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Abstract

Topologically associating domains (TAD) are a key structure of the 3D mammalian
genomes. However, the prevalence and dynamics of TAD-like domains in single cells
remain elusive. Here we develop a new algorithm, named deTOKI, to decode TAD-
like domains with single-cell Hi-C data. By non-negative matrix factorization, deTOKI
seeks regions that insulate the genome into blocks with minimal chance of
clustering. deTOKI outperforms competing tools and reliably identifies TAD-like
domains in single cells. Finally, we find that TAD-like domains are not only prevalent,
but also subject to tight regulation in single cells.
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Background
The eukaryote genome in the nucleus is folded into a hierarchical configuration [1, 2],

as revealed by imaging technologies [3] and chromosome conformation capture (3C)-

based technologies [4–12], e.g., Hi-C [8]. The hierarchical configuration consists of

chromosomal territories [8, 13, 14], A and B compartments [8], domain structures,

such as topologically associating domains (TADs) [14, 15], compartment domains [16],

or CTCF loop domains [17], and chromatin loops [17–19]. Such configurations have

been routinely discussed in many studies [2]. TADs might be the most investigated

chromatin feature in the literature since their disruption can cause severe diseases

[20], including cancer [21].

TAD structures have been primarily revealed by Hi-C in bulk cells [8], while the ex-

istence and biogenesis of TADs in individual cells remain unclear. Super-resolution

imaging data have shown the existence of and variations in the TAD-like domain

structures in single cells [22]. Given the large cell-to-cell variations of chromatin archi-

tecture observed in individual cells, TADs could be a partially emergent property of a

cell population. That is, the dynamics of chromatin in single cells per se may generate,

at least in part, the TADs we observed in the bulk cells [23–25]. Since the origin and

dynamics of TADs are keys to understanding gene regulation [26, 27], unraveling the
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nature of single-cell TAD-like domain structure is essential. However, the systematic

survey of TAD-like domain structure, including its dynamics, in single cells remains a

major challenge in the field.

A long list of TAD detection tools is available in the literature, and the methods are

sophisticated and diverse [28, 29]. TADs were first identified using certain local gen-

omic or topological features, e.g., the directionality index (DI) [14], the insulation score

(IS) [30], the arrowhead score [18], IC-Finder [31], and ClusterTAD [32]. Later,

methods based on probabilistic models with certain assumptions about the data distri-

butions were developed, such as GMAP [33], PSYCHIC [34], HiCseg [35], TADbit [36],

and TADtree [37]. Some other tools utilize dynamic programming to optimize a global

object function, e.g., Armatus [38] and Matryoshka [39]. When treating the Hi-C

matrix as a network connection matrix, an entire toolbox is available from graph the-

ory, e.g., MrTADFinder, 3DnetMod [40, 41], and we recently developed deDoc [42].

However, comparisons have shown that almost none of them worked reliably with

ultra-low-resolution Hi-C data [28, 43]. Among all TAD predictors, IS and deDoc

worked the best with low-resolution Hi-C [30, 42]; however, TADs are virtually un-

detectable in experimental single-cell Hi-C data.

The inadequate handling of single-cell Hi-C data by current TAD prediction methods

stems from the ultra-sparsity of chromatin interactions. A single cell has two copies for

any given locus, which means that only two copies of Hi-C ligations, at most, could

possibly exist in the single-cell Hi-C (scHi-C) libraries for that locus. Thus, the fluctua-

tions from stochastic chromatin interactions per se, or from PCR proliferation, have ex-

ponential effect on the final scHi-C sequencing data. Consequently, to systematically

survey TAD-like domain structure, we need a computational tool able to reliably

process such ultra-sparse data from scHi-C.

Non-negative matrix factorization (NMF) consists of a group of algorithms in multi-

variate analysis whereby a non-negative matrix is factorized into two or more non-

negative matrices [44]. The NMF has been widely used in processing single-cell omics

data, e.g., coupled NMF [45]. The advantage of NMF is its low rank representation,

which retrieves key information embedded in the noisy sparse data. As a sparse non-

negative matrix, the sparsity issue of scHi-C data can also be solved by NMF. There-

fore, we developed a new method using NMF to decode TAD boundaries that keep

chromatin interaction isolated (deTOKI) from ultra-sparse Hi-C data. We present evi-

dence that deTOKI can reliably predict TAD-like domain structures at the single-cell

level. Further, although TAD-like domain structures are highly dynamic between cells,

we found that they are not randomly distributed in the cell population, implying the ex-

istence of tight regulation on these domains at a single-cell level. Finally, the insulation

property of TAD-like domain boundaries was also found to have a major effect on the

epigenetic landscape in individual cells.

Results
A novel TAD detector (deTOKI) for ultra-low-resolution Hi-C data

Using ultra-sparse Hi-C contact matrices, we developed a novel algorithm, named

deTOKI, to detect TAD-like domain structures, a term we use hereinafter to avoid con-

fusion. The deTOKI takes advantage of a key property of TADs, namely that its
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topology distribution is relatively consistent with respect to number and length be-

tween cell types [14]. Briefly, for any given genome segment, deTOKI applies non-

negative matrix factorization (NMF) to decompose the Hi-C contact matrix into

Fig. 1 Workflow of deTOKI. a The flow chart of deTOKI. The genome is split into 8 MB overlapping sliding
windows. As an example, b–f shows the key steps for a window in chr19. The data are from IMR90 cells
[14]. In b, each square in blue, red, and green represents a sliding window. In c, NMF was performed on the
contact matrix of a window, and bins were clustered based on the factor matrix. After 10 rounds of NMF, a
consensus map was generated (d), in which the detected clustering change points are shown in sawtooth,
and the blue curve in the bottom panel represents the clustering rate of each bin. e The blue curve
represents the silhouette coefficient corresponding to each alternative value of “n_components”. f The
yellow square highlighted the middle 4-Mb region for which clustering change points (yellow stars) were
reported as TAD-like domain boundaries
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genome domains that may be spatially segregated in 3D space (Fig. 1a). Non-negative

matrix factorization is an algorithm for decomposition of a non-negative matrix into a

product of two non-negative matrices, in which the n_components represent the com-

mon dimensions between the two decomposed matrices. As the n_components nor-

mally are substantially smaller than the dimensions of the origin matrix, NMF is a

commonly used algorithm to perform dimension reduction [46]. To speed up the algo-

rithm, deTOKI divides the chromosomes into 8-Mb sliding windows, overlapping each

4Mb, and the clusters from the second Mb to the sixth MB of each window are re-

ported as the predictions (“Methods,” Fig. 1, Additional file 1: Supplemental Note, Add-

itional file 2: Fig. S1-2). The alternative local optimal solutions in the structure

ensemble are achieved by summarizing deTOKI’s predictions with multiple random ini-

tiations (see “Methods”).

To assess deTOKI’s performance, we focused on two major characteristics of chro-

matin architecture at the single-cell level, i.e., data sparsity and cell-to-cell variations,

and assessed them with downsampled experimental data and with simulated data, re-

spectively. All analyses in this work were performed with binsize = 40 kb, unless other-

wise mentioned.

deTOKI worked well in downsampled bulk Hi-C at the single-cell level

To assess the performance of deTOKI under the condition of sparse input, we mainly

compared it with two publically available algorithms, i.e., insulation score (IS) [30] and

deDoc [42]. These two methods were chosen because they were judged to be the most

robust methods with sparse data in our previous comprehensive assessments of TAD

predictors [43]. In addition, we also compared it with recently published algorithms de-

signed for sparse data, including SpectralTAD [47], GRiNCH [48], and scHiCluster

[49]. These algorithms employ the data imputation method on single-cell Hi-C data

and predict domains by TopDom. Sparsity was defined as the proportion of entries in

the Hi-C matrix that have value zero after excluding the unmappable genome regions,

e.g., centromeres, for a given chromosome. The assessment was done for all chromo-

somes in 40-kb bins and was downsampled at the rate of 1/800 from the high-

resolution Hi-C data [14]. The downsampled dataset consisted of about 0.44M con-

tacts, mimicking the sequencing depths of public scHi-C datasets, e.g., the median of

the data generated by Flyamer and colleagues (hereafter termed Flyamer’s data [50])

was 0.339M (Fig. 2a, b).

The deTOKI outperformed the other tools in the following two respects. First, com-

pared to the other tools, the number of TAD-like domains predicted by deTOKI and

GRiNCH was little affected by data sparsity (Fig. 2a and Additional file 2: Fig. S3b).

Taking chr10 as an example, the largest absolute log2 fold changes (|log2FC|) in the

number of predicted TAD-like domains among the downsampled datasets was 0.26 for

GRiNCH and deTOKI, while it was 0.51, 0.80, 1.38, and 2.40 for scHiCluster, IS, Spec-

tralTAD, and deDoc, respectively (Fig. 2a). Second, on single-cell data, deTOKI pre-

dicted TAD-like domains more accurately than all other predictors. We took the TADs

identified with the full data as the gold standard and quantified the accuracy of predic-

tions by the similarity to the gold standard. Two similarity indexes, i.e., adjusted mutual

information (AMI) [51] and weighted similarity (WS) [42], were employed. The
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Fig. 2 (See legend on next page.)
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deTOKI values had higher similarity than all of the other algorithms for both indexes

in most chromosomes, i.e., in 19 and 16 out of 22 chromosomes for AMI and WS, re-

spectively (Fig. 2b). We also employed two different indexes, BP score (BP) [52] and

variation of information (VI) [38]. Although IS performed best with the two indexes

(Additional file 2: Fig. S3a), deTOKI performed comparably well in all chromosomes

(median BP = 0.49 and 0.51; median VI = 1.58 and 1.61, for IS and deTOKI,

respectively).

Moreover, when we performed an additional assessment with binsizes 20 kb and 80

kb, deTOKI performed equally well with binsize 40 kb, as we described above, and bet-

ter than the other tools (Additional file 2: Fig. S3b-c). Finally, marks of the characteris-

tic structural protein CTCF, or histones, were found to be enriched in deTOKI-

predicted TAD-like domain boundaries. Compared to the genomic background, ChIP-

seq peaks of H3K4me3, H3K36me3, and CTCF were enriched at the TAD-like domain

boundary regions predicted by deTOKI, IS, scHiCluster, and deDoc, while such enrich-

ment was barely seen in those boundary regions predicted by GRiNCH and Spectral-

TAD (Additional file 2: Fig. S3d). These observations further supported the accuracy of

the predictions. Taken together, our assessments suggest that deTOKI can stably and

accurately predict TAD-like domains with ultra-low-resolution (i.e., single-cell level)

Hi-C data.

deTOKI worked well with simulated single-cell Hi-C data

To mimic cell-to-cell variation, we simulated a single-cell Hi-C experiment. The simu-

lated data were generated according to the following protocol. First, we simulated

chromosome structures for single cells. By applying a widely used 3D structure model-

ing tool known as IMP on the bulk Hi-C data, we modeled a 3D chromosome structure

ensemble containing about 100 physical chromosome structure models such that each

model represented a single cell (Fig. 2c) [53]. To simplify the simulation, we assumed

that each modeled structure in the ensemble would be evenly distributed within the cell

population. We randomly chose a 5-Mb-long genome region, i.e., chr18:50–55Mb, as

an example. To generate single-cell Hi-C data from the physical 3D model, we defined

the Hi-C contacts as pairs of genome loci with a Euclidean distance less than a

(See figure on previous page.)
Fig. 2 Comparison of TAD callers on downsampled and simulated single-cell Hi-C based on data from
IMR90 [14]. Panels a and b show the average results of 20 independent downsamplings in each
chromosome. a The (log2) change in the number of predicted TAD-like domains. b The similarity of TAD-
like domains, as inferred by AMI and WS, between the raw data and the downsampled data. c Workflow of
the single-cell Hi-C simulation. From left to right, the panels represent the normalized Hi-C contact matrix
of chr18:50–55 Mb for GM12878 ensemble Hi-C from Rao’s data [18], an ensemble of 100 modeled 3D
structures of this region, and the 3D structure modeled from the simulated ensemble Hi-C from model
#100. Each dot in the right panel represents a 10 kb-length particle, and the dots with same color belong to
the same predicted TAD-like domain ensemble. d Similarities of predicted single-cell TAD-like domains
between different thresholds and predictors. e An example of the simulated data. The upper and lower
parts of the heatmap represent the simulated reference and single-cell Hi-C data from model #13, D = 500.
Predicted TADs are shown in sawtooth. AMIs between TAD-like domains predicted by deTOKI and IS on the
two datasets are 0.873 and 0.660, respectively. f Classification based on deTOKI-predicted TAD-like domains
of models on chr18:50–55 Mb and chr18:10–15 Mb, mimicking two single cells. Each dot represents a
model, D = 500. g Number of misclassifications, using predicted TAD-like domains. *P < 0.05, **P < 0.001,
NS: not significant, two-sided Mann-Whitney U test
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threshold (D) in the model. Hi-C reads were then sampled from the contacted genomic

loci by a binomial distribution (see “Methods”). In this work, we tested three threshold

Ds, i.e., 500, 750, and 1000, representing 20%, 40%, and 60% quantiles, respectively, in

the distribution of distances among all genomic loci pairs in the physical model (Add-

itional file 2: Fig. S3g). To define the true domains (reference) in the given single cell, a

sufficient number of reads were sampled from the physical model with the sampling

probability function of a pair of interacting genome loci being inversely proportional to

their Euclidean distance (see “Methods”). The expected number of reads sequenced

from the loci was calculated by normalizing all weights, i.e., contact probabilities, in a

genome-wide manner, and the Hi-C reads were then sampled from those genome loci

by Poisson distribution.

The deTOKI can accurately predict domain structures in simulated single-cell Hi-C

data. With the method described above, we simulated the structures of a 5-MB region

in 100 single cells and generated about 1000 and 0.35M Hi-C contacts for each single

cell and the reference Hi-C, respectively. We compared the accuracies (i.e., AMI and

WS) of the predictions of the predictors, and when estimated by AMI, we found that

deTOKI had significantly higher accuracy than the other tools (Mann-Whitney U test,

P < 0.001) for D = 500 and 750. With D = 1000, IS had the best performance (Fig. 2d);

however, the median values of AMI and WS were similar for IS and deTOKI (AMI me-

dian = 0.715 and 0.708; WS median = 0.789 and 0.753, respectively). We also employed

BP and VI to measure the differences between the predicted domains and the reference.

deTOKI and IS also performed best with these two indexes (Additional file 2: Fig. S3f).

This pattern was also seen in an additional randomly selected genome region (chr18:

10–15 Mb, Additional file 2: Fig. S3f and h). For example, in model #13 and with D =

500, deTOKI-identified domains in simulated single cells matched very well with the

associated reference Hi-C, while several major domains were mislabeled using the IS

predictor (Fig. 2e).

Single cells could also be accurately classified by deTOKI-predicted domains. As an ex-

ample, we took the two 5-Mb regions of chr11 to represent two types of cells since their

separation by 40Mb on the chromosome would result in few connections. For the 100 sim-

ulated models of the two regions, representing two cell types, and using WS as distance,

deTOKI-predicted domains had better classification power for distinguishing the two cell

types than all other tools, except SpectralTAD and scHiCluster (Fig. 2f). If we run deTOKI

at imputed data from scHiCluster, we can get the best classification (Additional file 2: Fig.

S10d). Furthermore, the total number of misclassified cells of deTOKI was lower than that

of IS (Fig. 2g). The success of deTOKI as predictor on the simulated data encouraged us to

further assess if the tool would work equally well on experimental single-cell Hi-C data.

deTOKI predicts TAD-like domains with experimental scHi-C data

Next, we compared predictions with three experimental scHi-C datasets, hereinafter

denoted as Flyamer’s, Tan’s, and Li’s datasets (Additional file 3-5: Table S1-3) [50, 54,

55]. We only compared deTOKI with IS, scHiCluster, and deDoc as the latter three

were shown to perform relatively well with the simulated sparse data above. We found

deTOKI’s predictions to be both more accurate and more stable than those of the three

other tools.
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First, deTOKI predicted TAD-like domains with higher modularity and lower struc-

ture entropy. The modularity and structure entropy of a network have previously been

used to infer the topological properties of TADs from the Hi-C contact matrix [41, 42].

A better defined TAD set is expected to have smaller structure entropy [42] and larger

modularity [41]. With Tan’s and Flyamer’s datasets, deTOKI predicted TAD-like do-

mains with lower structure entropies and higher modularities than those of TAD-like

domains predicted by IS, scHiCluster, or deDoc (Fig. 3a, Additional file 2: Fig. S4a). For

example, when we compared the predictions of IS, scHiCluster, and deDoc in Tan’s

data against deTOKI-predicted TAD-like domains, we found that the TAD-like do-

mains in chr1 had higher modularity and lower structure entropy in all cells, respect-

ively (Fig. 3a). In Li’s data, deTOKI also performed best of the four predictors, having

the highest modularity and lowest structure entropy in 77 and 73 cells, respectively

(Additional file 2: Fig. S4a).

Second, the structural proteins and histone marks were more enriched at the

deTOKI-predicted TAD-like domain boundaries in real single-cell data. By aggregating

the ChIP-seq signals at the predicted TAD-like domain boundaries in all single

GM12878 cells, we found that the deTOKI-predicted TAD-like domain boundaries had

higher enrichment of CTCF and Rad21(cohesin) compared to IS, scHiCluster, and

deDoc (Fig. 3b). This was also true for H3K36me3 and H3K4me3, the two histone

marks previously reported to be enriched in the ensemble TAD boundaries (Fig. 3c)

[14].

Third, deTOKI-predicted single-cell TAD-like domains were more consistent with

the modeled physical structures. Xie and colleagues modeled the physical structure of

the haploid chromosomes of single GM12878 cells at 10 kb resolution and proposed an

algorithm to infer the chromosome domains from the hierarchical physical structure

[54]. Using this haploid physical model and algorithm, we inferred the chromosome do-

mains in a randomly chosen genome region (chr10:4–16M, see “Methods”). Compared

with the deTOKI-predicted haploid single-cell TAD-like domains, we found that

deTOKI-predicted single-cell TAD-like domain boundaries matched the 3D modeling

very well (Fig. 3d). Using AMI and WS as the indexes, we compared the 3D-modeled

hierarchical domains with the TAD-like domains predicted by the three predictors [54]

(Fig. 3e). In both maternal and paternal chromosomes, the AMIs of deTOKI’s predic-

tion were significantly higher than those predicted by IS (P = 0.04 and 0.02, respect-

ively, two-sided Wilcoxon rank-sum test). The WS of deTOKI’s prediction was also

higher than that predicted by IS (P = 0.1 and 0.35, respectively). As the total number of

cells and TAD-like domains in this comparison was small, i.e., about 15–25 TAD-like

domains, we think the significance of the WS was acceptable.

Last, deTOKI exhibited a more stable performance compared to IS. Using chr1 in

PBMC cell #14 as an example, we performed 20 rounds of 50% downsampling on the

single-cell Hi-C reads and predicted TAD-like domains from the downsampled data.

Overall, the predictions of both predictors remained largely intact. For example, the

distribution of TAD-like domain lengths remained similar between the full and the

50% downsampled data (Additional file 2: Fig. S4b-c). In terms of AMI and WS,

deTOKI, IS, and scHiCluster performed equally well, i.e., AMI = 0.90, WS = 0.85 and

AMI = 0.90, WS = 0.87 and AMI = 0.89, WS = 0.87, respectively (Additional file 2: Fig.

S4d-e). The AMI and WS of deDoc were 0.80 and 0.71, which are lower values than
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Fig. 3 Comparison of TAD callers with Tan’s data [54]. a The radar plot shows the modularity and structure
entropy of predicted TAD-like domains in chr1 in 32 cells (15 GM12878 cells and 17 PBMC cells). The cells
were ordered by the modularity and structure entropy of deTOKI’s predictions. b,c Genome-wide
distribution of ChIP-seq peaks of structural proteins (CTCF and RAD21) and histone marks (H3K4me3 and
H3K36me3) flanking the single-cell TAD-like domain boundaries for the 16 GM12878 cells are shown in b
and c, respectively. The shadows represent 95% confidential intervals, as calculated by bootstrap. The y-axis
represents the mean number of peaks per bin with the same distance to the predicted TAD-like domain
boundaries (MNPPB). The enrichment p values are calculated by the permutation test (n = 10,000). d
deTOKI-predicted TAD-like domain boundaries match the boundaries predicted by 3D modeling [54]. The
example shows the original matrix of radii of gyration for chr10, cell #11 of GM12878. The deTOKI-predicted
allelic TAD-like domain boundaries are marked with vertical blue lines. e The AMI and WS between the 3D-
modeled hierarchical TAD-like domains (as defined in [54]) and predicted allelic single-cell TAD-like domains
in GM12878. f Significance levels of Pearson’s correlation coefficients between the number of contacts and
the number of predicted TAD-like domains by deTOKI, deDoc, IS, and scHiCluster in each chromosome of
150 mESCs [55]. The threshold “P value = 0.01” is indicated by the horizontal blue line. g An example of
mini-TAD-like domains predicted by deTOKI and IS. The mini-TAD-like domains in the circles are zoomed in
as embedded sub-plots. The color codes for the four TAD predictors are all identical to those in a. *P <
0.05, **P < 0.001, NS: not significant, two-sided Wilcoxon rank-sum test
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those of deTOKI. However, deTOKI outperformed IS in two respects. First, the num-

ber of deTOKI-predicted TAD-like domains relied much less on reads coverage com-

pared to IS. With Li’s data, the number of IS-predicted TAD-like domains was strongly

correlated with reads coverage on all chromosomes, while for deTOKI, only a moderate

correlation in this respect was found on five out of nineteen chromosomes (Fig. 3f).

Second, IS predicted more questionable mini-TAD-like domains, i.e., length < 100 kb.

Mini-TAD-like domains were typically found in the ultra-sparse region, depending on

reads coverage. Within all the TAD-like domains, 0.29% and 9.81% were considered as

mini-TAD-like domains, as predicted by deTOKI and IS (Fig. 3g and Additional file 2:

Fig. S4f-g), in the single cell, respectively.

Taken together, our assessment suggests that deTOKI works well with experimental

single-cell Hi-C data.

The improvement of deTOKI with data imputation

Data imputation is a commonly used strategy when handling single-cell data, e.g.,

scHiCluster [49] and Higashi [56]. We assessed the performance of deTOKI running

on imputed data by comparing deTOKI with data imputation and Higashi (Additional

file 1: Supplemental Note, Additional file 2: Fig. S10). We found that deTOKI and

Higashi performed in a similar manner and that deTOKI could be further improved by

data imputation, e.g., scHiCluster. Considering the substantial CPU time required by

Higashi (about 100-fold more CPU time than that required by deTOKI or scHiCluster;

see Additional file 6: Table S4), deTOKI is more efficient on TAD-like domain identifi-

cation with single-cell Hi-C data than Higashi.

TAD-like domain structure is highly dynamic at the single-cell level

Using AMI as the index, we investigated the cell-to-ensemble and cell-to-cell similarity

of TAD-like domains. Therefore, when we compared cell-to-ensemble and cell-to-cell

AMIs in Tan’s data (GM12878 single cells, chr1), we found TAD-like domains in single

cells to be more similar to ensemble than individual cells based on the comparison of

AMIs (Fig. 4a, Additional file 2: Fig. S5a-b). In other words, cell-to-ensemble AMIs

were significantly higher than cell-to-cell AMIs in all three scHi-C datasets tested. In-

triguingly, the average cell-to-cell AMI is even smaller than the cell-to-ensemble AMI

of another cell type, e.g., single cells of GM12878 vs. ensemble of K562 (Fig. 4a). For

example, the AMI of cell (GM12878)-to-ensemble (K562) and cell-to-cell (GM12878)

AMI are 0.858 and 0.848, respectively (two-sided Wilcoxon rank-sum test, P < 0.001,

Fig. 4a). Thus, our data suggested that the TAD-like domain structure in single cells is

quite dynamic, even bigger than inter-cell-type variation. The pattern we showed above

is not specific to GM12878, as it can also be seen in the other two tested single-cell Hi-

C datasets (Additional file 2: Fig. S5a-b). We note that the average AMI between single

cells of GM12878 and ensemble of GM12878 is significantly higher than that of ensem-

ble of K562 (Fig. 4a). We tested the assumption that TAD-like domain structure carries

information for cell identity in the section subtitled “TAD-like domain structure carries

information for cell identity” below.

Considering that TADs are conserved between cell types [14], two possible scenarios

may explain the above high-level dynamics of the TAD-like domain structure in single

Li et al. Genome Biology          (2021) 22:217 Page 10 of 26



cells. First, each individual cell employs a subset of the ensemble TADs. Second, each

cell has a certain number of additional cell-specific TAD-like domains. To test which

scenario is the more prevalent in the cell populations tested, we roughly defined three

types of variations between TAD-like domains, namely, merge, split, and shift (see Add-

itional file 2: Fig. S5c and “Methods”), where merge does not generate novel TAD-like

domain boundaries, while split and shift do. Using chr1 as an example, we found, on

average, 31.8%, 22.3%, and 26.6% of merge, split, and shift TAD-like domains, respect-

ively (Additional file 2: Fig. S5c-e), implying that a notable number of TAD-like domain

boundaries do not appear in the ensemble TAD structures. We term such boundaries

as single-cell-specific boundaries (scSB). In the next two sections, we will sequentially

discuss the dynamics of ensemble boundaries and scSBs.

Fig. 4 The dynamics of TAD-like domains in single cells. a The cell-to-cell and cell-to-ensemble similarity of the
deTOKI-predicted TAD-like domains. The single-cell data were from GM12878 [54] and compared to the
ensemble in GM12878 and K562. Cell #16 was marked as it was in M/G1 phase. b The distribution of ensemble
TAD boundaries over single cells. The control was set as a binomial distribution under the hypothesis that every
ensemble TAD boundary has identical potential of being a single-cell TAD-like domain boundary. The vertical
black lines marked 13 and 5 indicate the thresholds for the over- and under-represented boundaries in the cell
population, respectively. c The distribution of bins among the classes “scSB-1,” “scSB-2,” “scSB-m,” and “absent.”
The permutated control is shown in the boxplots. The distribution of H3K27me3 and H3K4me1 histone marks
flanking the deTOKI-predicted single-cell-specific ensemble, scSB-m, scSB-1, and scSB-2 TAD-like domain
boundaries are shown in d–g, respectively. The y-axis of panels d–g represents the mean number of peaks per
bin with the same distance to the predicted TAD-like domain boundaries normalized by the average in the
whole genome (MNPPB). The shadows represent 95% confidential intervals, as calculated by bootstrap. h The
distribution of scSBs flanking the ensemble TAD boundaries. i The ROC curves of classification between scSB-1,
scSB-2, and scSB-m based on either ChIP-seq peaks or the distance to the nearest ensemble boundaries. *P <
0.05, **P < 0.001, NS: not significant, two-sided Wilcoxon rank-sum test

Li et al. Genome Biology          (2021) 22:217 Page 11 of 26



Unnested ensemble TADs were frequently seen in single GM12878 cells.

We asked whether the ensemble TAD boundaries were purely randomly distributed in

single cells. A simple assumption for this randomness would be that the distribution of

the ensemble TAD boundaries is binomial in the cell population. To examine this as-

sumption, we chose Li’s data as an example and modeled the distribution with a bino-

mial B (150,0.06) [55], where 150 is the number of cells and 0.06 is the average

frequency with which an ensemble TAD boundary appears in a single cell. We found

that 453 and 452 boundaries (out of 2602) appeared in more than 12 and in less than 6

cells, respectively (Fig. 4b). Those numbers significantly deviate from the expectation of

binomial null hypothesis (P < 0.001). This finding suggests that a group of ensemble

TAD boundaries, termed as popular boundaries, occurs more frequently in the cells,

while another group of boundaries, termed as unpopular boundaries, tends to be spe-

cific to a subpopulation of the cells. GO analysis showed that genes on the popular

boundaries are enriched for terms related to cellular responses to DNA damage stimuli

(P = 2.21E−3), while genes on the unpopular boundaries are enriched for terms related

to negative regulation of cell-matrix adhesion (P = 1.52E−4, Additional file 2: Fig. S6d-

f). This result further supported the assumption of a nonrandom distribution of ensem-

ble TAD boundaries in single cells.

Both nested and unnested TAD boundaries were found in the ensemble [26]. We

asked how these two types of boundaries are distributed in single cells. We chose chr1

in the GM12878 cells Hi-C data (termed hereinafter as Rao’s data [18]) as an example.

We defined the nested and unnested boundaries and compartment domains, as previ-

ously described (see “Methods” [26]). Interestingly, by comparing the number of cells

that carry such boundaries, we found that unnested boundaries were significantly

enriched in single cells. In the 15 single cells, the 20 nested ensemble TAD boundaries

appeared 14 times, while the 20 unnested ensemble boundaries appeared 44 times, be-

ing significantly more common than nested ones (P value = 0.003, two-sided Wilcoxon

rank-sum test, Additional file 2: Fig. S6a-c). Taken together, our analysis suggested that

ensemble TADs are dynamic in nature and that unnested ensemble TAD boundaries

are more frequently chosen in single GM12878 cells.

Single-cell-specific TAD-like domain boundaries may adhere to the ensemble boundaries

The scSBs may not result entirely from stochastic fluctuation. First, we identified a

large number of single-cell-specific boundaries (scSB) using deTOKI. About 89.3% of

TAD-like domain boundaries in single cells were not found in the ensemble if we de-

fined two boundaries as identical when they were in the same bin. Those scSBs were

less likely to result from coverage bias, as strong correlation between the scSBs and

read coverage was rarely seen (Cor = 0.296, P = 0.284). Because of data sparsity, not all

chromosomes found reads in every cell. For this analysis, we therefore only looked at

the largest chromosome (chr1) for which reads were found in most cells. The following

analysis was performed on the whole genome. Second, the distribution of scSBs in the

cell population is not random. We grouped all scSBs into 3 classes by the number of

cells that carry these scSBs (number = 1, =2, > 2, denoted as scSB-1, scSB-2, and scSB-

m, respectively). Compared to permutated controls, far more scSBs in the scSB-m class

were found and far fewer scSBs in the scSB-1 and scSB-2 classes (P < 1E−4, Fig. 4c).
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Moreover, bins not taken as boundaries for any cells in our data were also more preva-

lent than permutated controls (“Absent” in Fig. 4c). These results imply that the bins

are either deficient or relatively prevalent, i.e., either with too few or too many cells to

function as domain boundaries, respectively.

Third, scSBs have characteristic histone marks. We mapped all histone marks (except

for H3K4me3 and H3k36me3) that have publically available ChIP-seq data for

GM12878 cells in ENCODE. The distribution of histone marks showed either enrich-

ment or depletion at the scSBs, similar to the ensemble TAD boundaries. For example,

H3K27me3 and H3K4me1 were enriched and depleted around the boundaries in single

cells, respectively (Fig. 4d, e; Additional file 2: Fig. S7a-b). However, this pattern fluctu-

ated with larger variation around ensemble boundaries (Additional file 2: Fig. S7d). We

also observed a similar enrichment in IS- and deDoc-identified TAD-like domain

boundaries (Additional file 2: Fig. S7a-b). This enrichment of H3K27me3 was higher in

scSB-m than that in scSB-1 and scSB-2 (Fig. 4f, g, Additional file 2: Fig. S7e). Indeed,

more ChIP-seq peaks represented histone marks in scSB-m (Additional file 2: Fig. S7c

and f). This line of evidence suggests additional constraint above the stochastic random

walk.

To investigate plausible constraints on the scSBs, we compared them with the ensem-

ble boundaries in chr1. We found a strong association between the two classes. First,

7.89% of the scSBs in GM12878 can be found in K562 ensembles, which means that at

least some of the GM12878 single-cell-specific boundaries are likely to be insulative in

the K562 ensemble. Second, the bins that carry scSBs tend to be close to ensemble

TAD boundaries. 18.9% of scSBs are located within an 80 kb (± 40 kb) region flanking

the ensemble boundaries (Fig. 4h), and the average distance to the nearest ensemble

boundaries from scSB-m is significantly smaller than that from both scSB-1 and scSB-2

(Additional file 2: Fig. S7g). Last, we built a simple logistic regression model to distin-

guish scSB-1 and scSB-2 from scSB-m using the number of ChIP-seq peaks as features,

and we found 5 features, including CTCF, H3K4me1, H3K4me2, H3K9ac, and

H3K36me3, that were most relevant in this respect (Additional file 2: Fig. S7h). How-

ever, the AUC (0.585) was much lower than the AUC (0.666) of a model that directly

used the shortest distance to an ensemble TAD boundary as the feature (Fig. 4i), sug-

gesting that distance is the most important factor restricting the biogenesis of scSB.

The importance of distance suggests that genesis of scSBs may not be completely ran-

dom, but rather tends to fall within certain restricted regions common to all, or most,

human cells, and which is, at least to some extent, represented by the ensemble

boundaries.

Altogether, our analysis indicates that a large amount of cell-to-cell variations in the

TAD-like domain structure, the prevalence of cell-specific domain boundaries in cells,

and a large portion of the single-cell-specific boundaries may not purely result from

stochastic fluctuation in single cells.

The TAD-like domain structure carries information for cell identity

Previously, Tan et al. showed that cell types can be classified using single-cell Hi-C data

combined with sequence features of the reads [54]. Now we ask whether the TAD-like

domain structure alone can be used to classify single cells. Using WS as the similarity
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index for all three single-cell Hi-C datasets, we found that single cells could be cor-

rectly classified by the TAD-like domain structure alone. Tan’s dataset [54] consists of

two cell types, GM12878 and PBMC. Both deTOKI and IS can completely distinguish

the two cell types using the predicted TAD-like domain as a feature (AUC = 1.0, 1.0,

and 0.863, for deTOKI, IS and deDoc, respectively, Fig. 5a). Flyamer’s dataset [50] con-

sists of non-surrounded nucleolus (NSN) and surrounded nucleolus (SN) oocyte cell

types, representing transcriptionally active immature and inactive mature oocytes, re-

spectively [50]. The deTOKI could distinguish these two cell types much better than ei-

ther IS or deDoc (AUC = 0.73, 0.66 and 0.52 for deTOKI, IS, and deDoc, respectively,

Fig. 5b). Flyamer’s dataset also consists of zygote-mats and oocytes. The deTOKI distin-

guished these better as well (AUC = 1.0, 1.0, and 0.89 for deTOKI, IS, and deDoc, re-

spectively, Additional file 2: Fig. S8e). In Li’s data [55], the Methyl-HiC data consists of

150 single cells cultured in two different media: 2i and serum. We found that the TAD-

like domains predicted by deTOKI could also better distinguish cells with different

Fig. 5 The deTOKI-predicted single-cell TAD-like domains characterize cell identity. The classification of
single cells based on predicted TAD-like domain boundaries in Tan’s, Li’s, and Flyamer’s datasets are shown
in a–c, respectively. Each dot represents a cell. The x- and y-axis represent the PC1 calculated by deTOKI
and IS, respectively. The embedded plots show the AUC of the classification by each program. Cell #16 is
colored in green in panel a, as it was in M/G1 phase. d The correlation of DNA methylation between bin
pairs. The “inter-TAD-like domain” indicates that the two bins are separated by a predicted TAD-like domain
boundary, while the “intra-TAD-like domain” indicates that the two bins belong to the same predicted TAD-
like domain. Only bins fulfilling the criteria of (1) being members of pairs separated by 240 kb and (2)
having reads containing a total of 2 or more CpGs, were included in this plot. *P < 0.05, **P < 0.001, NS:
not significant, Fisher’s z-test [68]
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growing conditions than could IS and deDoc (AUC = 0.691, 0.564, and 0.622 for

deTOKI, IS, and deDoc, respectively, Fig. 5c). The classification of cells in different

growth media may not be trivial, as the GO analysis showed that the genes on serum-

specific TAD-like domain boundaries were enriched for the term “DNA methylation

on cytosine” (Additional file 2: Fig. S8a-b, P = 7.28E−4), which is consistent with the

fact that serum-cultured mESC has a higher DNA methylation rate [55]. The serum-

specific TAD-like domain boundaries were also enriched for the gene regulation-

related GO terms, e.g., positive regulation of gene expression and epigenetic features (P

= 8.20E−4), which agrees with the fact that serum-cultured mESCs have more hetero-

geneous transcriptional activity than cells cultured in 2i [57–59]. Further, epigenetic

features were distinguished between the serum- and 2i-specific TAD-like domain

boundaries (Additional file 2: Fig. S8c). Altogether, deTOKI predicted TAD-like do-

mains in single cells carrying reliable information about cell identity.

The DNA methylation pattern is highly correlated between TAD-like domain boundaries

at the single-cell level

It has been suggested that spatially approximated genome loci are prone to share simi-

lar epigenetic patterns [60]. We thus asked if this feature could also be seen in single

cells. In this case, we would expect to see lower correlations in DNA methylation be-

tween the inter-TAD-like domain bins than that between intra-TAD-like domain bins

in the single cells. To test this speculation, we looked at Li’s data [55]. First, at the en-

semble TAD level, the genome loci flanking the strongly insulated TAD boundaries

have lower correlations on DNA methylation than those flanking the weakly insu-

lated TAD boundaries (Additional file 2: Fig. S8d). The ensemble boundaries were

classified into strong and weak groups with an identical number according to the

insulation scores. The ensemble TAD boundaries of mESC were downloaded from

the work of Dixon and colleagues [14], and the insulation scores at those boundar-

ies were calculated by the pooled contact matrix of Li’s data. The average PCCs

were 0.546 and 0.490 for weak and strong boundaries, respectively, and this correl-

ation could also be seen if the boundaries were classified into more groups (Add-

itional file 2: Fig. S8d). Next, we examined the inter-TAD-like domain and intra-

TAD-like domain PCCs of DNA methylation level in the single cells. Indeed, when

the TAD-like domains were defined by deTOKI or IS (Fig. 5d), the intra-domain

PCCs were significantly larger than the inter-TAD-like domain PCCs, while when

the TAD-like domains were defined by deDoc or the shuffled control, little differ-

ence was noted. The PCCs of inter-domain bins from deTOKI-predicted TAD-like

domains were significantly lower than those from IS-predicted TAD-like domains

(PCC = 0.520 vs. 0.523 for deTOKI and IS, respectively, p = 0.003), implying that

the boundaries predicted by deTOKI are more spatially insulated in single cells. Al-

though the average PCC between inter-domain bins was relatively low, it remains

notable. We speculate that this might be caused by the existence of weak TAD

boundaries, as discussed above. Together, our analysis suggested that spatially ap-

proximate chromatin loci are prone to carry similar epigenetic features and that

the dynamic nature of TAD-like domain structures at the single-cell level has not-

able consequences for the ensemble of the epigenetic landscape.
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Discussion
In present work, we have developed a TAD-like domain identification algorithm that

can work on sparse data at the single-cell level. We assessed the accuracy and robust-

ness of deTOKI in downsampled, simulated, and experimental single-cell Hi-C data,

and we compared deTOKI to the two best-performing tools on sparse data, IS, and

deDoc [43]. The assessment showed that deTOKI not only outperformed IS and deDoc,

but also reliably predicted TAD-like domains in experimental single-cell Hi-C data and

is thus the first published tool with such capacity.

We took advantage of NMF on handling sparse data for decomposition of the Hi-C

contact matrix. NMF has been widely used in single-cell data analysis, e.g., coupled

NMF [45]. The boundaries defined by deTOKI were the optimal saddle points, which

are also the genome loci that insulate chromatin interactions. The combination of

NMF and insulation detection enabled deTOKI to achieve reliable TAD-like domain

prediction on sparse data.

Future deTOKI work will involve the following features. First, we will improve sensi-

tivity in the contact desert regions. New experimental technologies for higher data

coverage have been able to reach the contact desert region [54], but algorithms can still

be improved. We noticed that several tools have been uploaded to the preprint severs,

e.g., Higashi [56] and 3DVI [61], to integrate embedding and data imputation for

single-cell Hi-C data and, therefore, improve data quality. To fully address the issue of

contact desert region, the approaches that integrate sensitive TAD detectors, e.g.,

deTOKI, we introduced here, data imputation and new experimental technologies may

be necessary. Second, introduction of a better assessment for TAD-like domain reliabil-

ity would be extremely useful when the detection probes the deep contact desert re-

gions. Finally, deTOKI needs to gain some speed. Although the current running speed

of deTOKI is acceptable, it is slower than deDoc. Parallelization is one way to improve

the speed, as deTOKI works on split genome fragments. However, we sought to

optimize the algorithm so that access to a supercomputer is not necessary to scan the

whole genome.

With the ability of probing TAD-like domain structures in single cells, we examined

the dynamics of the domain boundaries. Three novel features were revealed. First, al-

though cell-to-cell variation is large, most single-cell TAD-like domain boundaries ad-

hered to the ensemble consensus. Since only a small fraction of boundaries in the

ensemble can be detected in each single cell, the dynamics of TAD-like domains is

likely to be high. However, since most scSBs adhered to the ensemble consensus, this

may indicate the existence of subpopulations in the isogenic cell population. Whether

the cells would constantly stay in one subpopulation or switch between subpopulations

will be an interesting question to ask in future studies. Second, our data showed that

TAD-like domain boundaries are prone to be unnested TAD boundaries, while little

bias was noticed in compartment domain. This result may indicate that the biogenesis

of TADs and compartment domain differ in principle. The last novel feature is the en-

richment or depletion of certain histone marks at, or flanking, the scSBs (Fig. 4d–g,

Additional file 2: Fig. S7d-e). As we do not have single-cell ChIP-seq data available, it

would be interesting to ask if those histone marks can, indeed, be observed in single

cells. If the answer is in the affirmative, then many as yet undiscovered properties of

scSBs may be linked to the function of TAD-like domains in single cells. Preliminary
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GO analysis showed strong association between the enriched functional terms and cell

identity (Additional file 2: Fig. S8), hinting at the profound functions the scSBs may

have. To further reveal the mechanisms of 3D genome folding, the principle and func-

tion of the domain structure at the single-cell level will be key questions to ask. The

deTOKI provides a basic tool for addressing those questions.

Conclusions
We developed a new method, termed deTOKI, using NMF to decode TAD-like

domain boundaries from ultra-sparse Hi-C data. The deTOKI not only outper-

formed IS and deDoc, but also reliably predicted TAD-like domains in experi-

mental single-cell Hi-C data. By applying deTOKI to public experimental single-

cell Hi-C data, we found that the domains adhere to the ensemble, even though

the TAD-like domain structure is highly dynamic between the cells, suggesting

their tight regulation. Finally, we found that the insulation property of the TAD-

like domain boundaries also has a major effect on the epigenetic landscape in in-

dividual cells.

Methods
The simulation of single-cell and reference Hi-C

To simulate Hi-C, we constructed a 3D model using IMP with default settings at 10 kb

resolution for any given 5Mb genome region [53]. We simulated the reference and

single-cell Hi-C data as follows [62].

Simulation of the reference Hi-C: For any two genome loci i and j, the weight was set

as

Weight(i, j) = 1/distance(i, j),

where the distance was Euclidean. The chance of being sequenced in a Hi-C was then

set as the normalized weights, and the expected read number was calculated by the

chance times the total number of reads. The normalization was performed so that the

total number of sequence reads was identical to that of widely used bulk Hi-C data

[14], being the equivalent of 0.35M reads per 5-Mb region. Hi-C reads were simulated

by Poisson distribution with the expectation calculated above.

Simulation of the single-cell Hi-C. For any two genome loci i and j, the weight was

set as

Weight(i, j) = D-distance(i, j),

where the distance was Euclidean, and D is the threshold. Only genome loci hav-

ing a Euclidean distance less than D were considered to be contacting. The chance

of being sequenced in a single-cell Hi-C was then set as the normalized weights,

and the expected read number was calculated by the chance times the total num-

ber of reads. The normalization was performed so that the total number of se-

quenced reads was identical to Tan’s data [54], being equivalent to 1000 reads per

5-Mb region. Hi-C reads were simulated by Binomial distribution with the expect-

ation just calculated. The 40 kb resolution Hi-C contact matrix was used for actual

TAD-like domain detection. Thus, the simulated 10 kb resolution matrix was

binned into 40 kb resolution.

Li et al. Genome Biology          (2021) 22:217 Page 17 of 26



Processing of Hi-C data

Bulk Hi-C data were normalized by the ICE method [63], while we did not normalize

single-cell Hi-C data owing to its sparse nature, and we also bypassed the normalization

step on the downsampled data when its sparsity was comparable to that of single cells.

In this work, we used a sampling rate of 1/800 at the single-cell level. All simulated and

experimental data used in this study are summarized in Additional file 7: Table S5.

deTOKI

We split the chromosomes into a series of overlapped sliding windows with length

equals L (Mb). Thus, the neighbor windows overlapped each other by L/2Mb (Fig. 1b).

We removed windows with fewer than 100 intra-window contacts. The default L is 8

Mb in deTOKI. The TAD-like domains were then predicted as follows.

1. The clustering of bins. In each 8-Mb window, we perform NMF on its contact

sub-matrix by the function “sklearn.decomposition.NMF” of the scikit-learn pack-

age in Python [44], with “random” being the initialization setting (Fig. 1c). The par-

ameter “n_components” represents the dimension of the factor matrices. The

parameter “n_components” traverses an appropriate interval according to the aver-

age length of the TAD(s) and the length of the window. The suggested numbers

for mammalian cells were 8, 9, …, 13. Bin i and bin j are clustered if the maximums

in columns i and j of the coefficient matrix are in the same row.

2. Domain boundary detections. For each candidate of “n_componets” equal to n, we

perform NMF k times in which the seed for random initialization, namely

“random_state,” traverses within the interval [0, k-1]. The default k was 10, as we

found little difference on the predicted TAD-like domains between k = 10 and 50

for both single-cell and bulk Hi-C data (Additional file 2: Fig. S1a). We define a

consensus map C, Ci; j ¼ x
k ; i; j ¼ 1; 2…200;where x denotes the number of NMFs

that have bin i and bin j clustered together. Then, the cluster rate of any given bin

i (CRi) was defined as the average value of all elements in the sub-square-matrix of

C cornered at (i, i) with 11 bins along the matrix diagonal. CRi is called the local

minimum cluster rate if the following inequality is satisfied:

Xiþ2

j¼i

CRj−
Xi−1
j¼i−3

CRj < 0≤
Xiþ3

j¼iþ1

CRj−
Xi
j¼i−2

CRj :

The location and strength of the bins that have local minimum cluster rates were re-

corded. We assume the location set is {i1, i2,…, im}. For any t = 1…m, the strength of

binit was defined as the local maximum CR minus CRit .

Strength of binit ¼ max CRit−1 ;CRit−1þ1;…;CRitþ1

� �
−CRit ;

where i0 = 1, im + 1 = 200. Thus, the TAD-like domain boundaries were defined as

the strongest n − 1 bins and the points that have a CR strength larger than 0.3 (Fig.

1d).
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3. The silhouette coefficient calculation. The silhouette coefficient was introduced to

provide an evaluation of clustering validity, and it is often used to select an

“appropriate” number of clusters [64]. For each candidate of “n_componets,” we

calculated the silhouette coefficient between the consensus map Ci, j and the TAD-

like domain boundaries {i1,…im}, as

i0 ¼ 1; imþ1 ¼ 201;Di; j ¼ 1−Ci; j

Silhouette coefficient ¼

Pm
k¼0

Pikþ1
a¼ik

mean1≤b<ik or ikþ1 ≤b<201Da;b−meanik ≤b<ikþ1Da;b

max mean1≤b<ik or ikþ1 ≤b<201Da;b; meanik ≤b<ikþ1Da;b
� �

200
:

The candidate n with the biggest silhouette coefficient was chosen, and its associated

domain boundaries were considered as the final prediction (Fig. 1d, e).

4. The reported TADs. The deTOKI reports the clusters in the middle half of each

window, i.e., the region from the L/4 to 3 L/4 window, as the predictions.

5. Suggested parameter settings. For low-resolution Hi-C data, we recommend 8-Mb

window and 40-kb binsize as the proper setting. Although the difference of pre-

dicted TAD-like domain between different binsize for both single-cell and bulk Hi-

C data were found to be minor, they are adjustable as parameters in deTOKI (Add-

itional file 2: Fig. S1b).

6. Running time. As deTOKI runs on each sliding window independently, the overall

complexity can be written as O(n) where n represents the number of sliding

windows for the whole genome. This complexity can also be evidenced by the

almost linear correlation with the chromosome lengths (Additional file 2: Fig. S1c).

Within each window, let the window size be L and the binsize be B, and we have

the contact matrix size = L/B. Because the basic computing unit in deTOKI is

NMF, which has the complexity of O(ab), where a and b represent the number of

rows and columns in the input matrix, i.e., the contact matrix, the complexity for

each NMF is O((L/B)2). Together, the total computing complexity is O(n*(L/B)2). It

took about 1 h to identify TAD-like domains in 40 kb resolution data of the whole

genome of mm9 with Flyamer’s data [50]. The testing was performed in a com-

puter with Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60 GHz with one core, and it

could be as fast as finishing the same job in 6 min when using 16 cores (Additional

file 2: Fig. S1c).

Execution of other TAD predictors

Most of TAD predictors were executed with default parameters. We removed the mini-

TADs predicted by deDoc, i.e., TADs shorter than 200 kb and 300 kb, in the simulated

and experimental single-cell data, respectively. We calculated hierarchical domain and

radii of gyration in the single-cell Hi-C data according to Tan et al. [54]. To properly

compare hierarchical domains and TAD-like domains, we cut the hierarchical tree such

that the number of domains and TAD-like domains were similar. The running time for

each tool can be found in Additional file 6: Table S4.
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The similarity of two sets of TAD-like domains

Given two sets of domains, T = {T1, T2,…, Tn} and K = {K1, K2,…, Km}, N is the length

of contact matrix. We assess their similarity using adjusted mutual information (AMI)

[51], weighted similarity (WS) [42], BP distance (BP) [52], and variation of information

(VI) [38].

Adjusted mutual information AMI (T, K)

Mutual information MI (T, K) was defined as

MI T ;Kð Þ ¼
Xn
i¼1

Xm
j¼1

P i; jð Þ log P i; jð Þ
P ið ÞP0

jð Þ

� �
;

where

P ið Þ ¼ Tij j.
N
; P

0
jð Þ ¼ K j

�� ��	
N
;P i; jð Þ ¼ Ti⋂K j

�� ��	
N
:

Then, the adjusted mutual information AMI (T, K) was defined as

AMI T ;Kð Þ ¼ MI T ;Kð Þ−E MI T ;Kð Þf g
max H Tð Þ;H Kð Þf g−E MI T ;Kð Þf g ;

where H denotes the standard Shannon entropy, and E denotes expectation. AMI

was calculated by the function adjusted_mutual_info_score in the Python module

sklearn.metrics. In real calculation, all predicted TAD-like domains and intermediate

windows of TAD-like domains are included in T and K.

Weight similarity WS (T, K)

The weight similarity WS (T, K) was defined as

WS T ;Kð Þ ¼

Xm
j¼1

STK jð Þ� K j

�� ��
Pm

j¼1 K j

�� �� ;

where

STK jð Þ ¼ maxni¼1

Ti⋂K j

�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tij j� K j

�� ��q
8><
>:

9>=
>;:

Because WS is an asymmetric index for similarity, we always put the predicted TAD-

like domains from raw data in T and the TAD-like domains from downsampled data in

K, while the intermediate windows of the domains were not included in either T or K.

The enrichment of ChIP-seq peaks at the boundary region of domains

For any given resolution, e.g., 40 kb, a boundary region was represented by a vector of

21 entries, where the 1st to the 10th entries represent upstream 10 bins, the 12th to

the 21st entries represent downstream 10 bins, and the 11th bin represents the middle

point of the boundary. The value of each entry is the number of ChIP-seq peaks in each

bin, and the middle entry is the total number of peaks in this boundary. These vectors
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are then summarized up to a total vector vi(i = − 10, −9,…, 9, 10). We performed a per-

mutation test for enrichment on the genome region of { v−1 ⋃ v0 ⋃ v1} and a Mann-

Whitney U test between { v0} and { v−10 ⋃ v10} for the significance of the pattern. We

define the MNPPB (mean number of peaks per bin) to reflect the enrichment of ChIP-

seq peaks on the boundary of TAD-like domains, as

MNPPBi ¼ mean vif g:

Evaluation index of TAD-like domains

Given TAD-like domains T = {T1, T2, T3, T4,…,Tn} and contact matrix Fi, j(i, j = 1, 2…

N), we assess the structural property of domains by using the following two indices, ac-

cording to the literature:

Structure entropy (SE) [42]

Num ¼
X

1≤ i≠ j≤N
Fi; j;T0 ¼ 1;Tnþ1 ¼ N þ 1;

SE T; Fð Þ ¼
X

0≤ i≤n

P
Ti ≤a<Tiþ1;b≠a Fa;b−

P
Ti ≤a≠b<Tiþ1

Fa;b

Num
� log

P
Ti ≤a<Tiþ1;b≠a Fa;b

Num

� �,
logN

þ

X
0≤ i≤n

X
Ti ≤ j<Tiþ1

P
b≠ j F j;b

Num
� log

P
b≠ j F j;bP

Ti ≤a<Tiþ1;b≠a
Fa;b

 !,
logN

:

Modularity index (M) [41]

After removing the entries in the diagonal of the contact matrix, we split the chromo-

some into 6-Mb nonoverlapping windows. We further removed windows with fewer

than 100 intra-window contacts, as the method was designed for TAD assessment with

sufficient data [41]. For each window, we consider domain boundaries in/of the region

S = {S0 = 0, S1, S2, S3, S4,…,Sm = 150} and the log transform contact matrix of the re-

gion Ei, j(i, j = 1, 2…150). Then we calculated the modularity of this region as follows.

The modularity of each 6-Mb region was then averaged into a modularity index.

Mx;y ¼

Ex;y−

P
a≠xEx;a �

P
a≠yEy;aX

1≤ i≠ j≤150

Ei; j

0
BB@

1
CCA,

X
1≤ i≠ j≤150

Ei; j

Modularity ¼
X

0≤ i<m

X
Si ≤ x≠y<Siþ1

Mx;y

Unsupervised classification of single cells

The classification based on TAD-like domain similarity in chromosome k between n

cells is performed by PCA of the Ci, j, k(i, j = 1, 2,…, n), which is the self-Spearman
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correlation coefficient matrix of the similarity matrix Mi, j, k(i, j = 1, 2,…, n), calculated

as follows:

Mi; j;k ¼ WS Domaincell#i;Domaincell# j
� �

Ci; j;k ¼ Spearman M
!

i;�;k ;M
!

j;�;k
� �

The classification based on TAD-like domain similarity in all chromosomes between

cells is performed by PCA of the matrix Ti, j(i, j = 1, 2,…, n) and calculated as follows:

V
!

�;k ¼ PC1 C�;�;k
� �

Si;k ¼ symbol V i;k
� � ¼ 1 if V i;k > 0

0 if V i;k ¼ 0
−1 if V i;k < 0

8<
:

Ti; j ¼
X

k¼1;2;…
Si;k�S j;k

� �
=
X

k¼1;2;…
Si;k�S j;k

�� ��� �
; if
X

k¼1;2;…
Si;k�S j;k

�� �� > 0

0; otherwise

(

If data in chromosome k of cell i are not available, then Si, kwill be set to 0, and the

Ts can only be calculated when both cells have sufficient data available.

After calculating PC1 of matrix Ti, j(i, j = 1, 2,…, n), we get the classification index of

each cell. Last, we access the classification by calculating the AUC of the ROC curve.

The definition of matched, merged, split, and shifted TADs

As previously defined [65], the TAD boundary regions were defined as the flanking

100-kb region of the boundary bins, and the region between these TAD boundary re-

gions was considered as being inside the TADs.

� Matched TADs: if both boundaries of a TAD in one condition aligned within TAD

boundary regions in another condition.

� Merged TADs: if two or more TADs in one condition aligned inside of a TAD in

another condition.

� Split TADs: if one boundary aligns to a boundary region of one TAD and the other

boundary aligns inside of a different TAD.

� Shifted TADs: if the two boundaries of a TAD align into two different TADs.

The definition of nested TAD boundary, unnested TAD boundary, and compartment

domain boundary

Using Rao’s data at 40 kb resolution in chromosome one [18], we called TADs with

deTOKI and obtained 253 TADs. Then the TAD boundaries were sorted by the num-

ber of contacts between the up- and downstream 400 kb regions, and 20 boundaries

with the least number of cross-boundary contacts were removed. This was done be-

cause the removed boundaries are mostly located in the unmappable genome region.

The top 20 TAD boundaries with highest cross-boundary contacts were defined as

nested TAD boundaries, and the bottom 20 were defined as unnested TAD boundaries.

The threshold of 20 does not substantially affect the results, as we showed in
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Additional file 2: Fig. S6b, in which the threshold of 40 was used. A compartment do-

main boundary was defined as the TAD boundaries that had different compartment

scores between the flanking bins.

Definition of 2i-specific TAD-like domain boundary and serum-specific TAD-like domain

boundary

For 103 serum cells and 47 2i cells [55], we defined the bias of one bin as the difference

in proportion between the serum cells and the 2i cells for which this bin represents a

TAD-like domain boundary. We sorted all 40-kb bins in whole genome according to

the bias value and defined the top and bottom 400 bins as serum- and 2i-specific TAD-

like domain boundaries, respectively.
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