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Abstract

Long-read sequencing enables variant detection in genomic regions that are
considered difficult-to-map by short-read sequencing. To fully exploit the benefits of
longer reads, here we present a deep learning method NanoCaller, which detects
SNPs using long-range haplotype information, then phases long reads with called
SNPs and calls indels with local realignment. Evaluation on 8 human genomes
demonstrates that NanoCaller generally achieves better performance than
competing approaches. We experimentally validate 41 novel variants in a widely
used benchmarking genome, which could not be reliably detected previously. In
summary, NanoCaller facilitates the discovery of novel variants in complex genomic
regions from long-read sequencing.

Keywords: Variant calling, Long-range haplotype, Deep learning, Difficult-to-map
regions

Background
Single-nucleotide polymorphisms (SNPs) and small insertions/deletions (indels) are

two common types of genetic variants in human genomes. They contribute to genetic

diversity and critically influence phenotypic differences, including susceptibility to hu-

man diseases. The detection (i.e., “calling”) of SNPs and indels is thus a fundamentally

important problem in using the new generations of high-throughput sequencing data

to study genome variations and genome functions. A number of methods have been

designed to call SNPs and small indels on Illumina short-read sequencing data. Short

reads are usually 100–150 bp long and have per-base error rate less than 1%. Variant

calling methods on short reads, such as GATK [1] and FreeBayes [2], achieved excel-

lent performance to detect SNPs and small indels in genomic regions marked as trad-

itional “high-confidence regions” in various benchmarking tests [3–5]. However, since

these methods were developed for short-read sequencing data with low per-base error
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rates and low insertion/deletion errors, they do not work well on long-read sequencing

data with high error rates. Additionally, due to inherent technical limitations of short-

read sequencing, the data cannot be used to call SNPs and indels in complex or repeti-

tive genomic regions; for example, only ~ 81% of genomic regions are marked as “high-

confidence region” to have reliable SNP/indel calls in the Genome In A Bottle (GIAB)

project, suggesting that ~ 19% of the human genome is inaccessible to conventional

short-read sequencing technologies to find variants reliably (please refer to the “Add-

itional file 1” on how to calculate the percentage of high-confidence genomic regions).

Oxford Nanopore (ONT) [6] and Pacific Biosciences (PacBio) [7] technologies are

two leading long-read sequencing platforms, which have been rapidly developed in re-

cent years with continuously decreased costs and continuously improved read length,

in comparison to Illumina short-read sequencing technologies. Long-read sequencing

techniques can overcome several challenging issues that cannot be solved using short-

read sequencing, such as calling long-range haplotypes, identifying variants in complex

genomic regions, identifying variants in coding regions for genes with many pseudo-

genes, sequencing across repetitive regions, phasing distant alleles, and distinguishing

highly homologous regions [8]. To date, long-read sequencing techniques have been

successfully used to sequence genomes for many species to powerfully resolve various

challenging biological problems such as de novo genome assembly [9–13] and SV de-

tection [14–19]. However, the per-base accuracy of long reads is much lower with raw

basecalling errors of 3–15% [20] compared with short-read data (although HiFi/CCS

PacBio reads and Nanopore reads generated by the latest flowcells R10.3 have lower

error rates, their error rates can still be much higher than that of short-read data.). The

high error rate challenges widely used variant calling methods (such as GATK [1] and

FreeBayes [2]), which were previously designed for Illumina short reads and cannot

handle reads with higher error rates. It is also worth noting that HiFi reads after circu-

lar consensus sequencing (CCS) on PacBio long-read sequencing [21] or similar

methods on the Nanopore platform can potentially improve the detection of SNPs/

indels by adapting existing short-read variant callers, due to its much lower per-base

error rates. However, HiFi reads would substantially increase sequencing cost given the

same base output, so it may be more suitable now for specific application scenarios

such as capture-based sequencing or amplicon sequencing. As more and more long-

read sequencing data becomes available, there is an urgent need to detect SNPs and

small indels to take the most advantage of long-read data.

Several recent works aimed to design accurate SNP/indel callers on long-read se-

quencing data using machine learning methods, especially deep learning-based algo-

rithms. DeepVariant [22] is among the first successful endeavor to develop a deep

learning variant caller for SNPs and indels across different sequencing platforms (i.e.,

Illumina, PacBio, and Nanopore sequencing platforms). In DeepVariant, local regions

of reads aligned against a variant candidate site were transformed into an image repre-

sentation, and then a deep learning framework was trained to distinguish true variants

from false variants that were generated due to noisy base calls. DeepVariant achieved

excellent performance on short reads as previous variant calling methods did. Later on,

Clairvoyante [23] and its successor Clair [24] implemented variant calling methods

using deep learning, where the summary of adjacently aligned local genomic positions

of putative candidate sites were used as input of deep learning framework. The three
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deep learning-based methods can work well on both short-read and long-read data, but

they do not incorporate haplotype structure in variant calling; these methods consider

each SNP separately, while a recent testing [21] with DeepVariant has shown that a

phased BAM with haplotype-sorted reads can improve variant calling accuracy because

grouping long reads from the same haplotype benefits neural network learning from an

image of read pileup. However, this testing underutilizes the rich long-range haplotype

information available from long reads, even when read phases are explicitly provided in

the input BAM file. Moreover, enough variants need to be known beforehand in order

to phase a BAM file. Two recent works have endeavored to improve variant calling by

using phasing information from long-reads sequencing data. Longshot [25] uses a pair-

Hidden Markov Model (pair-HMM) for a small local window around candidate sites to

call SNPs on long-read data, and then improves genotyping of called SNPs using Hap-

CUT2 [26] based on the most likely pair of haplotypes given the current variant geno-

types. However, Longshot cannot identify indels. The Oxford Nanopore Technologies

company also recently released a SNP/indel caller, i.e., Medaka [27], using deep learn-

ing on long-read data. Although not published, based on its GitHub repository, Medaka

first predicts SNPs from unphased long reads, and then uses WhatsHap to phase reads.

Medaka finally makes SNP and indel calling for each group of phased reads. In both

methods, mutual information from long-range haplotype SNPs is ignored. In summary,

although several methods for variant detection on long-read sequencing data have be-

come available, there may be room in further improving these approaches, especially

for difficult-to-map regions. We believe that improved SNP/indel detection on long-

read data will enable widespread research and clinical applications of long-read sequen-

cing techniques.

In this study, we propose a deep learning framework, NanoCaller, which integrates

long-range haplotype structure into a deep convolutional neural network to improve

variant detection on long-read sequencing data. NanoCaller uses haplotype information

for SNP calling (without requiring a phased BAM alignment input) and generates input

features for a SNP candidate site using only long-range heterozygous SNPs sites that

can be up to hundreds or even thousands of bases away from the candidate site; these

input features are then fed into a deep convolutional neural network for SNP calling.

NanoCaller does not use local neighboring bases that are immediately adjacent

to the candidate site on reference genome for feature generation, which is substantially

different from DeepVariant, Clairvoyante [23] and its successor Clair [24], as well as

Longshot and Medaka where local neighboring bases of SNP sites are used. After that,

NanoCaller uses these predicted SNP calls to phase alignment reads with WhatsHap

for indel calling. Local multiple sequence alignment of phased reads around indel can-

didate sites is used to generate consensus sequence and feature inputs for another deep

convolutional neural network to predict indel variant zygosity. We assess NanoCaller

on 8 human genomes, HG001 (NA12878), HG002 (NA24385), HG003 (NA24149),

HG004 (NA24143), HG005 (NA24631), HG006 (NA24694), HG007 (NA24695), and

HX1 using 8 Nanopore and 4 PacBio long-read datasets. In particular, we evaluate

NanoCaller in difficult-to-map genomic regions for the Ashkenazim trio (HG002,

HG003 and HG004) to investigate the unique advantages provided by long reads. Our

evaluation demonstrates competitive performance of NanoCaller against existing tools,

with particularly improved performance in complex genomic regions which cannot be
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reliably called on short-read data. NanoCaller is publicly available at https://github.

com/WGLab/NanoCaller [28].

Results
Overview of NanoCaller

NanoCaller takes alignment of a long-read sequencing data aligned against a reference

genome as input and generates a VCF file for predicted SNPs and indels (“Additional

file 1: Fig S6”). For SNP calling in NanoCaller, candidate SNP sites are selected accord-

ing to the specified thresholds for minimum coverage and minimum frequency of alter-

native alleles (a fraction of them are likely to be false positives given the relaxed

thresholds for candidate identification). Long-range haplotype features for the candi-

date sites (Fig. 1) are generated and fed into a deep convolutional network to

Fig. 1 An example on how to construct input features for a SNP candidate site. a Reference sequence and
read pileups at candidate site b and at other genomic positions that share the same reads. The columns in
gray are genomic positions that will not be used in input features for candidate site b as they do not satisfy
the criteria for being highly likely heterozygous SNP sites. Only the columns with colored bases will be used
to generate input features for site b and will constitute the set Z as described in the SNP pileups
generation section of "Methods". These neighboring likely heterozygous sites can be up to thousands of
bases away from candidate site b. b Reference sequence and read pileups for only the candidate site and
neighboring highly likely heterozygous SNP sites. c Raw counts of bases at sites in the set Z for each read
group split by the nucleotide types at site b. These raw counts are multiplied with negative signs for
reference bases. d Flattened pileup image with fifth channel after reference sequence row is added. e
Pileup image used as input features for NanoCaller deep convolutional neural network
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distinguish true variants from false candidate sites. The predicted SNPs and long-reads

are phased and then used in identification of indels. Indel candidate sites are selected

according to specified minimum coverage and insertion/deletion frequency thresholds

applied to each haploid read set. To reduce the effects of poor alignment on indel call-

ing, NanoCaller uses a sliding window across reference genome to estimate indel fre-

quency. Input features for indel candidate sites are generated using multiple

sequencing alignment on the set of diploid reads and on each set of haploid reads (Fig.

2). After that, another deep convolutional neural network is used to determine indel

calls and assign variant call quality scores. Allele sequence for the indels is predicted by

comparing consensus sequences against reference sequence.

The performance of NanoCaller is evaluated on both Oxford Nanopore and PacBio

reads, and compared with performances of Medaka (v0.10.0), Clair (v2.0.1), Longshot

Fig. 2 An example on how to construct input features for an indel candidate site. a Reference sequence
and read pileup at the candidate site before and after multiple sequence alignment, and the consensus
sequence. b Reference sequence and consensus sequence at the candidate site before and after pairwise
alignment, and the inferred sequence. c Raw counts of each symbol at each column of multiple sequence
alignment pileup. d Matrix M, showing frequency of each symbol at each column of multiple sequence
alignment pileup. e First channel of input image, matrix M minus Q (one-hot encoding of realigned
reference sequence). f Matrix Q, one-hot encoding of realigned reference sequence which forms the
second channel of input image for NanoCaller deep convolutional neural network
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(v0.4.1), DeepVariant (v.1.0.0) and WhatsHap (v1.0) with their default parameters for

each type of sequencing technology. By default, evaluation is on benchmark variants in

high-confidence intervals of chromosomes 1-22 of the GRCh38 reference genome, un-

less stated otherwise. RTG tools (the commands for vcfeval submodule can be found in

the “Additional file 1: Pages 26-27”) [29] is used to calculate various evaluation metrics,

such as precision, recall and F1. For whole-genome analysis, we show each variant cal-

ler’s performance using its recommended quality threshold if available, e.g., NanoCaller,

Clair, Longshot, and DeepVariant; for Medaka, we calculate the quality score thresholds

that give highest F1 score for each genome using vcfeval, and use their average as the

final quality score cut-off to report results. In particular, variant calling performance

analysis in difficult-to-map genomic regions requires different quality score cut-offs

from whole-genome analysis due to highly specific error profiles of these difficult-to-

map regions. Therefore, we use the average best quality score cut-off (in the same man-

ner as the quality score cut-off is determined for Medaka) for each variant caller in

each type of difficult genomic region.

In the “Results” section, we present performances of five NanoCaller models: ONT-

HG001 (trained on HG001 ONT reads), ONT-HG002 (trained on HG002 ONT reads),

CCS-HG001 (trained on HG001 PacBio HiFi/CCS reads), CCS-HG002 (trained on

HG002 PacBio HiFi/CCS reads), and CLR-HG002 (trained on HG002 PacBio CLR

reads); the first four datasets have both SNP and indel deep learning models, whereas

CLR-HG002 consists of only a SNP model. All NanoCaller HG001 models are trained

using v3.3.2 of GIAB benchmark variant calls, whereas all NanoCaller HG002 models

are trained using v4.2.1 of GIAB benchmark variant calls. Sequencing datasets used for

training were aligned to the GRCh38 reference genome. For performance evaluation,

the latest available GIAB benchmark variants are used for each genome, i.e., v3.3.2 for

HG001 and HG005-7, and v4.2.1 for the Ashkenazim trio HG002-4. For HX1, variant

calls produced by GATK on 300× Illumina reads of HX1 are used as benchmark, and

high-confidence intervals for HX1 were created by removing difficult-to-map regions

from chromosomes 1-22.

Evaluation of NanoCaller on Oxford Nanopore sequencing

Performance on SNP calling

We compared NanoCaller’s SNP calling performance on Oxford Nanopore sequencing

reads against several existing tools. For NanoCaller, we used alternative allele frequency

threshold of 0.15 for SNP candidates. For testing Clair, we used “1_124x ONT” model

trained on 124× coverage HG001 ONT reads using v3.3.2 GIAB benchmark variants,

whereas for Medaka we used “r941_min_diploid_snp_model” model for testing, which

is trained on several bacteria and eukaryotic read datasets and variant call sets. Long-

shot pair-HMM model is not trained on any genome as it estimates parameters during

each run. We compared the performances of these methods on eight genomes: HG001-

7 and HX1 under two testing strategies: cross-genome testing and cross-reference

testing.

Cross-genome testing is critical to demonstrate the performance of a variant caller

when used in a real-world scenario: the machine learning model of a variant caller is

trained on one set of genomes and tested on other genomes. Under this testing
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strategy, the performance of SNP calling for NanoCaller, together with three other vari-

ant callers, Medaka, Clair, and Longshot, is shown in Table 1 and Fig. 3 on Nanopore

reads of eight genomes.

On the Ashkenazim trio (HG002, HG003, HG004), NanoCaller has better perform-

ance than Medaka, Clair, and Longshot in terms of F1 score as shown in Table 1 and

Fig. 3c: F1 scores of NanoCaller are 98.35, 98.99, 98.97% for ONT-HG001 NanoCaller

model and 98.66, 99.09, 99.11% for ONT-HG002 NanoCaller model, compared to Me-

daka (98.59, 99.02, 99.04%), to Clair (97.77, 98.60, 98.58%), and Longshot (98.03, 97.88,

97.90%), on HG002, HG003, and HG004 respectively. In particular, ONT-HG002

NanoCaller model exceeds Longshot’s by 1.2% F1 score on HG003 and HG004. More

details of the performances (precision and recall) can be found in Fig. 3a and b, and

“Additional file 2: Table S30.” Furthermore, we evaluated NanoCaller on two additional

HG002 ONT datasets. The first data is produced by R10.3 flowcells and basecalled by

Guppy 4.0.11, and the second dataset is produced by R9.4.1 flowcells and basecalled

Fig. 3 Performances of NanoCaller and other variant callers on ten ONT datasets. SNP performance on
whole-genome high-confidence intervals: a precision, b recall, c F1 score. F1 scores of SNP performances
on d “all difficult-to-map” regions and e MHC. Indel performance non-homopolymer regions: f precision, g
recall, h F1 score. i: F1 score of indel performance in whole-genome high-confidence intervals
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with Bonito 0.30. We found that NanoCaller models performed better than other vari-

ant callers in terms of F1 score by significant margins. For example, on HG002 ONT

data generated by R10.3 flowcells, the F1 scores are 99.33%, 99.34%, 99.24%, 98.75%,

and 98.59% for ONT-HG001, ONT-HG002, Medaka, Clair, and Longshot respectively,

whereas on HG002 Bonito dataset, the F1 scores are 98.28%, 98.44%, 96.94%, 90.44%,

and 98.18% for ONT-HG001, ONT-HG002, Medaka, Clair, and Longshot respectively.

NanoCaller achieves better F1 score than all other methods. More details for these per-

formances can be found in Fig. 3a and b, and “Additional file 2: Table S35.”

For HG001 and HG005-7, NanoCaller performs competitively against other methods

as shown in Table 1 and Fig. 3: On HG001, F1 scores are 98.58% for ONT-HG001,

98.63% for ONT-HG002, 98.79% for Clair, 98.78% for Longshot, and 99.03% for Me-

daka. On HG005/HG006/HG007, F1 scores are 98.10/98.23/97.81% for ONT-HG001,

98.38/98.43/98.06% for ONT-HG002, 98.17/98.50/98.24% for Medaka, 97.73/97.90/

97.50% for Clair, and 98.34/98.53/98.51% for Longshot, respectively. It is clear that

sometimes NanoCaller has best F1 score (for example on HG005), but sometimes other

methods show best F1 score (such as Longshot on HG007 and Medaka on HG001).

Please note that benchmark variants of HG001and HG005-7 are older (v3.3.2) than the

benchmark variants of the Ashkenazim trio HG002-4 (v4.2.1). The Ashkenazim trio

HG002-4 has a larger variant callset than HG001 and HG005-7 (370–400 k more SNPs

per genome than HG001), and a larger high-confidence region which includes more

difficult genomic regions (at least 200 mbp larger than HG001 and covering an extra

7% of the reference genome). This might contribute to the performance variation be-

tween different methods.

Next, we show SNP calling performance on HX1 genome sequenced by our lab. On

48× coverage HX1 reads re-basecalled with Guppy 4.5.2 by us, NanoCaller models per-

form slightly better than Clair and Longshot (F1 scores are 98.45% for ONT-HG001,

98.60% for ONT-HG002, 98.53% for Clair, 98.59% for Longshot, and 98.94% for Me-

daka). This demonstrates NanoCaller’s ability to accurately identify variants in non-

GIAB datasets in real-life applications.

Lastly, we show that the performance of NanoCaller SNP models is independent of

the reference genome used. Under this cross-reference testing, we evaluated ONT-

HG001 model (trained on reads aligned against GRCh38) on HG002 ONT reads

aligned to both GRCh38 and GRCh37 reference genomes. For reads aligned to

GRCh38, we obtained 99.03%, 97.69%, and 98.35% for precision, recall, and F1 score re-

spectively. Whereas for reads aligned to GRCh37, we obtained 98.99%, 97.70% and

98.34% for precision, recall and F1 score respectively. The similar performance on

GRCh38 and GRCh37 indicates that NanoCaller could be used on alignment generated

by mapping to different reference genomes.

Performance of SNP calling in difficult-to-map genomic regions

We further demonstrate that NanoCaller has a unique advantage in calling SNPs in

difficult-to-map genomic regions. We tested both ONT-HG001 SNP model (trained on

HG001 ONT reads with v3.3.2 benchmark variants) and ONT-HG002 SNP model

(trained on HG002 ONT reads with benchmark variants v4.2.1) on ONT reads of the

three genomes of the Ashkenazim trio together with other variant callers. v4.2.1 of
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GIAB benchmark variants for the trio HG002-4 are used for testing because they have

a more exhaustive list of true variants and high-confidence intervals in difficult-to-map

genomic regions, as shown in “Additional file 2: Table S27.” Difficult-to-map genomic

regions here are defined by GA4GH Benchmarking Team and the Genome in a Bottle

Consortium, and are downloaded as BED files from GIAB v2.0 genome stratification.

These regions contain all tandem repeats, all homopolymers > 6 bp, all imperfect ho-

mopolymers > 10 bp, all low mappability regions, all segmental duplications, GC < 25%

or > 65%, bad promoters, and other difficult regions such major histocompatibility

complex. We intersected the BED files with high-confidence intervals for each genome

in the trio and evaluated SNP performance in the intersected regions. As shown in

“Additional file 2: Table S27,” each genome has at least 600 k SNPs in the intersection

of difficult-to-map regions and high-confidence intervals, which is a significant fraction

(18–19%) of all SNPs in the high-confidence regions.

The evaluation on these SNPs is shown in Fig. 3d and Table 2 for NanoCaller and

other methods. For HG002/HG003/HG004, F1 scores are 95.80/96.83/96.70% for

ONT-HG001, 96.18/96.92/96.92% for ONT-HG002, 95.41/96.46/96.46% for Medaka,

94.98/96.27/96.12% for Clair, and 93.95/94.61/94.55% for Longshot, respectively. Nano-

Caller performs better than all other variant callers for each genome. In “Additional file

2: Table S33,” we show performances of NanoCaller SNP models trained on v3.3.2

benchmark variants of HG002, and again NanoCaller performs significantly better than

other variant callers. In “Additional file 2: Table S33,” we further show a detailed break-

down of performances in the difficult-to-map regions and demonstrate that NanoCaller

generally performs better than other variant callers for SNPs in each of the following

categories of difficult-to-map regions: segmental duplications, tandem and homopoly-

mer repeats, low mappability regions, and major histocompatibility complex.

To further investigate NanoCaller’s performance, we split difficult-to-map regions

into different subgroups according to their length: 0–10 kbp, 10–100 kbp, 100–500

Table 2 Performances (F1 scores in %) of SNP predictions in difficult-to-map regions and Major
Histocompatibility Complex (MHC) by NanoCaller, Medaka, Clair, and Longshot on ONT data. These
evaluations are performed against v4.2.1 benchmark variants for the Ashkenazim trio (HG002,
HG003, and HG004), whereas “HG002 Bonito” and “HG002 R10.3” are different HG002 ONT datasets

Prediction Variant caller HG002 HG003 HG004 HG002
Bonito

HG002
R10.3

SNPs on ONT data in difficult-to-
map regions

NanoCaller ONT-
HG001

95.80 96.83 96.70 97.44 96.34

NanoCaller ONT-
HG002

96.18 96.92 96.92 97.38 96.44

Medaka 95.41 96.46 96.46 96.51 94.20

Clair 94.98 96.27 96.12 95.63 84.83

Longshot 93.95 94.61 94.55 95.42 93.00

SNPs on ONT data in MHC NanoCaller ONT-
HG001

98.65 99.06 99.18 99.45 98.46

NanoCaller ONT-
HG002

98.86 99.19 99.28 99.46 98.69

Medaka 97.62 99.25 98.10 98.24 98.24

Clair 97.60 98.51 98.57 98.97 92.06

Longshot 68.52 73.13 69.40 68.48 68.41
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kbp, and > 500 kbp, and tested NanoCaller, Medaka, Clair, and Longshot on HG002,

HG003, and HG004. We found that when the length of interval increases, the perform-

ance advantage of NanoCaller over other methods becomes larger: for example on

HG004, NanoCaller’s F1 score is 0.02 higher than Longshot for 0–10 kbp subgroup,

whereas NanoCaller’s F1 score is 0.1793 higher than Longshot for > 500 kbp. This

demonstrates NanoCaller can benefit SNP calling with long difficult-to-map regions

compared to other methods. The details of these performances can be found in “Add-

itional file 2: Table S41.”

Finally, NanoCaller team participated in PrecisionFDA truth challenge v2 for

difficult-to-map genomic regions (held in July 2020, see https://precision.fda.gov/

challenges/10), and submitted variant calls for the Ashkenazim trio made by an ensem-

ble of NanoCaller model (trained on ONT reads of HG001 basecalled with

Guppy2.3.8), and Medaka and Clair models described above. The challenge consisted

of Guppy3.6 basecalled ONT reads for HG003 and HG004 to predict variant calls,

which were then evaluated on GIAB v4.1 benchmark variants of HG003 and HG004

that were made public after the challenge ended. At the conclusion of the challenge,

GIAB released v4.2 benchmark variants. Our ensemble submission won the award for

best performance in major histocompatibility complex (MHC) using Nanopore reads

[30]. “Additional file 1: Fig S4 (e) and (f)” and “Additional file 1: Table S11” show the

F1 score of SNPs and overall variant performance of the ensemble, NanoCaller model

(trained on ONT reads of HG001 basecalled with Guppy2.3.8), Medaka, and Clair.

While the ensemble performs better than all other variant callers, in general, NanoCal-

ler’s performance on HG002 and HG004 is very close to the ensemble and is signifi-

cantly better than the performances of Medaka and Clair (F1 scores NanoCaller:

98.53%, 99.07% vs ensemble: 98.97%, 99.17%; Medaka: 97.15%, 94.29% and Clair:

97.55%, 98.59% for HG002 and HG004 respectively). NanoCaller always outperforms

Longshot for SNP calling in MHC regions. Therefore, this is an independent assess-

ment of the real-world performance of NanoCaller in detecting variants in complex

genomic regions. For performance of NanoCaller and other variant callers on MHC

using latest ONT reads for HG002-4, please refer to Fig. 3e, Table 2, and “Additional

file 2: Table S33.” Meanwhile, we ran PEPPER-DeepVariant on ONT data basecalled

with Guppy v4.2.2 for HG002, HG003, and HG004, and then evaluated the SNP/indel

calling against benchmark v4.2.1 (as shown in “Additional file 2: Table S42”), and we

found that NanoCaller performs better than PEPPER-DeepVariant on the MHC

regions.

Performance on indel calling

We tested NanoCaller indel models and other variant callers on ONT reads of eight ge-

nomes: HG001-7 and HX1, similar to SNP evaluation. The settings of NanoCaller are

given below: to determine indel candidates, thresholds for haplotype insertion allele fre-

quency and deletion frequency were set to 0.4 and 0.6, respectively, due to the abun-

dance of deletion errors in Nanopore reads. Since Nanopore sequencing is unreliable in

homopolymer regions, we break down performances for each genome into three cat-

egories: high-confidence intervals, homopolymer regions, and non-homopolymer re-

gions. Homopolymers regions for indel evaluation are defined as perfect homopolymer
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regions of length greater than or equal to 4 bp as well as imperfect homopolymer re-

gions of length greater than 10 bp. Non-homopolymer regions are created by removing

homopolymer regions from high-confidence intervals (more details on homopolymer

and non-homopolymer regions are shown in “Additional file 1: Pages 5,6, and 27”). Per-

formances evaluated by RTG vcfeval are shown in Table 1 and Fig. 3f, g, and h for

NanoCaller together with Medaka and Clair. According to the F1 scores in Table 1,

NanoCaller performs better than Clair by 8–10% and Medaka by 2–5% in non-

homopolymer regions. It is also worth noting that NanoCaller has a higher recall than

Medaka and especially Clair: for example, NanoCaller has ~ 15–20% and ~ 1–4% higher

recall than Clair and Medaka respectively on all 7 genomes HG001-7. On high-

confidence and homopolymer regions, NanoCaller also achieves higher F1 scores than

Medaka and Clair; more details can be found in Table 1 and “Additional file 2: Table

S31.” This demonstrates the improved performance of NanoCaller for indel calling. In

particular, “Additional file 1: Fig S7” shows a true insertion and a true deletion in

HG002 ONT reads that are predicted correctly by NanoCaller but missed by Clair and

Medaka. Both indels show high discordance in position of indels among the overlap-

ping long reads, which makes it harder to identify these indels. Furthermore, “Add-

itional file 1: Fig S1” further shows concordance of ground truth variants in high-

confidence regions (including homopolymer repeat regions) of the Ashkenazim trio

correctly predicted by NanoCaller, Medaka and Clair. “Additional file 1: Fig S1 (b)”

shows each tool has a significant number (ranging from 19–60 k) of correctly predicted

indel calls that are not correctly predicted by other variant callers.

Performance on PacBio sequencing data

We evaluated NanoCaller on PacBio HiFi/CCS and CLR datasets of four genomes:

HG001, HG002, HG003, and HG004. For CCS datasets, we evaluated NanoCaller SNP

models CCS-HG001 (trained on HG001 CCS reads using benchmark variants v3.3.2)

and CCS-HG002 (trained on HG002 CCS reads using benchmark variants v4.2.1). The

settings of compared tools are given below: for NanoCaller, the minimum alternative

allele frequency threshold for SNP calling was set to 0.15 to identify SNP candidates for

both PacBio CCS and CLR reads. For Clair, the PacBio model trained on HG001

and HG005 was used for testing CCS reads, whereas the model trained on seven

genomes HG001-HG007 was used for testing CLR reads; both Clair models used

v3.3.2 benchmark variants for training. The provided PacBio model in the new

DeepVariant release v1.0.0 is used for testing, and this model was trained on CCS

reads of HG001-HG006 with v3.3.2 benchmark variants for HG001, HG005-6, and

v4.2 for HG002-HG004.

The results for SNP performance on CCS reads are shown in Table 1 and Fig. 4a–c

along with Clair, Longshot, and DeepVariant. It can be seen from Table 1 and Fig. 4

that on the Ashkenazim trio, both NanoCaller models (CCS-HG001 and CCS-HG002)

perform significantly better than Longshot, and NanoCaller shows competitive per-

formance against Clair (F1 scores are CCS-HG001: 99.80, 99.79, 99.71%; CCS-HG002:

99.80, 99.79, 99.75% vs Clair: 99.84, 99.72, 99.79% vs Longshot: 99.03, 99.05, 99.05% vs

DeepVariant: 99.93, 99.93, 99.84% for HG002, HG003, and HG004 respectively). More

details performance can be found in “Additional file 2: Table S37.”
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We also evaluated NanoCaller PacBio indel models CCS-HG001 (trained on HG001

CCS reads using benchmark variants v3.3.2) and CCS-HG002 (trained on HG002 CCS

reads using benchmark variants v4.2.1) and the results are shown in Table 1 and Fig.

4d–f along with Clair and DeepVariant indel performances. The F1 scores on the trio

suggest that NanoCaller performs competitively against Clair. As expected, DeepVar-

iant performs very well on CCS reads because CCS reads have much lower error rates.

More details of the performance can be found in “Additional file 2: Table S38.”

For PacBio Continuous Long Read Sequencing (CLR) datasets, we evaluated

NanoCaller SNP model CLR-HG002 (trained on HG002 PacBio CLR reads using

benchmark variants v4.2.1) on the following genomes: HG001 (reads aligned to

GRCh37) and the Ashkenazim trio: HG002, HG003, and HG004 (as shown in

Table 1 and Fig. 4g–i). Due to drastic differences in coverage of CLR datasets, we

used a higher NanoCaller quality score cut-off for HG003 and HG004, compared

Fig. 4 Performances of NanoCaller and other variant callers on four PacBio CCS and four PacBio CLR
datasets. SNP performance on whole-genome high-confidence intervals using CCS reads: a precision, b
recall, c F1 score. Indel performance on whole-genome high-confidence intervals using CCS reads: d
precision, e recall, f F1 score. SNP performance on whole-genome high-confidence intervals using CLR
reads: g precision, h recall, i F1 score

Ahsan et al. Genome Biology          (2021) 22:261 Page 14 of 33



to HG001 and HG002. NanoCaller performs competitively against Longshot and

Clair (F1 scores are CLR-HG002: 98.75%, 94.41%, 93.41% vs Clair: 98.38%, 94.89%,

94.15% and Longshot: 98.41%, 94.35%, 93.27%). More details of the performance

can be found in “Additional file 2: Table S39.”

Novel variants called by NanoCaller

We also analyzed SNP calls made by NanoCaller on HG002 (ONT reads basecalled by Guppy

2.3.4) that are absent in the GIAB ground truth calls (version 3.3.2) [31] and validated 17 re-

gions of those SNP calls by Sanger sequencing before v4 benchmark for HG002 was made

available (Sanger sequencing signals along with inferred sequences of both chromosomes for

each region are shown in the “Additional file 3” zip file). By deciphering Sanger sequencing re-

sults, we identified 41 novel variants (25 SNPs, 10 insertions, and 6 deletions), as shown in

Table 3. Based on the 41 novel variants, we conducted the variant calling evaluation by differ-

ent methods on both older ONT HG002 reads and newly released ONT HG002 reads (as de-

scribed in the “Methods” section) to see how more accurate long reads improve variant

calling. We found that (1) on the newly released ONT HG002 reads, Medaka correctly identi-

fied 15 SNPs, 6 insertions and 2 deletions, Clair identified 14 SNPs, 6 insertions and 2 dele-

tions, and Longshot correctly identified 18 SNPs, while NanoCaller was able to correctly

identify 20 SNPs, 6 insertions and 2 deletions, as shown in the “Additional file 1: Table S12,”

whereas one of these 2 deletions was not called correctly by other variant callers; and (2) on

the older ONT HG002 reads, as shown in Table 3, Medaka correctly identified 8 SNPs, 3 in-

sertions and 1 deletion, and Clair identified 8 SNPs, 2 insertions and 1 deletion, whereas Long-

shot correctly identified 8 SNPs. In contrast, NanoCaller was able to correctly identify 18

SNPs and 2 insertions, whereas 10 of these 18 SNPs and 1 of these 2 insertions were not

called correctly by other variant callers on the older HG002 (ONT reads). This indicates that

the improvements in per-base accuracy during basecalling significantly enhance the variant

calling performance. Also in Table 3, there are 2 multiallelic SNPs which can be identified by

NanoCaller but cannot be correctly called by all other 3 methods. One of the multiallelic SNPs

at chr3:5336450 (A>T,C) is shown in Fig. 5, where both the IGV plots and Sanger results

clearly show a multiallelic SNP that was correctly identified by NanoCaller but was missed by

other variant callers, likely due to the unique haplotype-aware feature of NanoCaller. In sum-

mary, the prediction on these novel variants clearly demonstrates the usefulness of NanoCaller

for SNP calling.

To demonstrate the performance of NanoCaller for indel calling, we used Fig. 6 to il-

lustrate those variants that can be detected by long-read variant callers but cannot be

detected by short-read data. In Fig. 6, the validated deletion is at chr9:135663795 or

chr9:135663804 (there are two correct alignments at the deletion and thus both gen-

omic coordinates are correct.). NanoCaller detects the deletion at chr9:135663805,

while Medaka and Clair detect the deletion at chr9:135663799. Although they are sev-

eral base pairs away from the expected genomic coordinates (which is normal in long-

read based variant calling), the prediction provides accurate information of the deletion

compared with short-read data where little evidence supports the deletion as shown in

Fig. 6a. Sanger sequencing signal data, shown in Fig. 6b, confirms the presence of a het-

erozygous deletion at the same location which is causing frameshift between the signals

from maternal and paternal chromosomes. This is an example to demonstrate how
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Table 3 Novel variants in HG002 genome, missing in v3.3.2 benchmark variant, discovered by
Sanger sequencing together with the prediction information by NanoCaller and other variant
callers using ONT reads basecall with Guppy 2.3.4. NanoCaller model used was trained on ONT
HG001 Guppy 2.3.8 basecalled reads

Chrom Position REF ALT Genotype Nanocaller Medaka Clair Longshot

chr1 78883942 C T 1|0 Correct – – –

chr1 78883952 ATATATATTTAT
CCTTTATATATA
TATTCTT

A 1|0 – – – –

chr2 227913871 A ATATCTAT
CTATC

1|0 Correct Correct Correct –

chr2 227913885 G A 1|0 Correct Correct Correct Correct

chr2 227913889 G A 1|0 Correct Correct Correct Correct

chr2 227913928 T TA 1|0 Wrong
allele

Correct – –

chr2 227913931 A T 1|0 Correct – – –

chr3 5336450 A T,C 1|2 Correct Wrong
allele

Wrong
allele

Wrong
allele

chr3 5336452 C CGCGT 0|1 – – – –

chr3 5336465 ACACACACAC
ACG

A 0|1 Wrong
variant
type

Wrong
allele

– –

chr3 5336477 GCA G 1|0 Wrong
allele

Correct Wrong
allele

–

chr3 5336487 A G 0|1 Wrong
variant
type

Wrong
variant
type

– –

chr6 160009985 C CTTAA 0|1 Wrong
allele

– Wrong
allele

–

chr6 160009986 C A 0|1 Wrong
zygosity

Wrong
allele

Wrong
variant
type

Wrong
allele and
zygosity

chr6 167130970 G GGGCCCCC
CTCCCT
CCGGGACT
CCTCCCTCT

0|1 – – – –

chr6 167130972 GA G 1|0 – Wrong
zygosity

Wrong
zygosity

–

chr6 167130973 A G 0|1 – – – –

chr6 167130976 A C 1|1 Correct Wrong
zygosity

Correct Correct

chr6 167130986 T C 1|0 Correct Wrong
allele

– Wrong
allele

chr6 167130989 A G 1|1 Correct Correct Correct Correct

chr6 167130990 C A 1|0 – – – –

chr6 167130992 C T 1|0 Correct – Correct Correct

chr9 134784949 C T 0|1 Correct Correct Correct Correct

chr9 134784951 G T 0|1 – – – –

chr9 134784955 G GGGGGGCA 0|1 – – – –

chr9 134784956 T G 0|1 Correct Wrong
variant
type

Wrong
variant
type

–

chr9 135663795 ACAGAGGGGGAC
CTGGAGGGGCAG
AGGAGAGACCTG

A 0|1 – – – –
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long-read variant callers on long-read data can detect variants that fail to be reliably

called on short-read sequencing data.

NanoCaller runtime comparison

We assessed NanoCaller’s running time in four modes: “snps_unphased,” “snps,”

“indels,” and “both.” In “snps_unphased” mode, NanoCaller uses deep neural network

model to predict SNP calls only, whereas in the “snps” mode, NanoCaller SNP calling

is followed by an additional step of phasing SNP calls by external haplotyping tools

such as WhatsHap. In the “indels” mode, NanoCaller uses phased reads in a BAM in-

put to predict indels only. The entire NanoCaller workflow is the “both” mode, where

NanoCaller first runs in “snps” mode to predict phased SNP calls, then uses WhatsHap

to phase reads with the SNP calls from the “snps” mode, followed by running “indels”

mode on phased reads from the previous step. Table 4 shows the wall-clock runtime of

each mode of NanoCaller using 16 CPUs (IntelXeon CPU E5-2683 v4 @ 2.10 GHz) on

49× HG002 ONT (reads basecalled by Guppy 3.6), 35× PacBio CCS (15kb library size),

and 58× PacBio CLR reads. NanoCaller takes ~ 18.4 h and ~ 2.8 h to run “both” and

“snps_unphased” modes on 49× HG002 ONT reads, compared to ~ 181.6 h for Medaka

and ~ 5.6 h for Clair, on the same 16 CPUs. On 35× CCS reads, NanoCaller takes ~

Table 3 Novel variants in HG002 genome, missing in v3.3.2 benchmark variant, discovered by
Sanger sequencing together with the prediction information by NanoCaller and other variant
callers using ONT reads basecall with Guppy 2.3.4. NanoCaller model used was trained on ONT
HG001 Guppy 2.3.8 basecalled reads (Continued)

Chrom Position REF ALT Genotype Nanocaller Medaka Clair Longshot

TGGGG

chr9 135663892 A G 1|1 Wrong
zygosity

Correct Correct Correct

chr9 135663893 T A,G 1|2 Correct Wrong
allele

Wrong
allele

Wrong
allele

chr11 113466435 G GC 1|1 – Correct Correct –

chr11 113466437 A T 1|1 Correct Wrong
allele

Wrong
allele

Wrong
allele

chr12 100940063 A AT 0|1 Correct – – –

chr12 100940065 G C 0|1 Correct Wrong
allele

– –

chr14 75318035 C T 1|0 Correct Correct Correct Correct

chr14 75318038 AT A 1|0 – Wrong
allele

Correct –

chr14 75318052 T C 1|0 Correct – – –

chr14 75318054 T G 1|0 – – – –

chr20 11064571 T TGA 0|1 – Wrong
allele

– –

chr20 11064574 A ATTTTCAA
GACTATTG
TGACTATG
AC

0|1 – Correct – –

chr20 11064578 A T 0|1 Correct – – –

chr20 11064579 C T 0|1 Correct Correct Wrong
variant
type

–

Ahsan et al. Genome Biology          (2021) 22:261 Page 17 of 33



11.2 h and ~ 2.7 h to run “both” and “snps_unphased” modes, compared to ~ 1.8 h by

Clair and ~ 11.8 by DeepVariant, on 16CPUs. NanoCaller usually runs faster than other

tools. We summarize the runtime of all variant callers in “Additional file 1: Table S17.”

Please note that Medaka’s first step also produces unphased SNP calls using a re-

current neural network on mixed haplotypes (Medaka later uses WhatsHap to

phase SNP calls and reads for haplotype separated variant calling). Compared with

Medaka’s first step, NanoCaller’s unphased SNP calling not only takes a fraction of

the time required for Medaka’s first step (~ 2.8 h vs ~ 70.7 h), but also gives much

better performance (precision, recall and F1 score on ONT HG002 (reads base-

called by Guppy 3.6) are NanoCaller: 98%, 97.99%, 97.99% vs Medaka 98.01%,

Fig. 5 Evidence for a novel multiallelic SNP. a IGV plots of Nanopore, PacBio CCS, and Illumina reads of
HG002 genome at chr3:5336450-5336480. b Sanger sequencing signal data for the same region. NanoCaller
on older HG002 data correctly identified the multiallelic SNP at chr3:5336450 (A>T,C) shown in black box
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Fig. 6 Evidence for novel deletions. a IGV plots of Nanopore, PacBio CCS, and Illumina reads of HG002
genome at chr9:135663780-135663850. The 40-bp-long deletion shown below in black box was identified
using Sanger sequencing at chr9:135663795 or chr9:135663804 (both are correct and the difference is due
to two different alignments). b Sanger sequencing signal data around the deletion

Table 4 Wall-clock runtime in hours of different modes of NanoCaller using 16 CPUs on 49× ONT,
35× CCS, and 58× CLR reads of HG002

NanoCaller
mode

snps_unphased snps Indels Both

Description Only SNP calling by
NanoCaller deep
convolutional network
model

“snps_unphased”
mode followed by
WhatsHap SNP call
phasing

Only indel calling
by NanoCaller using
phased BAM input

“snps” mode, followed by
read phasing by
WhatsHap, and “indels”
mode

ONT 3.8 5.0 12.6 18.4

CCS 2.7 3.2 7.6 11.2

CLR 3.6 4.8 – –
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92.16%, 94.99%). Similarly, Longshot’s first step uses a pair-HMM model to pro-

duce SNP calls from mixed haplotypes (Longshot later uses HapCUT2 to update

the genotypes of these SNP calls in an iterative manner); on HG002 ONT (reads

basecalled by Guppy 3.6), Longshot’s first step takes 15.2 h with 93.01%, 95.69%,

and 94.33% for precision, recall, and F1 score respectively. Longshot and What-

sHap cannot use multiple CPUs to produce on SNP calls. With single CPU on 49×

HG002 ONT reads, Longshot needs ~ 49.7 h and WhatsHap needs ~ 84.3 h for

SNP calling.

Effects of various parameters on NanoCaller’s performance

In this section, we discuss the effects of tuning various parameters on NanoCaller’s per-

formance. The NanoCaller SNP models presented here are as follows: NanoCaller1

(trained on ONT HG001 reads basecalled with Guppy 2.3.8 using benchmark variants

v3.3.2), NanoCaller2 (trained on ONT HG002 reads basecalled with Guppy 2.3.4 using

benchmark variants v3.3.2), and NanoCaller3 (trained on HG003 PacBio CLR reads using

benchmark variants v3.3.2). For testing, we used ONT reads for HG002-4 basecalled with

Guppy3.6, CCS reads for HG002-4 (15 kb library size), and HG002-4 CLR reads.

Strategies of choosing heterozygous SNPs for SNP feature generation

In NanoCaller, we generated input features for a SNP candidate site by choosing poten-

tially heterozygous SNP sites that share a read with the candidate site. In the imple-

mentation of NanoCaller, at most 20 heterozygous SNP candidates are chosen for

downstream and upstream of a candidate site of interest. With an expectation that 1

SNP occurring per 1000 bp, a simple way is to include 20 kb downstream and upstream

sequence centered at the candidate site of interest, and then select 20 nearest heterozy-

gous SNP sites. But in some smaller genomic regions, a cluster of heterozygous SNP

candidates may be found due to the noise with many false positives, and these false

SNPs in a very smaller region would provide a strong co-occurrence evidence for each

other but little information for the candidate site of interest. Longshot notices this issue

and overcomes high false positive rates due to dense clusters of false positive SNP by

simply removing these dense clusters if the number of SNP calls exceeds a certain

threshold in a specified range; however, applying hard limits like that can lead to miss-

ing out on true SNPs that do occur in dense clusters in certain genomic regions.

We decided to use a different method for selecting nearby potential heterozygous

sites by forcing NanoCaller to pick a certain number of sites that were some distance

away from the candidate site. More precisely, we force NanoCaller to pick 2, 3, 4, 5,

and 6 heterozygous SNP sites between the following distances from the candidate site:

2kbp, 5kbp, 10kbp, 20kbp, and 50kbp. This is illustrated in “Additional file 1: Fig S3

and Table S18.” We found that using this method, we achieved better SNP calling per-

formance for ONT reads; “Additional file 1: Table S21” shows that under this strategy,

for each genome in the Ashkenazim trio, we achieved higher precision, recall, and F1

score for whole-genome analysis as well as in each difficult-to-map genomic regions.

On the other hand, SNP calling performance of PacBio CCS and CLR reads is not af-

fected by using this method of selecting heterozygous SNP sites, as shown in “Add-

itional file 1: Table S22”. This might be due to the fact that ONT reads have
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significantly higher N50 and mean read length compared to PacBio CCS and CLR

reads, as shown in “Additional file 1: Table S1”. “Additional file 1: Fig S2” shows the

read length distribution of HG004 ONT, CCS, and CLR datasets of 88×, 35×, and 27×

coverages respectively. In these datasets, 99.4% of CCS reads and 97% of CLR reads are

shorter than 20,000 bp; on the other hand, only 69.3% and 87.4% of the ONT reads are

shorter than 20,000 bp and 50,000 bp. This simple comparison clearly demonstrates

that NanoCaller is able to utilize the longer reads to improve SNP calling, and com-

paratively shorter PacBio reads might in part contribute to the less improvement of

NanoCaller. Thus, as the read length increases, we expect NanoCaller can have better

performance.

Different thresholds for heterozygous SNP sites for SNP feature generation

In order to generate haplotype structure features from long reads for a SNP candidate

site, we need to select potentially heterozygous sites. Ideally, heterozygous sites should

have approximately 0.5 alternative allele frequency, which is rarely the case due to

alignment and sequencing errors. Therefore, a SNP candidate site is determined to po-

tentially heterozygous if its alternative allele frequency is in a small range centered at

0.5: typically, this range is 0.4–0.6 or 0.3–0.7 depending upon the sequencing technol-

ogy and is called neighbor threshold. “Additional file 1: Table S19” shows how the

choice of this threshold affects SNP calling performance for ONT, PacBio CCS, and

CLR reads which have different characteristics of error rates and read lengths (which in

turn determines the number of candidate sites). We can observe that, generally, using a

narrower range around 0.5 allows higher precision, but recall decreases because not

enough heterozygous sites are chosen to give informative features. In particular, the

performance is very sensitive to increases in the upper limit of threshold and decreases

drastically when the threshold is increased. We determined that 0.4–0.6 threshold

works best for ONT reads, with 0.3–0.7 and 0.3–0.6 being the best thresholds for CCS

and CLR reads. Using a narrower threshold for ONT reads makes sense since longer

ONT reads give us plenty of heterozygous sites to choose from, compared to CLR or

CCS reads. It should be noted that this threshold is used for testing a sequencing data

only, and during training of NanoCaller SNP models, we simply use benchmark hetero-

zygous SNPs as highly likely heterozygous sites for feature generation.

We checked how the threshold for minimum number of neighboring likely heterozy-

gous SNP sites for NanoCaller affects the performance and show the result in “Add-

itional file 1: Table S20”. In NanoCaller, SNP candidates with less than a minimum

number of such likely heterozygous SNP sites will be considered as false negatives with-

out prediction. By default, the threshold for minimum number of likely heterozygous

SNP sites is 1. In “Additional file 1: Table S20,” different thresholds are checked on

Nanopore reads and Pacbio reads. On both data, as this threshold increases, precision

increases and recall decreases. The increasing precision suggests that more heterozy-

gous SNP candidates can benefit SNP prediction.

Using WhatsHap “distrust genotype” option for phasing

WhatsHap is able to call SNPs on ONT and PacBio reads, as shown in “Additional file

1: Table S26”. WhatsHap shows similar performance to NanoCaller, albeit much
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slower, while for ONT reads, WhatsHap shows poor performance with F1 scores

around 88–93%. In NanoCaller, WhatsHap is used for phasing SNPs and reads but not

for variant calling. Further, WhatsHap allows “distrust genotype” setting for phasing

which allows WhatsHap to change genotypes of any SNP, from hetero- to homozygous

and vice versa, in an optimal likelihood solution based upon the haplotypes created. In

NanoCaller, this setting is disabled by default.

If users of NanoCaller want to use “distrust genotype” setting in WhatsHap, a negli-

gible effect on SNP calling performance was found for ONT reads, while an increase in

F1 score of 0.15–0.5% and 0.17–1.4% was found for PacBio CCS and CLR reads, as

shown in “Additional file 1: Table S23”. Nevertheless, one should note that using this

setting will significantly increase the runtime.

Discussion
In this study, we present NanoCaller, a deep learning framework to detect SNPs and

small indels from long-read sequencing data. Depending on library preparation and se-

quencing techniques, long-read data usually have much higher error rates than short-

read sequencing data, which poses a significant challenge to variant calling and thus

stimulates the development of error-tolerant deep learning methods for accurate vari-

ant calling. However, the benefits of much longer read length of long-read sequencing

are not fully exploited for variant calling in previous studies. The NanoCaller tool that

we present here solely integrates haplotype structure in deep convolutional neural net-

work for the detection of SNPs from long-read sequencing data and uses multiple se-

quence alignment to re-align indel candidate sites to generate indel calling. Our

evaluations under the cross-genome testing, cross-reference genome testing, and cross-

platform testing demonstrate that NanoCaller performs competitively against other

long-read variant callers and outperforms other methods in difficult-to-map genomic

regions.

NanoCaller has several advantages to call variants from long-read sequencing data.

(1) NanoCaller uses pileup of candidate SNPs from haplotyped set of long-range het-

erozygous SNPs (with hundreds or thousands bp away rather than adjacent neighbor-

hood local region of a candidate SNP of interest), each of which is shared by a long

read with the candidate site. Given a long read with > 20 kb, there are on averagely > 20

heterozygous sites, and evidence of SNPs from the same long reads can thus improve

SNP calling by deep learning. Evaluated on several human genomes with benchmarking

variant sets, NanoCaller demonstrates competitive performance against existing variant

calling methods on long reads and with phased SNPs. (2) NanoCaller is able to make

accurate predictions cross sequencing platforms and cross-reference genomes. In this

study, we have tested NanoCaller models trained on Nanopore data for performance

evaluation. We also tested NanoCaller models calling variants on PacBio long-read data

and achieved similar prediction trained on GRCh38 for GRCh37 and achieved the same

level SNP calling performance. (3) With the advantage of long-read data on repetitive

regions, NanoCaller is able to detect SNPs/indels outside high-confidence regions

which cannot be reliably detected by short-read sequencing techniques, and thus Nano-

Caller provides more candidate SNPs/indels sites for investigating causal variants on

undiagnosed diseases where no disease-causal candidate variants were found by short-

read sequencing. (4) NanoCaller uses rescaled statistics to generate pileup for a
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candidate site, and rescaled statistics is independent on the coverage of a test genome,

and thus, NanoCaller is able to handle a test data set with different coverage from the

training data set, which might be a challenge for other long-read callers. That is, Nano-

Caller trained on a whole-genome data has less biases on other data sets with much

lower or higher coverage, such as target-sequencing data with thousand folds of cover-

age. (5) With very accurate HiFi reads (< 1% error rate) generated by PacBio, NanoCal-

ler is able to yield competitive variant calling performance. (6) NanoCaller has flexible

design to call multiallelic variants, which Clairvoyante and Longshot cannot handle. In

NanoCaller, the probability of each nucleotide type is assessed separately, and it is

allowed that the probability of 2 or 3 or 4 nucleotide type is larger than 0.5 or even

close to 1.0, and thus suggests strong evidence for a specific position with multiple

bases in a test genome. Therefore, NanoCaller can easily generate multiallelic variant

calls, where all alternative alleles differ from the reference allele.

However, there are several limitations of NanoCaller that we wish to discuss here.

One is that NanoCaller relies on the accurate alignment and pileup of long-read se-

quencing data, and incorrect alignments in low-complexity regions might still occur,

complicating the variant calling process. For instance, most variants missed by Nano-

Caller in MHC region cannot be observed through IGV either due to alignment errors.

Both continuingly improved sequencing techniques and improved alignment tools can

benefit NanoCaller with better performance. But if the data is targeted at very compli-

cated regions or aligned with very poor mapping quality, the performance of NanoCal-

ler would be affected. Another limitation of NanoCaller is that the indel detection from

mononucleotide repeats might not be accurate, especially on Nanopore long-read data

which has difficulty in the basecalling of homopolymers [32, 33]. In Nanopore long-

read basecalling process, it is challenging to determine how many repeated nucleotides

for a long consecutive array of similar Nanopore signals, potentially resulting in

false indel calls at these regions, which can be post-processed from the call set.

Please also note that although NanoCaller might be able to call somatic multiallelic

variants in tumor samples with clonal heterogeneity and variable tumor content,

NanoCaller is currently designed to call diploid alleles. However, the frequency of

some somatic variants in tumor samples might be too low to be distinguished from

noises in long reads. Therefore, the variant calling on tumor samples needs a care-

ful design and parameter tuning if NanoCaller is used. Additionally, better per-

formance could be achieved for a specific training model when more

benchmarking tumor data sets are available.

Conclusions
In summary, we propose a deep learning tool solely using long-range haplotype infor-

mation for SNP calling and local multiple sequence alignments for accurate indel call-

ing. Our evaluation on several human genomes suggests that NanoCaller performs

competitively against other long-read variant callers and can generate SNPs/indels calls

in complex genomic regions. NanoCaller enables the detection of genetic variants from

genomic regions that are previously inaccessible to genome sequencing and may facili-

tate the use of long-read sequencing in finding disease variants in human genetic

studies.
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Methods
Datasets

Long-read data

Long-read data sets for eight human genomes are used for the evaluation of NanoCal-

ler: HG001, the Ashkenazim trio (consisting of son HG002, father HG003 and mother

HG004), the Chinese trio (consisting of son HG005, father HG006 and mother

HG007), and HX1. For HG001-7, Oxford Nanopore Technology (ONT) FASTQ files

basecalled with Guppy 4.2.2 were downloaded from Human Pangenome Reference

Consortium Database. HX1 genome was sequenced by us using PacBio [10] and Nano-

pore sequencing [34], and Nanopore reads for HX1 were re-basecalled using Guppy

4.5.2 by us. All ONT datasets were aligned to GRCh38 using minimap2 [35]. PacBio

CCS alignment files for HG002 and HG003, and FASTQ files for HG001 and HG004

were downloaded from the GIAB database [31, 36]; FASTQ files were aligned to

GRCh38 reference genome using minimap2. These CCS datasets were prepared with

15 k and 20 kb library size selection, and therefore have longer reads than CCS reads

used for precisionFDA challenge. PacBio CLR alignment reads for HG001-4 were

downloaded from the GIAB database [31, 36]. “Additional file 2: Table S29” shows the

statistics of mapped reads in the eight genomes where the coverage of ONT data ranges

from 34 to 84 and the coverage of PacBio data is between 27 and 58.

Benchmark variant calls

The benchmark set of SNPs and indels for HG001 (v3.3.2), the Ashkenazim trio

HG002-4 (v4.2.1 and v3.3.2), and the Chinese trio HG005-7 (v3.3.2) are download from

the Genome in a Bottle (GIAB) Consortium together with high-confidence regions for

each genome. There are 3,002,314; 3,459,843; 3,430,611; 3,454,689; 2,945,666;

3,030,507; 3,048,404 and 3,489,068 SNPs for HG001, HG002, HG003, HG004, HG005,

HG006, and HG007 respectively, and 517,177; 5 87,987; 569,180; 576,301; 432,747;

435,520; 437,866 and 697,736 indels for them, as shown in Table 5. Benchmark variant

Table 5 Statistics of benchmark variants in chromosomes 1–22 of each genome aligned to the
GRCh38 reference genome. Four genomes with GIAB benchmark variant calls, with v3.3.2 for
HG001 and HG005-7, and v4.2.1 for HG002-4, together with the statistics within the high-
confidence regions. For HX1, high-confidence regions are created by removing GIAB “all difficult-
to-map” regions from the GRCh38 reference genome

Whole genome High-confidence region Non-homo-polymer
region

Genome SNPs Indels SNPs Indels Total Length % of genome Indels

HG001 3,002,314 517,177 2,960,486 483,941 2,330,204,759 81.05 181,036

HG002 3,459,843 587,987 3,365,115 525,466 2,542,724,465 88.44 210,352

HG003 3,430,611 569,180 3,327,480 504,497 2,529,085,210 87.97 199,302

HG004 3,454,689 576,301 3,346,597 510,516 2,525,035,837 87.83 200,556

HG005 2,945,666 432,747 2,904,403 403,859 2,290,538,775 79.67 172,678

HG006 3,030,507 435,520 2,982,278 405,828 2,348,035,455 81.67 158,063

HG007 3,048,404 437,866 3,000,039 407,892 2,345,850,549 81.59 157,966

HX1 3,489,068 697,736 2,788,450 176,587 2,182,959,159 75.93 –
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calls for HX1 were generated by using GATK on Illumina ~300× reads sequenced by

us [10].

NanoCaller framework for variant calling

In the framework of NanoCaller for variant calling, candidate sites of SNPs and indels

are defined according to an input alignment and a reference sequence. NanoCaller has

two convolutional neural networks, one for SNP calling and another for indel predic-

tion, with each requiring a different type of input. Input features or pileup images gen-

erated for SNP candidate sites use only long-range haplotype information. Aligned

reads are phased with WhatsHap using SNP calls from NanoCaller, and then NanoCal-

ler uses phased reads to generate input features or pileup images for indel candidate

sites by carrying out local multiple sequence alignment around each site. Afterwards,

NanoCaller combines SNP and indel calls to give a final output. The details are de-

scribed below.

SNP calling in NanoCaller

There are four steps in NanoCaller to generate SNP calling result for an input genome:

candidate site selection, pileup image generation of haplotype SNPs, deep learning pre-

diction, and phasing of SNP calls.

Candidate site selection Candidate sites of SNPs are defined according to the depth

and alternative allele frequency for a specific genomic position. In NanoCaller, “SAM-

tools mpileup” [37] is used to generate aligned bases against each genomic position. In

NanoCaller, SNP candidate sites are determined using the criteria below. For a genomic

site b with reference base R, calculate the alternative allele frequency defined as:

alternative allele frequency ¼ maxfnumber of reads supporting base B at site bgB∈fA;G;T;Cg∖R
total read depth at site b

b is considered to be a SNP candidate site if the total read depth and the alternative

allele frequency are both greater than specified thresholds. We set the default alterna-

tive allele frequency threshold to be 15%.

Pileup image generation After selecting all SNP candidate sites above, we determine a

subset of SNP candidate sites as the set of highly likely heterozygous SNP sites (de-

noted by V). We extract long-range haplotype information from this subset of likely

heterozygous SNP sites to create input images for all SNP candidate sites to be used in

a convolutional neural network. This subset consists of SNP candidate sites with alter-

native allele frequencies in a specified range around 50%, and the default range is 40%

to 60% for heterozygous site filtering. This range can be specified by the user depend-

ing upon the sequencing technology and read lengths. In detail, the procedure of pileup

image generation is described below (as shown in Fig. 1). For a SNP candidate site b:

1. We select sites from the set V that share at least one read with b and are at most

50,000 bp away from b. For SNP calling on PacBio datasets, we set this limit at

20,000 bp.
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2. In each direction, upstream or downstream, of the site b, we choose 20 sites from

V. If there are less than 20 such sites, we just append the final image with zeros.

We denote the set of these potential heterozygous SNP sites nearby b (including b)

by Z. An example is shown in Fig. 1a. More details for how to choose these 40

nearby heterozygous sites from the set V can be found at “Additional file 1: Tables

S18-S22 and Fig S2-S3”.

3. The set of reads covering b is divided into four groups, RB = {reads that support

base B at b}, B∈ {A, G, T, C}. Reads that do not support any base at b are not

used.

4. For each read group in RB with supporting base B, we count the number (Ct
BD) of

supporting reads for site t ∈ Z with base D∈ {A, G, T, C}.

5. Let FtBD ¼ Ct
BD�gðDÞ, where g(D) is a function that returns − 1 if D is the

reference base at site t and 1 otherwise. An example is shown in Fig. 1c.

6. We obtain a 4 × 41 × 4 matrix M with entries ½FtBD�B,t,D (as shown Fig. 1d) where

the first dimension corresponds to nucleotide type B at site b, second dimension

corresponds to the number of sites t, and the third dimension corresponds to

nucleotide type D at site t. Our image has read groups as rows, various base

positions as columns, and has 4 channels, each recording frequencies of different

bases in the given read group at the given site.

7. We add another channel to our image which is a 4 × 41 matrix ½Qt
B�B,t where Qt

B

¼ 1 if B is the reference base at site b and 0 otherwise (as shown in Fig. 1d). In this

channel, we have a row of ones for reference base at b and rows of zeroes for other

bases.

8. We add another row to the image which encodes reference bases of site in Z, and

the final image is illustrated in Fig. 1e.

Deep learning prediction In NanoCaller, we present a convolutional neural network

[38] for SNP prediction, as shown in “Additional file 1: Fig S6”. The neural network has

three convolutional layers: the first layer uses kernels of three different dimensions and

combines the convolved features into a single output: one capture local information

from a row, another from a column and the other from a 2D local region; the second

and third layers use kernels of size 2 × 3. The output from third convolutional layer is

flattened and used as input for a fully connected network with dropout (using 0.5 drop

date). The first fully connected layer is followed by two different neural networks of

fully connected layers to calculate two types of probabilities. In the first network, we

calculate the probability of each nucleotide type B to indicate that B is present at the

genomic candidate site; thus for each nucleotide type B, we have a binary label predic-

tion. The second network combines logit output of the first network with the output of

first fully connected hidden layer to estimate probability for zygosity (homozygous or

heterozygous) at the candidate site. The second network is used only in the training to

propagate errors backwards for incorrect zygosity predictions. During testing, we infer

zygosity from the output of the first network only.

In order to call SNPs for a test genome, NanoCaller calculates probabilities of pres-

ence of each nucleotide type at the candidate site. If a candidate site has at least two

nucleotide types with probabilities exceeding 0.5, it is considered to be heterozygous;
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otherwise, it is regarded as homozygous. For heterozygous sites, two nucleotide types

with highest probabilities are chosen with a heterozygous variant call. For homozygous

sites, only the nucleotide type with the highest probability is chosen: if that nucleotide

type is not the reference allele, a homozygous variant call is made; otherwise, it is

homozygous-reference. Each variant call is also assigned with a quality score which is

calculated as −100log10Probability (1 − P(B)), where P(B) is the probability of the alter-

native allele B (in case of multiallelic prediction we choose B to be the alternative allele

with smaller probability) and recorded as a float in QUAL field of the VCF file to indi-

cate the chance of false positive prediction: the larger the score is, the less likely that

the prediction is wrong.

Phasing of SNP calls After SNP calling, NanoCaller phases predicted SNP calls using

WhatsHap [39]. By default, NanoCaller disables “distrust-genotypes” and “include-

homozygous” settings of WhatsHap for phasing SNP calls, which would otherwise

allow WhatsHap to switch variants from hetero- to homozygous and vice versa in an

optimal phasing solution. Enabling these WhatsHap settings has minimal impact on

NanoCaller’s SNP calling performance (as shown in the “Additional file 1: Tables S2,

S3 and S4”), but increases the time required for phasing by 50–80%, depending upon

which NanoCaller mode is being run. NanoCaller outputs both unphased VCF file gen-

erated by NanoCaller and phased VCF file generated by WhatsHap.

Indel calling in NanoCaller

Indel calling in NanoCaller takes a genome with phased reads as input and uses several

steps below to generate indel predictions: candidate site selection, pileup image gener-

ation, deep learning prediction, and then indel sequence determination. In NanoCaller,

long reads are phased with SNPs calls that are predicted by NanoCaller and phased by

WhatsHap [39] (as described above).

Candidate site selection Indel candidate sites are determined using the criteria below.

For a genomic site b,

1. For i ∈ {0, 1}, calculate:

a. depthi = total number of reads in phase i at site b

b. Insertion frequency ¼ minfnumber o f reads in phase i with insertions in a window o f size N at site b
depthi

g
i∈f0;1g

c. Deletion frequency ¼ minfnumber o f reads in phase i with deletions in a window o f size N at site b
depthi

g
i∈f0;1g

2. b is considered to be an indel candidate site if:

a. Both depth0 and depth1are greater than a specified depth threshold

b. Either insertion frequency is greater than a specified insertion frequency threshold

or the deletion frequency is greater than a specified deletion frequency threshold.
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Thresholds for alternative allele frequency, insertion frequency, deletion frequency,

and read depths can be specified by the user depending on the coverage and basecalling

error rate of the genome sequencing data. We slide two windows along the reference

to calculate what fraction of reads in that window contain an insertion or deletion. The

first window uses a larger window size (default is 10) to calculate how many reads con-

tain an insertion or deletion longer than or equal to 3 bp, whereas the second window

uses a smaller window size (default is 4) to calculate how many reads contain an inser-

tion or deletion shorter than or equal to 10 bp. The reason for allowing only indels lon-

ger than or equal to 3 bp in the large window is to circumvent sequencing errors that

give rise to several small 2 bp indels from producing falsely high indel frequency.

Pileup image generation Input image of indel candidate site is generated using the

procedure below as shown in Fig. 2. For an indel candidate site b:

1. Denote by Sall, Sphase1, and Sphase2 the set of all reads, reads in a phase, and reads

in the other phase at site b, respectively.

2. Let seqref be the reference sequence of length 160 bp starting at site b

3. For each set S∈ {Sall, Sphase1, Sphase2}, do the following:

a) For each read r ∈ S, let seqr be the 160-bp-long subsequence of the read starting

at the site b (for PacBio datasets, we use reference sequence and alignment sequences

of length 260 bp).

b) Use MUSCLE to carry out multiple sequence alignment of the following set of

sequences {seqref} ∪ {seqr}r ∈ S as shown in Fig. 2a.

c) Let {seq′ref} ∪ {seq′r}r ∈ S be the realigned sequences, where seq′ref denotes the

realigned reference sequence, and seq′r denotes realignment of sequence seqr. We trun-

cate all sequences at the length 128 from the end.

d) For B ∈ {A,G, T,C, −} and 1 ≤ p ≤ 128, calculate

CB;p ¼
X

r∈S
g seq0r0B; pð Þ

MB;p ¼ CB;p

#reads in set S

where gðseq0
r;B; p) returns 1 if the base at index p of seq

0
r is B and 0 otherwise. Figure

2c shows raw counts CB, p for each symbol.

e) Let M be the 5 × 128 matrix with entries MB, p as shown in Fig. 2d).

f) Construct a 5 × 128 matrix Q, with entries ½Qp
B�B,p , where Qp

B ¼ 1 if seq
0
ref has

symbol B at index p and 0 otherwise as shown in Fig. 2f). Both matrices M and Q have

first dimension corresponding to the symbols {A,G, T,C, −}, and second dimension cor-

responding to pileup columns of realigned sequences.

g) Construct a 5 × 128 × 2 matrix MatS whose first channel is the matrix M −Q as

shown in Fig. 2e and the second channel is the matrix Q.

4. Concatenate the three matrices MatSall ;MatSphase1 , and MatSphase2 together to get a

15 × 128 × 2 matrix as input to convolutional neural network.

Ahsan et al. Genome Biology          (2021) 22:261 Page 28 of 33



Deep learning prediction In NanoCaller, we present another convolutional neural net-

work [38] for indel calling, as shown in Fig. 2. This neural network has a similar struc-

ture as SNP calling, and the difference is the fully connected network: for indel model,

the first fully connected layer is followed by two fully connected hidden layers to pro-

duce probability estimates for each of the four zygosity cases at the candidate site:

homozygous-reference, homozygous-alternative, heterozygous-reference, and

heterozygous-alternative (i.e., heterozygous with no reference allele).

Indel sequence determination After that, NanoCaller calculates the probabilities for

four cases of zygosities: homozygous-reference, homozygous-alternative, heterozygous-

reference, and heterozygous-alternative. No variant call is made if the homozygous-

reference label has the highest probability. If homozygous-alternative label has the

highest probability, we determine consensus sequence from the multiple sequence

alignment of Sall, and align it against reference sequence at the candidate site using Bio-

Python’s pairwise2 global alignment algorithm with affine gap penalty. Alternative allele

is inferred from the alignmnet gap in pairwise alignment of the two sequences. In case

either of the heterozygous predictions has the highest probability, we use Sphase1 and

Sphase2 to determine consensus sequences for each phase separately and align them

against reference sequence. Indel calls from both phases are combined to make a final

phased indel call at the candidate site. Please note that NanoCaller does not filter any

indel predictions based on predicted indel length, but 50 bp can be the threshold of

predicted indel definition since the majority of predicted indels are < 50 bp.

Training and testing

For SNP calling, we have trained five convolutional neural network models on two dif-

ferent genomes that users can choose from the following: ONT-HG001 (trained on

HG001 ONT reads basecalled with Guppy 4.2.2), ONT-HG002 (trained on HG002

ONT reads basecalled with Guppy 4.2.2), CCS-HG001 (trained on HG001 CCS reads

with 11-20 kb library size), CCS-HG002 (trained on HG002 CCS reads with 15-20 kb li-

brary size), and CLR-HG002 (trained on HG002 PacBio CLR dataset). The first four

datasets have both SNP and indel models, whereas CLR-HG002 only has SNP model.

All training sequencing datasets were aligned to GRCh38, with only chromosomes 1–

22 used for training. We used v3.3.2 GIAB’s benchmark variants for training all HG001

models and v4.2.1 benchmark variants for all HG002 models. Please refer to “Add-

itional files 1 & 2” for the performance of more models, such as NanoCaller models

trained on ONT reads of HG001 and HG002 basecalled by older Guppy versions,

models trained using v3.3.2 benchmark variants for HG002, and models trained on

chromosomes 1–21 of Nanopore R10.3 flowcell reads and Bonito basecalled dataset of

HG002.

In NanoCaller, the SNP and indel models have 743,790 parameters in total, a sig-

nificantly lower number than Clair [24] (2,377,818) and Clairvoyante [23]

(1,631,496). All parameters in NanoCaller are initiated by Xavier’s method [40].

Each model was trained for 100 epochs, using a learning rate of 1e−3 and 1e−4 for

SNP and indel models respectively. We also applied L2-norm regularization, with
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coefficients 1e−3 and 1e−5 for SNP and indel models respectively, to prevent over-

fitting of the model.

To use NanoCaller on a test genome, it is reasonable that the test genome has

different coverage as the genome used for training NanoCaller. To reduce the bias

caused by different coverages, after generating pileup images for SNP calling,

NanoCaller by default scales the raw counts of bases in pileup images to adjust for

the difference between coverages of the testing genome and the genome used for

training of the model selected by user, i.e., we replace the counts CB, p shown in

Fig. 1 (b) by

CB;p � coverage of training genome
coverage of testing genome

Performance measurement

The performance of SNP/indel calling by a variant caller is evaluated against the bench-

mark variant tests. Several measurements of performance evaluation are used, such as

precision (p), recall (r) and F1 score as defined below.

p ¼ TP
TP þ FP

r ¼ TP
TP þ FN

F1 ¼ 2�p�r
pþ r

where TP is the number of benchmark variants correctly predicted by a variant caller,

and FP is the number of miscalled variants which are not in benchmark variant sets,

FN is the number of benchmark variants which cannot be called by a variant caller. F1

is the weighted average of p and r, a harmonic measurement of precision and recall.

The range of the three measurements is [0, 1]: the larger, the better.

Sanger validation of selected sites on HG002

To further demonstrate the performance of NanoCaller and other variant callers, we

select 17 genomic regions whose SNPs/indels are not in the GIAB ground truth calls

(version 3.3.2), and conduct Sanger sequencing for them on HG002. Firstly, we design

PCR primers within ~ 400 bp of a select site of interest and then use a high-fidelity

PCR enzyme (PrimeSTAR GXL DNA Polymerase, TaKaRa) to amplify each of the tar-

get selected repeat regions. The PCR products are purified using AMPure XP beads

and sequenced by Sanger sequencing. We then decipher two sequences from Sanger re-

sults for variant analysis. The data and deciphered sequences are in the “Additional file

3” zip file. Please note that more than 17 variant sites are detected in the Sanger results,

because each PCR region can contain 1+ variants.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s13059-021-02472-2.

Additional file 1. : Fig S1-S7 and Tables S1-S26 for various detailed performance evaluation on older Pacbio and
Nanopore (basecalled by Guppy 2.3) on GIAB benchmark variants v3.3.2, the definitions of difficult-to-map regions,
evaluation with different quality score thresholds, runtime comparisons, discussion of generation of heterozygous
sites, long-read statistics, and commands to reproduce performance.
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Additional file 3. : The Sanger sequencing results for 17 genomic regions.
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