expression,

gene fusion, text mining, co-essentiality, and pathway membership datasets among

others. We perform edge filtering on both PPI networks and retain edges with a confi-

dence score equal to or higher than 0.7 across all information channels in STRING v11

and the top 10% of edges in HumanNet v2. The networks after this filtering have |V| =

17,130 and 11,360 vertices and |E| = 419,772 and 37,150 undirected edges, respectively.

We then generate cancer type-specific PPI networks by selecting the largest connected

component in each network and filtering out (proteins of) genes unexpressed in the

tumor samples of each cancer type (i.e., genes with FPKM > 15 in > 20% of tumor sam-

ples are retained). The sizes of the resulting PPI networks are different and listed by

cancer type in Additional file 1: Table S1.

Propagation score calculation

To calculate propagation scores, we use an approach that imitates random walk with

restart [43]. Briefly, let the PPI network be represented as G = (V, E), where V is the set

of gene products and E is the set of edges. Furthermore, let W be the weighted adja-

cency matrix of G. We choose to normalize W such that W’ = W . D−1, where D is the

diagonal matrix of columns sums in W : D ¼ diagðPjGj
i¼1WijÞ; j∈f1; 2;…; jGjg:

Let M be a |G| × N matrix with somatic mutation profiles of N ≥ 1 samples over

genes from which G’s nodes originate before transcription. Sij is a positive value for

each gi ∈ G with mutations in sample sj ∈ S, and 0 otherwise. Propagation is then exe-

cuted within each sample until convergence according to the following function:

S tþ1ð Þ ¼ αW 0S tð Þ þ 1−αð ÞS 0ð Þ
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where S(0) = M and α ∈ [0.5, 1]. Convergence of this propagation technique is guaran-

teed. We summarize the proof noted in [47] below for the sake of completeness.

The function above can be written at convergence as S = VS + (1 – α) S(0), where V =

α W’, which can also be rearranged into S = (1 – α) (I - V)−1 S(0). For convergence to a

unique, non-negative solution to be guaranteed, (I − V)−1 > 0 must hold.

Lemma 1. Largest eigenvalue of V < 1. W’ is a column-stochastic matrix. Per the

Perron-Frobenius theorem, its eigenvalues ∈ [−1, +1]. Since α < 1, the largest eigen-

value (i.e., spectral radius) of V < α < 1.

Lemma 2. (I − V)−1 exists and is non-negative. (I – V) is an M-matrix since its in the

form sI – B, with s = 1 > 0, s ≥ largest eigenvalue of B (i.e., V) by Lemma 1, and V > 0.

An M-matrix is inverse positive, hence (I − V)−1 > 0.

Convergence can also be achieved iteratively [43, 48], which we apply at a maximum

of 350 iterations and is more commonly deployed with large PPI matrices for practical

considerations. The value of α we pick is 0.8. Other values in the [0.6, 0.8] range have

little effect on results.

Upward mobility gene identification

The mobility status of a gene is determined by its rank before and after propagation. A

gene’s rank is calculated according to its arithmetic average score across samples. For

each gene gi ∈ G,

Initial score ISi ¼ 1
N

XN

j¼1

S 0ð Þ
ij

and

Final score FSi ¼ 1
N

XN

j¼1

S ∞ð Þ
ij

Let RIS and RFS be the lists of gene ranks in IS and FS, respectively, i.e., RISi = rank

of gi in sorted IS and RFSi = rank in sorted FS. The mobility status of gi, MSi, is then

calculated as the difference between RISi and RFSi as:

MSi ¼ RISi−RFSi

Since higher scores lead to a higher rank, and a higher rank has a lower value (i.e.,

rank 1, 2, … |G|), genes whose ranks improve because of propagation have positive MS

values, and ones with lowered ranks (downward mobility) negative ones.

We then define upward mobility status according to two parameters: mobility β and

rank threshold T.

UMG ¼ gi
� �� MSi≥β: j G j ∧RFSi≤T ∀i∈1; 2;… j G jg
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Mobility β value determines the minimum upward jump size a gene needs to make

to be considered for UMG status. For instance, a β value of 0.1 in a PPI network with

10,000 nodes requires a gene’s position to improve by a minimum of 1000 ranks. We

choose stringent values of β dictated by TCGA cohort size and the variance of each

cancer type’s mutational. Cancer types with a high number of samples and/or a high

variance of gene mutation frequency receive a value of 0.25 (BRCA, COAD, HNSC,

LUAD, LUSC, PRAD, STAD, UCEC), others with moderate variance a value of 0.2

(CESC, KIRC, KIRP, LIHC) and 0.15 (ESCA, READ), and low variance and/or cohort

size cancer types a value of 0.05 (CHOL, KICH, THCA). These values ensure that to be

considered a UMG, a gene has to jump hundreds to thousands of ranks during propa-

gation depending on the PPI network and cancer type under study. Rank threshold T

specifies the minimum rank a gene needs to achieve after propagation to be considered

a UMG. We choose T = 1000 to strictly focus on the top 10–16% of genes (i.e., ap-

proximately top 10% in STRING and top 16% in HumanNet v2), a threshold that has

proved to be effective in other studies [20].

We further apply two optional selection criteria on the final UMG lists based on (i)

each gene’s DepMap scores in CRISPR and RNAi experiments and (ii) propagation

within multiple PPIs. Per (i), UMG becomes:

UMG ¼ gi
� �� MSi≥β: Gj j∧RFSi≤T∧DMi≥p; i∈1; 2;… j G jg;

where p is the proportion of cancer type-specific cell lines in which a gene’s DepMap

score is negative (i.e., its knockout has a negative impact on cancer cell survival), and

DMi is the maximum value across CRISPR and RNAi experiments. We choose p = 0.5

(50%), which ends up eliminating 2–10 out of 30–91 genes per cancer type (Additional

file 3: Table S3). Per (ii), integration of lists across K PPI networks yields the intersec-

tion of lists. In this paper, to increase confidence in selected genes, we integrate lists

over cancer type-specific STRING and HumanNet v2 networks. Formally,

UMGFinal ¼ UMGG1∩UMGG2∩…UMGGK

Statistical validation of rankings

To assess the validity of ranking after propagation, we tested if known COSMIC genes

are ranked significantly higher than other genes using the one-sided Mann-Whitney U

statistical test (also known as one-sided Wilcoxon rank sum test). Results show a strong

enrichment of COSMIC genes towards highly ranked genes for all PPI network-cancer

type combinations (p < 10−5, Additional file 2: Table S2).

Driver and COSMIC genes

Cancer type-specific driver genes were obtained from Bailey et al.’s except for COAD

and READ which were combined into a single group in that study. For these two can-

cer types, we designated tissue-specific COSMIC v90 genes as the driver genes.
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UMG vs non-UMG comparisons

In the first set of comparisons, Mann-Whitney U one-sided test is used to compare the

distribution of a percentage-based score of negatively impacted cell lines by UMGs vs

non-UMGs in each cancer type. Each gene’s percentage-based score value is equal to

the percentage of its negative DepMap scores among k cancer type-specific cell lines

and the average of these values (to account for the distribution of DepMap scores

across cell lines). To calculate a more stringent score and reduce false positives, we also

assume the presence of at least one cancer cell line with a non-negative DepMap score,

which especially accounts for cancer types with a small number of cell lines in the Dep-

Map database. Hence, the score is the sum of each gene’s k + 1 values mentioned above

divided by k + 2. An alternative hypothesis for each of the Mann-Whitney U tests is

H1 = ψ(UMG) is shifted to the right of ψðUMGÞ , where ψ(X) is the percentage-based

distribution of negatively impacted cell lines over genes in set X. Cancer type-specific

cell lines are selected based on annotations provided in the DepMap dataset. For cancer

types not represented among the cell lines in DepMap, we used values across all 750

(CRISPR knockout data) and 712 (RNAi) cell lines. A negative DepMap dependency

score indicates decreased cell survival after gene knockout in a particular cell line. For

RNAi experiments, we use data with enhanced batch and off-target processing as de-

scribed in [41].

UMGs vs gene candidates identified by other network methods

Hierarchical HotNet (HHotNet) generates statistically significant results (p < 0.05)

in only 5 of the 17 cancer types after integrating its results for both PPI networks

(HHotNet-consensus): ESCA, KIRC, LIHC, LUAD, and LUSC. As a result, we in-

clude HHotNet results from two other settings described below. In 13 cancer

types, HHotNet generates statistically significant results for one of the two PPI net-

works, and in two others (PRAD and READ) significant result with a relaxed

threshold (0.05 < p < 0.1). We include HHotNet results from both the largest sub-

network (HHotNet-LC) and all subnetworks with more than one node (HHotNet-

all) in comparisons. Namely, for 15 cancer types, we choose results from STRING

in BRCA, ESCA, HNSC, KICH, KIRC, LIHC, LUAD, LUSC, STAD, and THCA and

from HumanNet v2 in CESC, COAD, PRAD, READ, and UCEC. In CHOL and

KIRP, HHotNet results were not statistically significant for both PPI networks, so

we exclude results for this method. In all runs, we execute HHotNet in default set-

tings with 1000 permutations using the second controlled randomization approach

suggested in [22]. For FDRNet, we run the method to detect subnetworks for all

seed genes and in default settings. We convert MutSig2CV [45] p-values across

TCGA cohorts to local FDR values using the scripts provided by FDRNet. We use

FDRNet results for 16 cancer types over the STRING network as this method was

not able to detect any subnetwork over HumanNet v2 for almost all seed genes

(664/673, 98%). No FDRNet results could be produced for CHOL. In nCOP, we

use lists of rarely mutated genes reported in [44] (Fig. 4) on the TCGA somatic

mutational dataset in 15 of the 17 cancer types studied in our paper (all except

CHOL and ESCA). For Zhou et al.’s propagation method, we select the top k genes

identified post-propagation, where k is the equivalent number of UMGs for each
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cancer type across networks. In its edge-normalized setting, we divide each gene’s

post-propagation score by the same score when propagation α = 1 (i.e., ignoring

initial scores) before selecting top genes. For MutSig, we select all genes with sta-

tistically significant results (FDR < 0.1) across TCGA cohorts. As these methods do

not primarily focus on long tail genes, we remove driver genes from these

methods’ gene lists to ensure balanced comparisons with UMGs. It is worth noting

however that including driver genes or the small percentage of UMGs filtered in

the last step of the pipeline did not have a considerable impact on results (Add-

itional file 5: Figs. S1-3).

Enrichment analysis

Enrichment analysis to identify pathways, GO molecular functions, and GO biological

processes is performed on g:Profiler [49]. Enrichment results with Benjamini p-adjusted

< 0.05 are selected for analysis. Network visualization is executed using Enrichment-

Map v3.0 on Cytoscape v3.8.2 [50], with a comprehensive subset of results related to

cancer shown in Fig. 3. Frequent terms highlighted in red in Fig. 3b have ≥ 5 intra-

cluster edges and those in Fig. 3c ≥ 10 edges. Frequent UMGs in Table 1 are identified

based on their frequent presence in edges between a cluster’s nodes according (i.e.,

presence in ≥ 20 edges in Fig. 3b clusters and ≥ 30 in those of Fig. 3c).

PPI analysis

Composite PPI is the union of high-quality edges in STRING v11 and HumanNet v2.

The initial score of each gene is the one based on somatic mutations across a cohort as

described earlier. Drivers are split according to initial score and degree with thresholds

of 150 and 0.075, respectively. Initial scores of < 0.0015 are zeroed to attain lower FPR.

Visualization and degree calculation are executed using Cytoscape v3.8.2.

Manual literature curation of functionally validated UMGs

We manually cross-referenced each UMG with PubMed publications to detect which

ones have been earlier reported to play a role in cancer based on functional experi-

ments. We based results on an extensive search using the gene name AND “cancer” as

keywords in PubMed. If any gene was the target of a previous functional assay, i.e., was

deliberately overexpressed, suppressed, or mutated, and resulted an in vitro change in

the proliferation or survival of cancer cell lines, it was annotated as functionally vali-

dated. Otherwise, the genes are considered not validated. Fully annotated UMG lists for

each of the 17 cancer types are provided in Additional file 6: Table S5, while the list of

publications associated with functionally validated UMGs is provided in Additional file

8: Table S7.

Experiment validation: siRNA screening and annotation

Cell lines from the breast (MDAMB231, MDAMB468, BT549, HCC187), lung (H460,

HCC1299), and prostate cancers (DU145) were cultured in RPMI medium supple-

mented with 10% HI-FBS and penicillin/streptomycin (1:100). The siRNA transfection

experiments were performed at the Yale Center for Molecular Discovery. Reverse trans-

fections were performed using 384-well tissue-culture treated plates (Corning
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CLS3764) pre-plated with siRNAs to achieve a 20-nM final assay concentration. RNAi-

Max transfection reagent (Invitrogen) was added to plates according to the manufac-

turer’s recommendations and incubated with siRNAs for 20 min. Cells were then

seeded at plating densities optimized during assay development (MDAMB468,

HCC1187, and BT549 seeded at 4000 cells per well; MDAMB231 and H460 seeded at

1000 cells per well; DU145 and HCC1299 seeded at 500 cells per well) and incubated

at 37°C. After 72 h, CellTiter-Glo (Promega) was used to monitor viability. Each

screening plate contained 16 replicates of negative siRNA controls (either siGENOME

Smart Pool non-targeting control #1, #2, or #4, Dharmacon) and positive siRNA con-

trols (siGENOME Smart Pool Human PLK1 or KIF11, Dharmacon). Signal-to-

background (S/B), coefficient of variation (CV), and Z prime factor (Z’) were calculated

for each screening plate using mean and standard deviation values of the positive and

negative controls to monitor assay performance. All cell lines were obtained from

ATCC and have been thoroughly tested and authenticated by the vendor. The cell lines

will be routinely monitored for correct morphology and growth characteristics to con-

firm cell line identity. For each cell line, test siRNA data were normalized relative to

the mean of negative control samples (set as 0% effect) and the mean of positive control

samples (set as 100% effect). Three standard deviations of the negative control samples

were used as a cutoff to define screen actives.
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