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Abstract

Finding a causal gene is a fundamental problem in genomic medicine. We present a
causal inference framework, CoCoA-diff, that prioritizes disease genes by adjusting
confounders without prior knowledge of control variables in single-cell RNA-seq
data. We demonstrate that our method substantially improves statistical power in
simulations and real-world data analysis of 70k brain cells collected for dissecting
Alzheimer’s disease. We identify 215 differentially regulated causal genes in various
cell types, including highly relevant genes with a proper cell type context. Genes
found in different types enrich distinctive pathways, implicating the importance of
cell types in understanding multifaceted disease mechanisms.

Keywords: Causal inference, Single-cell RNA-seq, Counterfactual inference,
Alzheimer’s disease

Backgrounds
Single-cell RNA-seq is a scalable approach to measure thousands of gene expression

values in hundreds of thousands of cells, sampled from a hundred individuals. As tech-

nology becomes mature and economical, single-cell sequencing methods have been

used to solve a variety of biological and medical problems, and many large-scale data

sets are becoming available to research communities. Unlike previous bulk RNA-seq,

single-cell RNA-seq analysis quantifies gene expression changes from a large number

of cells, and researchers dare to ask unprecedented questions, which had not been feas-

ible in bulk data analysis. Only a subset of such examples includes cell-level develop-

mental trajectory analysis [1], spatial transcriptomics [2], regulatory network

reconstruction with perturbation [3], and variance quantitative trait analysis [4, 5].

Interestingly, some research questions hitherto remain fundamentally attractive since

gene expression microarrays [6–8] and bulk RNA-seq [9–13] era. Differential expres-

sion analysis is such a classical problem. For case-control studies, knowing differen-

tially expressed genes (DEGs) is often of research and clinical interest. Our primary

interest also centres on developing a statistical method for differential expression ana-

lysis between different groups of individuals, not between cells. The underlying statis-

tical problem is straightforward. However, finding DEGs from case-control single-cell
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data poses several challenges in practice. This work seeks to identify and propose an al-

gorithmic approach that resolves two of those challenges from a causal inference

perspective.

Firstly, cells are not independently and identically distributed. Instead, cells belong to

a particular individual, hierarchically organized, and naturally create “batch” effects

(Fig. 1a). Cells belonging to the same individual are necessarily affected by the same

biological and technical factors. The number of individuals essentially determines the

statistical power of DEG discovery in single-cell data. Along the same line, a benchmark

comparison demonstrates that existing bulk RNA-seq methods on pseudo-bulk data

(using the individual-level aggregate of cells of a particular cell type) still perform de-

cently while correctly controlling false discovery rates [14, 15]. Likewise, for genetic

analysis (expression quantitative trait loci), the statistical power of eQTL discovery is

primarily determined by the degree of genetic variation across individuals rather than

the number of cells per individual [16]. Nonetheless, differential expression analysis of

single-cell RNA-seq is a state-of-the-art and unbiased approach to characterize cell-

type-specific transcriptomic changes.

Another challenge stems from the study design of case-control data analysis. In con-

trast to randomized control trials, most studies are observational, and we have incom-

plete knowledge of a disease assignment mechanism. Investigators usually cannot make

an intervention for practical and ethical reasons. Considering that many complex dis-

ease phenotypes occur at the late onset of a lifetime, finding a suitable set of covariates

for causal inference is often infeasible as well. Matrix factorization or latent variable

modelling can be used to characterize technical covariates or batch effects. However, it

is difficult to identify which principal axes of variation capture confounding effects, in-

dependently from unknown disease-causing mechanisms. A latent variable model of a

single-cell count matrix is frequently used for clustering and cell type annotations, and

the resulting latent factors are more suitable for the characterization of intercellular

heterogeneity than inter-individual variability.

We present a novel application of a causal inference method as a straightforward ap-

proach to improve the statistical power in case-control single-cell analysis while adjust-

ing for unwanted confounding effects existing across heterogeneous individuals. We

establish our causal claims in differential expression analysis based on Rubin’s potential

outcome framework [17, 18]. Our method is inspired by the seminary work of outcome

regression analysis by a matching algorithm [19, 20]. We highlight that our causal infer-

ence approach is beneficial in the analysis of disease case-control studies, especially

when meta-data for covariates are scarcely available, and covariates may influence both

disease status and gene expressions simultaneously. With respect to the underlying

causal structural model (disease to gene expression), we seek to identify genes that are

differentially expressed as a result of disease.

Results
Overview of our causal inference approach

Definition of causal genes

Here, we ask whether a gene is causally affecting or affected by a disease variable but

not affected by other technical and biological covariates, which may confound the
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Fig. 1 Counterfactual confounder adjustment for single-cell differential gene expression analysis (CoCoA-
diff). a Hierarchical (nested) structure of single-cell gene expression data. We have tens of individuals for
one case-control study. Each individual (i) contains a heterogeneous mixture of multiple cell types. Single-
cell technology measure a thousand genes on each cell (j). b This work seeks to address a specific causal
inference problem of genomics research. We seek to prioritize genes causally modulated by a disease
status, not the genes affecting the predisposition and risk of disease development. c Overview of CoCoA-
diff approach (see Methods for details). Y: gene expression matrix. Y(0): counterfactual data with disease W =
0, Y(1): counterfactual data with disease W = 1. β: Poisson regression coefficient. δ: residual effect. ρ:
sequencing depth. μ: shared confounding effect. d Data generation scheme for simulation studies. We
simulate 50 causal and 9,950 non-causal genes with or without disease-causing mechanisms (an edge
between W and λ). Wi: disease label assignment for an individual i. Xi: confounding effects for an individual
i. λgi: unobserved gene expression for a gene g of an individual i as a function of X and W. Ygj: realization of
cell-level gene expression of a gene g with a cell j-specific sequencing depth ρj (stochastically sampled
from Gamma distribution). Here, we simulated five different X variables. e CoCoA-diff accurately estimates
shared confounder variables (μg), showing a significantly higher level of correlation with true confounding
effects on non-causal genes than a pseudo-bulk analysis. f CoCoA-diff accurately estimates disease-causing
effects (δg), showing high correlation with true differential effects on causal genes. g Illustration of CoCoA-
diff approach on the APOE in microglia example. HC, health control. AD, Alzheimer’s disease. μ, shared
confounding effect; δ, residual differential effect. For a clear visualization, we omitted samples (individuals)
with zero read count observed on APOE gene in the microglial cell type

Park and Kellis Genome Biology          (2021) 22:228 Page 3 of 23



disease status and gene expressions. In this work, a causal gene is defined as a gene af-

fecting or being affected by a disease status independent of other confounding variables.

Although many differentially expressed genes can be considered a result of disease sta-

tus for most late-onset disorders, we also acknowledge that aberrant changes on a

handful of genes can initiate disease phenotypes. To distinguish causal vs. anti-causal

mechanisms, we would need additional perturbation experiments. Alternatively, driver

genes can be characterized by mediation analysis using genetic variants as an instru-

mental variable (Mendelian randomization) [21].

Moreover, concerning cell types and states, we need to assume that cell type fractions

are not a mediating factor between the disease and gene expression variables. We found

a negligible correlation between cell-type proportions and observed disease status in

the study of Alzheimer’s disease [22]. Under this causal assumption, the stratification

procedure for cell types provides a legitimate strategy to control cell-type biases that

may impact on identifying DEGs. We think there is almost no chance of a “mediation

fallacy [23–25].”

Differential analysis on pseudo-bulk expression profiles

We are interested in comparing pseudo-bulk gene expression profiles stratified within

each cell type and individual between the case and control samples. Letting Ygj be a

gene expression of a gene g on a cell j and Si be a set of cell indexes for an individual

i ∈ [n], we can create a pseudo-bulk expression by aggregating all the expression vec-

tors. We will use λgi to generally refer to a pseudo-bulk estimate of a gene g on an indi-

vidual i. For instance, we could take an average, λgi ≈
X
j

jIf j∈SigY gj= j Si j, or take the

total count, λgi ≈
X
j

jI j∈SiY gj . Given the estimate of the λ values across n individuals,

{λgi : i ∈ [n]}, we can construct a hypothesis test that seeks to reject a null hypothesis

that the distributions of pseudo-bulk profiles are the same among the case and control

individuals (Wilcoxon’s test).

Potential outcome framework for single-cell differential expression analysis

In observational data, where the label assignment is not controlled, data matrices of

raw {Ygj} and pseudo-bulk count {λgi} can become confounded with the disease label as-

signment by unknown biological and technical covariates (Fig. 1b). Such confounding

factors obfuscate actual disease-specific effects with other effects of unknown covariates

and may lead to false discoveries and dampen the statistical power of differential ex-

pression analysis. Rubin’s potential outcome framework [17, 18] seeks to separate the

actual disease (or treatment) effects from other effects by asking the following counter-

factual questions:

� What would be a gene expression if an individual had not been exposed to a

disease?

� What would be a gene expression if an individual had been exposed a disease?

In our pseudo-bulk analysis context, we are interested in estimating the following

quantities:
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� λð0Þgi : What would be the pseudo-bulk expression of a gene g if an individual i had

not been exposed to a disease?

� λð1Þgi : What would be the pseudo-bulk expression of a gene g if an individual i had

been exposed to a disease?

In a binary case-control study, we observe one of the values for each individual while

the other side is left unobserved (denoted by the “?” mark). Letting Wi ∈ {0, 1} be a dis-

ease label assignment variable for an individual i, only a part of potential gene expres-

sions are made directly observable from data:

λ 0ð Þ
gi ¼ λgi; Wi ¼ 0

?; Wi ¼ 1

�
; λ 1ð Þ

gi ¼ λgi; Wi ¼ 1
?; Wi ¼ 0

�

At the cell level (∀j ∈ Si), we have the same structure:

Y 0ð Þ
gj ¼ Y gj; Wi ¼ 0; j∈Si

?; otherwise

�
; Y 1ð Þ

gi ¼ Y gi; Wi ¼ 1; j∈Si
?; otherwise

�

If both sides of the potential expression, fY ð0Þ
gj ;Y

ð1Þ
gj g, were known, we would be able

to estimate the disease effect on a gene g for each individual by comparing pseudo-bulk

profiles (λð0Þgi vs. λð1Þgi ) constructed from the potential single-cell gene expressions. The

ultimate goal of causal inference in Rubin’s potential outcome framework is to impute

the missing part of potential outcomes since a comparison between the case and con-

trol becomes straightforward on the imputed data.

The definition of a confounding variable and causal assumptions

We define that a variable can confound a disease label (W) and gene expressions (λ and

Y) if (1) it is associated with the disease and gene expression variables and (2) it is still

associated with the expression even after conditioning on the disease label [26]. Unless

we adjust/stratify a sufficient set of confounding variables, gene expression changes ob-

served between the case and control samples are not necessarily the causal effect of dis-

ease mechanisms.

It is crucial to state casual assumptions to proceed with our causal inference:

� Stable individual disease effect: We assume that the potential expressions of an

individual i, namely λð0Þgi and λð1Þgi , are not affected by the expressions of other

individuals {i ′ ∈ [n] : i ′ ≠ i}.

� Conditional independence of the potential expression and disease exposure

(conditional ignorability [17, 18]): For a non-causal gene, by definition, gene expres-

sions are independent of disease status. Therefore, we do not need an assumption

on this matter. However, for a causal gene, we assume that potential (counterfac-

tual) gene expressions are independent of a disease label conditioning on a sufficient

set of confounding variables. In other words, genes differentially regulated for a dis-

eased individual would not have been aberrantly expressed if this individual had not

developed the disease.

� Overlap of confounding effects between the case and control: Within a stratum of

individuals, homogeneous with respect to confounding variables, we have both the
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case and control subjects with non-zero probability. In the single-cell analysis, we

assume disease and non-disease cells simultaneously exist in a homogeneous group

of cells stratified by confounding factors.

CoCoA-diff for single-cell differential expression analysis

The purpose of our counterfactual confounder adjustment for differential single-cell

gene expression analysis (CoCoA-diff) (Fig. 1c) is to impute the missing part of poten-

tial outcomes of single-cell profiles (step 1), propagate the imputed results to the

pseudo-bulk estimation, and decompose the total pseudo-bulk profiles into the con-

founding (step 2) and differential effects (step 3). Using a single-cell gene expression

matrix, fY gj : g∈genes; j∈cellsg, we want to estimate two types of pseudo-bulk data: (1)

the estimated confounders, fμgi : g∈genes; i∈individualsg, and (2) the residual differen-

tial effects, fδgi : g∈genes; i∈individualsg . In other words, we want to estimate the de-

composition of pseudo-bulk data, such as λgi = μgiδgi. Briefly, the algorithm proceeds as

follows: (1) we seek to estimate (or impute) counterfactual measurement of single cells’

expression by matching cells in a particular condition with neighbouring cells in the

opposite conditions. The distance between cells was calculated on the top principal

component axes. (2) Having paired sets of observed and counterfactual single-cell data,

we estimate the mean expression of genes shared across two opposite conditions in

Bayesian posterior inference. We treat them as putative confounding factors. (3) While

holding the estimated confounding effects fixed, we measure the conditional (or re-

sidual) mean effect on the observed cells. We refer the readers to Materials and

Methods for technical details.

To demonstrate how CoCoA-diff actually works, we simulated a single-cell data

matrix consisting of 10,000 genes and 40 individuals (Fig. 1d). Each individual contains

50 cells on average; 50 of the 10,000 genes are causally affected by disease labels (W→

λ) and confounding factors (X→ λ). The other genes are only affected by confounding

factors (X→ λ); we introduced five confounding variables fXik : i∈individuals; k∈½5�g ,
and a linear combination of these X variables introduces biases on Wi and λgi. Here, we

set the variance of λ explained by confounding variables X to 0.5 and the variance of

disease label W explained by the same confounding variables to 0.5, but we varied the

true disease variability between 0.1 to 0.3 on 50 causal genes (W→ λ; the x-axes of Fig.

1e, f). As expected, on non-causal genes (Fig. 1e), we found a strong correlation be-

tween the estimated confounding effects (μgi) and true confounding effects (the linear

combination of Xik variables), which is far greater than the correlation with the esti-

mated differential effects (δgi). We also observed that the unconfounded pseudo-bulk

data (removing the effects of X variables) are correlated with the estimated differential

effects (δgi), consistently not affected by the change of disease variability (Fig. 1f).

As an example, we demonstrate the effectiveness of our approach in the case of

APOE gene measured in microglia samples (Fig. 1 g). For better visualization, we re-

moved an individual with only a single read was observed on the APOE gene. In

pseudo-bulk data analysis with 39 individuals, it appears that the total expression values

are only mildly upregulated in disease subjects (Wilcoxon p = 0.23) even though APOE

over-expression is one of the most frequently observed hallmark of Alzheimer’s disease

(AD). We also found that the shared confounding factors across the case and control
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Fig. 2 (See legend on next page.)
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exhibit almost no apparent correlation with the disease label (p = 0.46). After adjusting

the confounders on the data, we recover a significant correlation of APOE gene

expressions with AD status (p = 5.2 ×10−7).

Simulation experiments

The design of simulation experiments

We evaluated the performance of our approach in differential expression analysis using

a simulated single-cell data matrix (Y) of 10,000 genes with 40 individuals with 50

causal and 9,950 non-causal genes (Fig. 2a). We introduced two types of total five co-

variates on the individual-level expressions λgi, explicitly designating confounding vari-

ables X and non-confounding batch effect B. By definition, confounding factors Xik

affect the label assignment Wi and the individual-level mean values λgi. For a causal

gene g, λgi values are determined by the disease label Wi, the confounders Xik, and the

batch effect variables Bil; for a non-causal gene g, there is no contribution from the

disease variable. In each simulation experiment, we specify the following parameters:

� σ2X→W : the variance of W explained by the covariate X.

� σ2W→Y : the variance of logλ explained by the disease assignment W.

(See figure on previous page.)
Fig. 2 Simulation experiments. Extensive simulation experiments confirm that CoCoA-diff effectively adjusts
existing confounding effects and improves statistical power of differential expression analysis. a Data
generation scheme for simulation experiments. We simulate 50 causal and 9950 non-causal genes with or
without disease-causing mechanisms (an edge between W and λ). Wi: disease label assignment for an
individual i. Xi: confounding effects for an individual i. λgi: unobserved gene expression for a gene g of an
individual i as a function of X and W. Ygj: realization of cell-level gene expression of a gene g with a cell j-
specific sequencing depth ρj (stochastically sampled from Gamma distribution). Here, we simulated total
five covariates consisting of confounding (X) and batch effect variables (B). b Simulation results when all the
five covariates are confounding disease label assignment and gene expression values, accounting for 50%
of mean expression variation (σ2X ;B→Y ). Different subpanels correspond to different configurations of the

number of individuals and cells per individual. Y-axis (AUPRC): area under precision recall curve (numerically
integrated by DescTool [28] implemented in R); x-axis: the proportion of variation contributed by the
disease label (σ2W→Y ). The following methods were considered: CoCoA: Wilcoxon’s ranksum test using
individual-specific confounder-adjusted gene expression values δgi (the step 3 of Fig. 1c); Total: pseudo-bulk
expression aggregated within each individual; Bayesian: Bayesian estimate of pseudo-bulk expression
averaged over cells within each individual; Mean: pseudo-bulk expression averaged over cells within each
individual; MAST: Model-based Analysis of Single-cell Transcriptomics [29] implemented in R (cell-level
differential expression analysis); Confoudner: the estimated confounding effect μgi (the step 2 of Fig. 1c). c
Total discovery rates of the differential expression methods when there were no disease effect. The fraction
of positive discovery when multiple hypothesis-adjusted q-values were empirically calibrated by qvalue [30,
31] package controlled at 1% (y-axis). d Empirical false discovery rates of the differential expression methods
when there were no confounding effect, but the 30% of individual-level expression variation is attributed to
the disease effect (W→ λ; σ2W→Y ) on 50 causal genes. Y-axis: empirical false discovery rate, the frequency of
the non-causal among genes with the estimated q-value below 0.01. e Empirical false discovery rates of the
differential expression methods when there were substantial confounding effects on gene expressions
(σ2X;B→Y ) and the 30% of individual-level expression variation is attributed to the disease effect (W→ λ; σ2W→Y )

on 50 causal genes. Y-axis: empirical false discovery rate (the frequency of the non-causal among genes
with the estimated q-value below 0.01); x-axis: different methods. f The performance of the CoCoA
method with different settings of the k-NN parameters in the first matching step. Y-axis (AUPRC): area
under precision recall curve (numerically integrated by DescTool [28] implemented in R); x-axis: the proportion
of variation contributed by the disease label (σ2W→Y ). Variation by confounder: σ2X;B→Y . g Empirical false

discovery rates for the same experiments in f with different settings of the k-NN Parameter. Empirical false
discovery rate: the frequency of the non-causal among genes with the estimated q value below 0.01
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� σ2X;B→Y : the variance of logλ explained by the covariates X and B.

� dC: the number of confounding variables (from 1 to 5).

� dB: The number of non-confounding batch effects (from 0 to 4).

For each individual i ∈ [n], we first sample covariates Xik∼N ð0; 1Þ for k ∈ [dC] and Bil

∼N ð0; 1Þ for l ∈ [dB]. Given the X matrix, we sample the parameter vector α required

to introduce biases on W and the residual error vector ϵW from isotropic Gaussian dis-

tributions and adjusted the scale of the error vector to have the simulation proportion

of variance matched with the prescribed σ2 value, i.e. V½Xα�=V½Xαþ εW � ¼ σ2X→W . We

generate a binary label assignment for an individual i by flipping a coin:

Wi∼Bernoulli
1

1þ exp −
X
k

Xikαk−ϵW ;i

 !
0
BBBB@

1
CCCCA

Combining these values, we construct the mean values of a gene expression g for an

individual i by a generalized linear model:

lnλgi ¼ τgW i|ffl{zffl}
disease effect

þ
XdC
k¼1

Xikβkg|fflfflfflfflfflffl{zfflfflfflfflfflffl}
confounding effect

þ
XdB

l¼1

Bilγlg|fflfflfflfflffl{zfflfflfflfflffl}
batch effect

þϵλ;

where the covariate effect βkg∼N
�
0; σ2X;B→Y=ðdC þ dBÞ

�
; γ lg∼N

�
0; σ2X;B→Y=ðdC þ dBÞ

�
,

gene-level causal effect τg∼N
�
0; σ2W→Y

�
, and the residuals ϵλ∼N

�
0; 1−σ2

X→Y−σ
2
W→Y

�
.

Using the individual-level mean values λ, we stochastically generated cell-level expres-

sions by multiplying the individual-level average expressions with random sequencing

depth (ρ), sampled from ρ ∼Gamma(6.25, 6.25). For each cell j,

Y gj∼Poisson λgiρ j

� �
:

Once we have estimated different types of pseudo-bulk data, we ranked genes based

on Wilcoxon’s rank-sum test [27] implemented in R and constructed receiver-

operating and precision-recall curves to calculate the power and AUPRC using

DescTool [28] implemented in R.

Here, we show and compare the performance of differential analysis conducted on

the five different pseudo-bulk data:

� CoCoA: individual-level disease effects δgi estimated by CoCoA-diff algorithm

(Fig. 1c, step 3).

� Confounder: the confounder effects μgi estimated by CoCoA-diff algorithm (Fig. 1c,

step 2)

� Bayesian: Bayesian estimate of pseudo-bulk expression averaged over cells within

each individual (μgiδgi combined, not decomposed).

� Mean: arithmetic mean of cell-level expressions within each individual (jSij−1
X
j∈Si

Y g j).

� Total: summation of cell-level expressions within each individual
�P

j∈Si
Y g j

�
.
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In addition, we considered a cell-level differential expression method although such

cell-level model estimation/hypothesis test violates exchangeability assumptions across

different individuals (Fig. 1a).

� MAST: Model-based Analysis of Single-cell Transcriptomics [29] implemented in R

Counterfactual adjustment of pseudo-bulk data improves statistical power

We repeated our experiments 20 times for all the different configurations and summa-

rized the performance by the area under the precision-recall curve (AUPRC), varying the

gene expression variance caused by disease (0≤σ2W→Y ≤0:3) and the number of individuals

(from 10 to 40), also considering a different number of cells per individual (20 and 50).

Since our method primarily focuses on adjusting confounding factors (X variables in Fig.

2a), we highlight the results, where all the five covariates act as a confounder (Fig. 2b).

However, we generally reached qualitatively a similar conclusion in further experiments,

where batch effect variables (B variables in Fig. 2a) coexist with confounding effects (see

Fig. S2 for the details). The performance gap between the CoCoA-diff and other pseudo-

bulk analysis methods persists in almost all cases, regardless of the sample size of individ-

uals and cells. As expected, causal genes are located at the bottom of the list ranked by

confounding effects, yielding poor AUPRC scores. The cell-level DEG analysis (MAST)

performed better than other pseudo-bulk methods only if the number of individuals is

few (N = 10). Considering that model fitting based on cell-level data generally demands

higher computational costs, individual-level pseudo-bulk analysis is better suited for DEG

analysis if the data come with sufficient sample size (individuals) and case-control labels

were assigned at an individual level.

As demonstrated by previous analysis [14], we also confirmed that pseudo-bulk

methods effectively control type I errors (Fig. 2c–e). However, a cell-level test often

produces an inflated p-value histogram; thus, a subsequent empirical FDR estimation

method, such as qvalue [30, 31], ends up drawing a decision boundary at a wrong p

value cutoff. Even when we included no causal effect, the cell-level method (MAST)

predicted that a high fraction of genes are differentially expressed, whereas the other

pseudo-bulk-based methods, including CoCoA-diff, made almost no discoveries (Fig.

2c). As long as we keep the contributions from confounding effects low, all the pseudo-

bulk methods conservatively (and correctly) control type I errors (Fig. 2d). We found

that CoCoA-diff might loosely control type I errors, higher than desired by an empirical

false discovery rate (eFDR) calibration method when the simulated data were contami-

nated by confounding factors (Fig. 2e). We define eFDR as the fraction of positive

discovery when multiple hypothesis-adjusted q values were empirically calibrated by

qvalue [30, 31] package controlled at 1%.

In some sense, the loosened type I error control can arise due to the suboptimal

choice of the k-Nearest Neighbour parameter in the cell-cell matching step. We evalu-

ated the performance of the CoCoA-diff methods with different settings of the k-NN

parameters (Fig. 2f) and calculated eFDR (Fig. 2g). When confounding effects are

absent ( σ2X;B→Y ¼ 0 ), the k parameter does not affect the AUPRC performance and

eFDR for k > 1. However, a sufficient number of k-nearest neighbours are required for

large confounding effects ( σ2X;B→Y ¼ 0:5 ); in our experiments, the AUPRC scores
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saturated after k ≥ 50 (Fig. 2f) and the eFDR levels decreased when a larger k-nearest

neighbours were used to control confounding effects.

We further conducted simulation experiments, where the conditional ignorability [17,

18] assumption no longer holds due to feedback loops on causal genes and leaking

causal effects (see Fig. S1a). In particular, we infused the first principal component (PC)

of disease effects on causal genes and reintroduced collider effects shared between the

causal and non-causal genes. Unfortunately, unlike confounding variables, adjusting a

collider between multiple variables creates spurious associations between them [32].

Moreover, having such a collider variable creates substantial challenges in eFDR

calibrations for all the methods (Fig. S1b). However, in terms of gene ranking tasks,

CoCoA-diff-adjusted pseudo-bulk analysis still outperforms other methods, consistently

across many different settings (Fig. S2c).

Case study: finding cell-type-specific causal genes in Alzheimer’s disease

We reanalyzed published single-nuclei RNA-seq (snRNA-seq) data of 48 individuals in

postmortem brain samples [22]. To our knowledge, this is one of the largest snRNA-

seq data on case-control disease studies. Of the 48 individuals, we included 40 individ-

uals for differential expression analysis because we found no case-control disease labels

on the reaming eight individuals.

Cell type annotations of 70,634 cells

We directly annotated the cell types of these 70,634 cells using the list of cell-type-

specific genes provided by the PsychENCODE project [33]. Of the total 2648

PsychENCODE marker genes, we used 1726 genes expressed in this data set as features

(Fig. S3). We identified the eight cell-type clusters of cells while estimating a mixture of

von Mises-Fisher distributions, measuring cells’ likelihood to centroids by angular

distance (see the “Methods” section). We found that this gene-to-cell-type membership

information was sufficient enough to distinguish eight cell types. These eight cell types

include expiatory (Ex) and inhibitory neurons (In), oligodendrocytes (Oligo), oligo-

dendrocyte progenitor cells (OPC), microglia, astrocytes (Astro), pericytes (Per), and

endothelial cells (Endo). We found that our annotation almost perfectly agrees with the

original paper’s cell type annotation (Fig. S4). We also found that cell types correspond

to unique cell clusters after BBKNN (batch-balancing k-Nearest Neighbour) [34] pre-

processing (Fig. 3a), showing no apparent bias induced by other demographic and

pathological variables (Fig. S5). Moreover, we further dissected four different cortical

layer-specific cell types for excitatory neurons (Fig. 3b) and four different subtypes for

inhibitory neurons (Fig. 3c) using a refined set of marker genes provided by previous

single-nucleus analysis [35].

We notice a wide spectrum of cell-type variability across 48 individuals, both in terms

of the number of cells and proportions (Fig. 3d). The Mathys et al. data contain on

average 1444 cells per individual, of which 50.65% cells stem from Ex (N = 726 ± 382

SD), 12.71% cells from In (N = 182 ± 107), 25.72% cells for Oligo (N = 380 ± 252),

3.56% cells from OPC (N = 54 ± 34), 2.43% cells from Microglia (N = 33 ± 24), 4.94%

cells from Astro (N = 69 ± 46), and 0.1% cells from Endo and Per. We have 726 excita-

tory neurons per individual (Fig. 3e), of which 52.62% (N = 399 ± 250) cells from the
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layer 4, 33.1% (N = 233 ± 108) cells from the layer L2/3, 8.26% (N = 50 ± 28) cells from

the cortical layer L5/6 (CC), and 6.03% (N = 44 ± 31) cells from the layer 5/6. We have

182 inhibitory neurons per individual (Fig. 3c), consisting of 32.9% (N = 59 ± 34) cells

from inhibitory neurons (VIP), 31.72% (N = 59 ± 40) cells from inhibitory neurons

(PV), 24.51% (N = 43 ± 26) cells from inhibitory neurons (SST), and 11.1% (N = 22 ±

17) cells from inhibitory neurons (SV2C).

Fig. 3 The case study of Alzheimer’s disease snRNA-seq profiles [22]. Cell-type-stratified approach improves
statistical power and interpretation of differential expression analysis. a UMAP projection of the major cell
types. b UMAP projection of the excitatory neuron subtypes. c UMAP projection of the inhibitory neuron
subtypes. d Cell type decomposition of the major cell types across 48 individuals. e Cell type decomposition of
the excitatory neurons across 48 individuals. f Cell type decomposition of the inhibitory neurons across
48 individuals. g, h Cell-type-stratified CoCoA-diff approach improves statistical power and identifies
genes in a wide spectrum of the cell types. i A genomic view of genes strongly modulated by AD
pathology (coloured). Top panel: genomic location of cell-type-specific causal genes; bottom panels: five
representative examples of the most significant genes
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Cell type stratification improves the statistical power and interpretation of differential

expression analysis

We investigated the impact of such a high level of cell-type heterogeneity on subse-

quent differential expression analysis. Tissue-level bulk RNA-seq analysis data can be

arguably thought of as an aggregate of single-cell-level expressions. If genes were simi-

larly affected by the disease phenotype in most cell types, we would expect the bulk-

level associations to be similar, and cell-type-stratified analysis would benefit less than

more of stochasticity—fewer cells per individual. On the other hand, if most disease-

responsive genes act through a cell-type-specific mechanism, cell-type-stratified data

analysis will improve statistical power and render better biological interpretations in

genomics analysis.

Using these cell type annotations, we constructed cell-type-stratified pseudo-bulk

data for all the genes and individuals in each cell type independently, treated them as a

gene expression matrix, and tested associations of genes with AD status. We also con-

structed the pseudo-bulk profiles by combining all the cells in each individual, ignoring

the cell type annotations, and carried out the same association analysis. It is clearly

shown that the number of discoveries (unique genes) dramatically increase with cell-

type-specific stratification steps in both studies using CoCoA-diff and total expression

profiles (Fig. 3g). Considering the variety of cell types in each p value cutoff, such cell-

type-specific mechanisms are likely to remain hidden in bulk, combined differential

analysis but better revealed after taking into account cell type heterogeneity (Fig. 3h).

Disease status modulates the cell-type-specific gene expressions

215 genes are differentially regulated with AD pathology

We prioritized genes based on testing a hypothesis that the pseudo-bulk profiles proc-

essed by CoCoA-diff are differentially ranked by AD pathology (Wilcoxon’s ranksum

test) [27]. We conservatively adjusted putative confounding effects with (100-nearest

neighbour search) in a spectral space constructed by 50 principal components. Control-

ling the false discovery rate (FDR [36]) < 1%, we found 1648 genes (11.68% of 14,106),

consisting of 672 genes found in Ex-L4, 522 in Ex-L2/3, 297 in Ex-L5/6, 210 in In-PV,

98 in Oligo, 84 in Microglia, 80 in Astro, 57 in In-VIP, 49 in OPC, 11 in In-SST, and 4

in In-SV2C. Controlling family-wise error rate (FWER [37]) at 1%, we found a total of

215 genes (1.52%), which consist of 55 genes found in Ex-L4, 39 in Ex-L2/3, 28 in

Ex-L5/6, 28 in Oligo 24 in In-PV, 19 in Microglia, 19 in Astro, 9 in OPC, 7 in In-VIP, and

3 in In-SST.

We confirmed that the CoCoA-diff procedure did not introduce a systematic bias by

shrinking variance on the case or control samples (Fig. S8). We tested our method on

four different phenotypes using twelve cell-type-specifically confounder-adjusted pro-

files and cell-type-sorted pseudo-bulk data. Moreover, visual inspection of the p value

distributions for Wilcoxon’s tests suggests no apparent inflation/deflation in our

multiple hypothesis testing (Fig. S9).

In addition to the non-parametric ranksum test, we propose a model-based Wald

statistic for an individual-level test (for each gene g and an individual i), namely

Zgi ¼ E½ln δgi�=V½ln δgi� , and the group-wise average disease effect size (ADE) and

standard error (SE) for each gene g:
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ADEg ¼

Xn
i¼1

E½ln δgi�=ωiX
i

1=ωi

;SEg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1X
i

1=ωi

vuut ;

where ωi ¼ 1=V½ln δgi� for brevity (the method). We found that gene-level ADE values

are marginally independent of average confounding effects (the top panels of Fig. S10).

However, we confirmed that average disease effects on the disease samples (ADD)

generally align well with the average disease effects computed on the control samples

(the bottom, Fig. S10).

The false sign rate (FSR) of these Bayesian estimates of ADE and SE can be con-

trolled by an empirical Bayes procedure, such as ashr [38]. Controlling the FSR of ADEs

and FDR of the ranksum tests both below 1%, we found a total of 1330 AD genes (1669

gene and cell type pairs) and an average of 152 (± 206) genes per cell type. Of them, we

highlighted 182 genes sampled at most 20 genes within each cell type (Fig. 3i) and

annotated 17 genes specifically acted in the microglia. We found multiple lines of

independent evidence to corroborate the causal role of these genes.

Of these top AD genes found in microglial cells, we highlight five genes, including

APOE, showing gene expressions upregulated clearly among the AD individuals (the

bottom panels of Fig. 3i). SH3RF3 gene has been found significantly associated with the

age at onset of AD in the family-based genome-wide association studies [39]. Interest-

ingly, regarding Parkinson’s disease, another neurodegenerative disorder, genetic vari-

ants located in LHFPL2 have been associated with accelerated onset of the disease by 8

to 12 years [40]. BLNK plays a key regulatory role in well-known microglia-specific

TREM2 signalling pathway [41] and has been proved to be upregulated with the

increase of amyloid β protein [42]. To some degree, conditional genetic analysis

suggested that PTPRJ is a link to explain pleiotropy between late-onset AD and major

depressive disorder [43].

Gene ontology analysis characterizes a variety of cell-type-specific pathways in AD

We sought to characterize cell-type-specific mechanisms potentially perturbed by aver-

age 1077 (± 1122) significant AD genes found in each cell type (FDR < 20%) using

goseq [44] package. Gene ontology (GO) enrichment analysis shows that DEGs identi-

fied in different cell types indeed influence markedly different biological mechanisms.

By visual inspection, we can identify cell-type-specific modules of the enriched GO

terms in the biological process category (Fig. 4b–d). For instance, upregulated AD

genes found in excitatory neurons are highly enriched in neurodevelopmental path-

ways, such as “modulation of chemical synaptic transmission” and “regulation of trans-

synaptic signalling.” However, microglial DEGs are mostly found in immune-related

activities, such as “interferon-gamma-mediated signalling pathway” and “regulation of

lymphocyte-mediated immunity,” and oligodendrocyte DEGs enrich terms reflect the

functional role of the cell type such as “myelination” and “axon ensheathment.” For the

GO terms in the cellular component category, DEGs found in neurons over-represent

synapse and axon, but glial cell-type-specific DEGs highlight cell-cell junction and focal

adhesion (Fig. 4e). DEGs found in neurons generally participate in ion channel
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activities, but we noticed that microglial DEGs are highly relevant to Rho GTPase and

cadherin binding activities (Fig. 4f).

Discussion
We addressed a subset of a causal inference problem that emerges in disease studies.

We sought to characterize and estimate the average causal effect of genes between the

Fig. 4 Genes modulated by AD pathology highlight disease mechanisms in relevant cell types in gene
ontology enrichment analysis. Ex, expiatory neurons; In, inhibitory neurons; Oligo, oligodendrocytes; OPC,
oligodendrocyte progenitor cells; Mic, microglia; Astro, astrocytes. Each box is scaled proportional to the
level of enrichment significance (p value), and the colour gradient marks the number genes overlapped in
each keyword and cell type. a The number of significant genes modulated by AD pathology. b–d Top gene
ontology terms in biological process over-represented by cell-type-specific AD genes. e Top gene ontology
terms in cellular component over-represented by cell-type-specific AD genes. f Top gene ontology terms in
molecular function over-represented by cell-type-specific AD genes
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case and control individuals from observational single-cell data. Delineating confound-

ing and non-causal factors from causal effects is a crucial step to many genomics prob-

lems. Not to be trapped in circular reasoning (identifiability issue), the genomics

community has been using so-called control genes and samples to extract factors

shared in both control and discovery data [45–47]. One of the steps in our algorithm

enjoys a similar idea, but there is no need to prescribe control cells or genes for our

purposes. Along the same line, only if control features were known a priori, contrastive

principal component analysis [48] could pick out non-causal factors in its latent space.

Likewise, only if nuisance variables are independently observed, the variational fair

autoencoder model [49] project cells onto unconfounded (“fair”) latent space.

Our method builds on the outcome regression facilitate by a matching algorithm [19,

20]. Like most existing single-cell analysis pipelines, finding reliable k-nearest neigh-

bour cells is a crucial step. If some cells in one condition were poorly matched with

other cells in the opposite condition, failing to capture a shared component of con-

founding effects, our analysis might not work as expected. However, we want to

emphasize that a failure of the matching step does not lead to an over-correction of

pseudo-bulk data. It is important to understand and reliably quantify to what degree a

cell-cell matching procedure can address the intrinsic and another technical variability

of a single-cell RNA-seq data matrix.

A sparsity of single-cell data still casts a wide range of modelling questions. As we

only consider the average effect within each individual, and we take a simple model that

is just enough to capture our estimands. We ignored the notion of zero-inflation since

we treat single-cell data as a count matrix, not being transformed by logarithm [50].

However, future research can take advantage of more sophisticated modelling of the in-

dividual- and cell-level observations [51], perhaps involving latent variables for repre-

sentational learning.

Conclusions
We present a causal inference method that identifies and removes putative confound-

ing effects from single-cell RNA-seq data so that the subsequent differential expression

analysis can become unbiased and gain more statistical power. We have empirically

shown that CoCoA-diff improved the downstream data analysis in extensive simulation

experiments. We also demonstrated in real-world snRNA-seq data that the CoCoA-diff

approach was necessary to reveal both well-established and novel causal genes in AD.

Our work is the first application of counterfactual inference to single-cell genomics to

the best of our knowledge. We expect that many existing inference methods and

models can be reformulated in the same causal inference framework. More broadly, we

believe that causal inference methods can improve the interpretation of genomics

analysis and ultimately benefit translation researches.

Methods
Preliminary modelling of single-cell RNA-seq counting data

Individual-level gene expression quantification

We describe the single-cell RNA-seq data-generating process in a Poisson-Gamma

hierarchical model. For each individual, we measure thousands of gene expression on
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nearly a thousand cells. Here, we denote each individual, gene, and cell by index i, g, j,

respectively. We model the expression count Ygj of a gene g in a cell j follows Poisson

distribution with the composite rate parameter, λgiρj, where λgi quantifies the gene’s

mean activity in the corresponding individual i, and ρj accounts for the sequencing

depth of a cell j. More precisely, we define the likelihood of Ygj:

f ðY g j; λgiρ jÞ ¼
ðλgiρ jÞY g j

ΓðY g j þ 1Þ expð−λgiρ jÞ:

We assume the gene and cell parameters, λ, ρ, follow a conjugate prior distribution

(Gamma); more precisely, we parameterize the density function: Gammaðθja; bÞ ≡ ba=Γ

ðaÞθa−1expð−bθÞ . We assume smooth a prior distribution for the ρ and λ parameters,

namely ρ j; λgi∼Gammað1; 1Þ . A smaller value for the hyperparameters, such as

Gammað10−4; 10−4Þ , could encourage the effect of prior distributions vanish; how-

ever, we found it often results in numerically unstable posterior estimation when

RNA-seq samples are shallowly sampled.

For the gene parameter λgi, if we defined its distribution: λgi∼Gammaðϕ−1;ϕ−1=μgiÞ ,
we would have E½λ� ¼ μ and V½λ� ¼ μ2ϕ . Integrating out the uncertainty over λ, we

derive the following negative binomial model:

f ðY g j; μgiρ j;ϕÞ ¼
ΓðY g j þ ϕ−1Þ

ΓðY g j þ 1ÞΓðϕ−1Þ

 
1

1þ μgiρ jϕ

!1=ϕ 
μgiρ j

μgiρ j þ 1=ϕ

!Y g j

;

which preserves the characteristic quadratic relationship between the mean and vari-

ance: V½Y � ¼ E½Y � þ E½Y �2ϕ.

Variational Bayes for parametric inference

We estimate the posterior distribution of λgi and ρj by minimizing Kullback-Leibler diver-

gence between the joint likelihood L ≡
Y
g j

f ðY g j; λgi; ρ jÞ f ðλÞ f ðρÞ and the fully factored

variational distributions [52], qðλÞ ¼ Gammaðλjαλ; βλÞ and qðρÞ ¼ Gammaðρjαρ; βρÞ. We

can quickly reach convergence by alternating the following update equations:

Eq½λgi�←

X
j

Y g j þ 1X
j

E½ρ j� þ 1
; Eq½ρ j�←

X
g

Y g j þ 1X
g

E½λgi� þ 1
:

Here, we first initialize E½ρ j� ¼ 1 for all j, and add pseudo-count 1 on both numera-

tors and denominators because of the prior distribution of ρ and λ.

Counterfactual confounder adjustment for differential expression analysis

Step 1: Imputation of potential outcomes by Poisson regression)

We assume binary treatment assignment and denote disease assignment (or nature’s

treatment) by W ∈ {0, 1}. We denote an individual have suffered from a disease by W =

1 and the healthy one by W = 0. For clarity, we introduce the potential outcome nota-

tions to the gene expression variables. Let Y ðwÞ
gj be gene expression of a gene g in a cell
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j if this expression value was observed from an individual with a disease label W =w.

For a disease individual, Y(1) is the same as observed Y value, but Y(0) is unknown, re-

quiring counterfactual inference; for the opposite case, a healthy individual, Y(0) is ob-

served, but Y(1) is counterfactual. To proceed, we assume the following causal

assumptions [18, 20, 53]: (1) The disease assignment mechanism (W) is unconfounded

with potential outcomes Y(0), Y(1), conditioning on some covariates X. (2) There is suffi-

cient overlap between the case and control cells with respect to the covariates X. In

other words, in almost every X = x, we have 0 < P(W = 1| X = x) < 1.

How do we find the counterfactual Y(1 −w) for the observed Y(w)? We construct fea-

ture vectors for potential outcome prediction by searching k-nearest neighbours (k-

NN) from the cells belonging to the opposite conditions. To avoid the curse of dimen-

sionality, we first perform spectral decomposition of single-cell data matrix and effi-

ciently search k-NN on the spectral domain with hierarchical hashing algorithm [54].

Using these counterfactually matched cells, we construct feature matrix with each

element F ð1−wÞ
gk ¼ logð1þ Y ð1−wÞ

gk Þ and quickly estimate regression coefficients β’s in the

Poisson regression by coordinate-wise descent method [55]:

Poisson

 
Y ðwÞ

g j

					exp
(Xk

j′¼1

F ð1−wÞ
g j′ β j′ þ β0 þ ϵ

)!

where β0 captures the intercept term.

Given the optimized coefficients, we predict the potential outcome

Ŷ
ð1−wÞ
gj ← exp

 Pk
j0
F ð1−wÞ
gj0 β̂ j0 þ β̂0

!
, ignoring the residual errors (ϵ). We also consid-

ered a non-parametric imputation method which takes weighted average over the

matched cells [34, 56, 57]. Although such non-parametric methods are frequently used in

single-cell data analysis, we found that Poisson regression yields more robust performance

with fewer neighbouring cells than the other kNN-based imputation methods.

Step 2: Identification of potential confounding effects)

After the matching followed by the regression, we have observed Y ðwÞ
gj and counterfac-

tual Ŷ
ð1−wÞ
gj . By construction, one of them carry disease-relevant effects unlike the other

one. However, both of them can provide disease-invariant information that implicate

potential confounding effects, denoted by μgi for a gene g and individual i:

L0 ¼
Y
j

Y
g

Y1
w¼0

Poisson Y wð Þ
gj jμgiρ wð Þ

j

� �
;

where we introduce the conditional-specific sequencing depth parameters ρ(w). How-

ever, note that μgi is shared and label-invariant.

We estimate the posterior mean of μgi by variational Bayes by alternating the following

update equations until convergence:
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Eq½μgi� ¼
1þ

X1
w′¼0

X
j

Y ðw′Þ
g j

1þ
X1
w′¼0

X
j

Eq½ρðw′Þj �
; Eq

h
ρðwÞj

i
¼

1þ
X
g

Y ðwÞ
g j

1þ
X
g

Eq½μgi�
;

for all w ∈ {0, 1}.

Step 3: Confounder adjustment)

While fixing the value μ̂gi to its (variational) posterior mean Eq½μgi� , we redeem the

confounder-adjusted mean parameters δgi, by maximizing the data likelihood:

L″ ¼
Y
j

Y
g

Poisson Y gjjμ̂giδgiρ j

� �

Again, the posterior distributions are found by alternating the following update

equations:

E½δgi�←
1þ

X
j

Y g j

1þ μ̂gi
X
j

E½ρ j�
; Eq½ρ j�←

1þ
X
g

Y g j þ 1

1þ
X
g

μ̂giE½δgi�
:

Since the δgi variable follows Gamma distribution, we also have

Eq½ln δgi� ¼ ψ

 
1þ

X
j

Y g j

!
−log

 
1þ μ̂gi

X
j

E½ρ j�
!
;

where ψ(·) is the digamma function, and approximate its variance,

V½ln δgi� ¼
 X

j

Y g j

!−1

:

See the following derivations of the Gaussian approximation of Gamma distribution.

Technical details

Local Gaussian approximation of Gamma distribution

We approximate the distribution of lnλ by constructing a local quadratic approxima-

tion of the original log-probability density function:

lnpðλjα; βÞ ¼ ðα − 1Þ lnλ − βλþ α lnβ − lnΓðαÞ

Letting ϕ = ln λ, we can rewrite the above as:

L ¼ ðα − 1Þϕ − βeϕ þ α lnβ − lnΓðαÞ

At some ϕ̂, we can find a quadratic form:

L ≈ −
1
2
βeϕ̂ ϕ− ϕ̂ þ α−1−βeϕ̂

βeϕ̂

" # !2

þ const:

Setting eϕ̂ ¼ ðα−1Þ=β (the mode of Gamma distribution), we have
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L ≈ −
1
2

α−1ð Þ ϕ−ϕ̂
� �2 þ const

Finally, we have

pðϕjα; βÞ ≈ N jðϕj lnððα−1Þ=βÞ; ðα−1Þ−1Þ: In our case, we assumed λ ∼Gamma(1, 1)

a priori and only derived approximate Gaussian whenever we have at least 1 read per

individual; therefore, α > 1. However, if 0 < α ≤ 1, we can approximate the Gaussian at

λ = α/β, and this results in pðϕjα; βÞ ≈ N jðϕj lnðα=βÞ; α−1Þ:

Derivation of average disease effect across individuals (meta-analysis)

From the above, we derived the posterior distribution of ϕi(≡ ln λi) variables. Let ηi =

ln((αi − 1)/β) and σ2i ¼ ðαi−1Þ−1 . Then we have ϕi∼N ðϕijηi; σ2i Þ . We can find another

variational distribution r ≡N ðϕijη; σ2Þ averaging over all these individual-level poster-

ior distributions by optimizing the following Kullback-Leibler divergence:

D ¼ ln
Z

dϕi

q ϕijηi; σ2i
� �
r ϕijμ; σ2
� � r ϕijμ; σ2

� �
By Jensen’s inequality,

D≥−
Xn
i¼1

Er

"
1
2
lnσ2i þ

1
2σ2i

ðϕi−ηiÞ2
#
þ Er

"
1
2
ln �σ2 þ 1

2�σ2
ðϕi−�ηÞ2

#
þ const:

Optimizing this with respect to η and σ , we have:

η ¼

X
i

ηi=σ
2
iX

i

1=σ2i
; σ2 ¼ 1X

i

1=σ2i
:

Cell type annotation by constrained mixture of von Mises-Fisher

We classify a cell type of 70,634 cells based on the prior knowledge of cell-type-specific

2648 marker genes on 8 brain cell types [33]. Using 1726 genes present in our data, we

construct a normalized vector mj for each cell with the dimensionality d = 1726 and

∥mj ∥ = 1. Additionally, we define a label matrix L to designate the activities of the

marker genes to the relevant cell types. Each element Lgk takes 1 if and only if a gene

g ∈ [d] is active on a k ∈ [8] cell type; otherwise, we set Ljk = 0. We assume that each

normalized vector mj follows von Mises-Fisher (vMF) distribution with cell type k-spe-

cific mean vector θk with the concentration parameter κ, shared across all the cell

types:

L ¼ C κð Þ
Yn
j¼1

YK
k¼1

exp κm⊤
jθk

� �h izjk
;

where n = 70634 for the cells and K = 8 for the cell types. Here, we introduce zjk, an in-

dicator variable to mark the assignment of a cell j to a cell type k. Our goal is to esti-

mate the posterior probability of zjk = 1 by stochastic expectation maximization (EM)

algorithm. In the E-step, we simply sample the latent membership zjk from the discrete
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distribution proportional to expðm⊤
jθkÞ . In the M-step, we maximize the mean and

concentration parameters with the cell type constraints L:

θk←

X
j

zjkm j∘lk

∥
X
j

zjkm j∘lk∥
; κ←

rd−r3

1−r2

where r ¼ 

X
j

m j



=n. Derivation for the optimization of κ can be found in the previous

work on von Mises Fisher mixture model [58].
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