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Abstract

One challenge facing omics association studies is the loss of statistical power when
adjusting for confounders and multiple testing. The traditional statistical procedure
involves fitting a confounder-adjusted regression model for each omics feature,
followed by multiple testing correction. Here we show that the traditional procedure
is not optimal and present a new approach, 2dFDR, a two-dimensional false
discovery rate control procedure, for powerful confounder adjustment in multiple
testing. Through extensive evaluation, we demonstrate that 2dFDR is more powerful
than the traditional procedure, and in the presence of strong confounding and weak
signals, the power improvement could be more than 100%.
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Background
High-throughput genomic profiling technologies enable the interrogation of the bio-

logical system at different omics levels, generating enormous amounts of omics data

[1]. One central task of statistical analysis of omics data is to test the association be-

tween omics features and a covariate of interest [2]. The associated omics features,

once validated, can provide biological insights into health and disease, act as potential

targets for intervention and serve as biomarkers for clinical applications [3, 4]. How-

ever, observational omics studies are subject to various types of confounding [5–7].

Confounding arises when the relationship between the primary variable and the omics

feature is distorted by some other variable (confounder) due to its association with

both. Demographic variables like age, gender, race, and obesity are frequent con-

founders in omics association studies. For example, in cancer studies, cancer patients

are often older than benign controls [8]. In other diseases such as rheumatoid arthritis,

the prevalence could differ by gender [9]. Since these demographic variables are known
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to impact the omics profiles [7], their correlation with the variable of interest could con-

found the association analysis. Biological heterogeneity, such as the cell mixture in the tis-

sue sample, is also a significant source of confounding. This is because the cell types have

distinct omics profiles, and their composition could vary with the variable of interest. For

example, the leukocyte composition in the peripheral blood often shifts in the disease

condition, and therefore it could severely confound blood-based omics studies [5]. Finally,

technical variation, or batch effect, which occurs when the biological samples are not

processed or measured together, could strongly confound the associations of interest if

the samples are not randomized into the batches [6]. Although the batch confounding

can be avoided by careful study design, it is unfortunately prevalent in omics studies [6].

Confounding not only reduces the statistical power by introducing extra variability but

also increases the chance of false findings if not properly accounted for. Standard statis-

tical approaches to address confounding include stratification and regression, with the lat-

ter being most widely used due to its flexibility [10]. Although adjusting the confounders

in the regression model controls false positives, it nevertheless reduces the statistical

power. The need for multiple testing correction in omics association analysis further dete-

riorates statistical power [11]. In the presence of strong confounding, it is not unusual that

no significant associations could be recovered after adjusting for confounders and mul-

tiple testing. Therefore, improving the power under confounding and multiple testing is a

topic of critical importance and could potentially rescue an underpowered study.

Previous methods separate confounder adjustment from multiple testing. The stand-

ard approach, which fits a confounder-adjusted regression model for all omics features

followed by multiple testing correction such as false discovery rate (FDR) control [12,

13], is used predominantly [14]. However, confounders may affect only a subset of

omics features [15–18], and adjusting confounders for every omics feature will be an

over-adjustment, leading to substantial power loss. To rescue the power, one naïve idea

is to test the significance of the confounder first, and if it is not significant, we exclude

the confounder in the regression model. Although this strategy substantially improves

the power, controlling the type I error is difficult and heavily depends on the choice of

the significance cutoff. We found that this strategy fails to control the type I error

properly, even if we use a very lenient cutoff.

In this study, we take a different approach to this problem and integrate the con-

founder adjustment into multiple testing (FDR control) framework. The new approach

uses the statistic from the unadjusted analysis to filter out omics features that are less

likely to be associated with the covariate of interest or the confounder. FDR control is

then performed based on the adjusted statistic on the remaining features. The challenge

here is to account for the dependency between the unadjusted and adjusted statistic so

that the FDR is controlled. We provide a robust and powerful procedure, two-

dimensional false discovery rate control procedure (2dFDR), which is proved to offer

asymptotic FDR control and dominate the power of the traditional procedure.

Results
Overview of the two-dimensional false discovery rate control procedure (2dFDR)

2dFDR is based on linear models with the measurement of the omics feature as the

outcome, which is one popular modeling approach for functional omics data, and
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assumes the confounders are known. It depends on the unadjusted and adjusted test

statistics, denoted by ZU
i and ZA

i , respectively, from fitting both the unadjusted and the

confounder-adjusted model to the ith omics feature. 2dFDR proceeds in two dimen-

sions. In the first dimension, it uses the unadjusted statistic ZU
i to screen out a large

number of irrelevant features (noises) that are not associated with the covariate of

interest or the confounder. In the second dimension, it uses the adjusted statistic ZA
i to

identify the true signals on the remaining features and control the FDR at the desired

level. Although the unadjusted statistic is biased and captures the effects from both the

covariate of interest and the confounder, it can be leveraged to increase the signal dens-

ity and reduce multiple testing burden in the second dimension. Thus, 2dFDR boils

down to selecting features with j ZU
i j ≥ t1 (first dimension) and j ZA

i j ≥t2 (second di-

mension). The cutoffs t1 and t2 are chosen to achieve maximum power while control-

ling the FDR at the desired level. Figure 1A–C illustrate the idea using simulated data

(Additional file 1: Note S1), where we plot ZA
i against ZU

i for confounded scenarios.

The standard approach performs (one-dimensional) FDR control based on the adjusted

statistic ZA
i only (we refer it as 1dFDR-A). When there the correlation between the

variable of interest and the confounder (denoted as “cor(x, z)”) is high, the signals

(brown) and noises (blue) overlap much on ZA
i due to loss of power with confounder

adjustment (Fig. 1A). To achieve the desired FDR level, 1dFDR-A requires a high j ZA
i j

cutoff (blue line). For 2dFDR, it first uses ZU
i to exclude a large number of irrelevant

features (vertical red line). Next, a much lower j ZA
i j cutoff (horizontal red line) is used

to achieve the same FDR level. As a result, it achieves significant power improvement,

and the improvement increases with the correlation between the variable of interest

and the confounder (Fig. 1B, C).

A particular challenge for this new approach is to address the dependency between

the two dimensions. 2dFDR simultaneously selects t1 and t2 and considers the selection

effect in the first dimension (“Methods” and Additional file 1: Note S2). 2dFDR can be

viewed as a two-dimensional generalization of the classical Benjamini-Hochberg (BH)

procedure [12], where we search for the cutoff values in a two-dimensional space. An

intrinsic difficulty is to estimate the expected number of false rejections at a given t1
and t2; this is achieved by a non-parametric Empirical Bayes method [19] (Additional

file 1: Note S2.3). We have conducted a thorough theoretical investigation of the pro-

posed procedure and all the theoretical results are included in Additional file 1: Note

S3 and S4. Under suitable assumptions, we show that 2dFDR provides asymptotic FDR

control (Additional file 1: Note S3), and the power dominates the standard 1dFDR-A

(Additional file 1: Note S4).

Simulation studies to evaluate FDR control and power

We demonstrate the power and robustness of 2dFDR using comprehensive simulations

comparing to 1dFDR-U and 1dFDR-A, two one-dimensional FDR procedures based on

the unadjusted and adjusted model, respectively. A heuristic strategy (1dFDR-H), which

starts with the adjusted model and uses the unadjusted model if the effect of the con-

founder is not significant, was also compared. We refer the omics features affected by

the variable of interest as “true signals” and the omics features affected by the
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confounder as “confounding signals.” For both the true and confounding signals, we

use “signal density” and “signal strength” to represent the percentage of features af-

fected and their effect size, respectively.

Fig. 1 Illustration of the 2dFDR procedure using simulated datasets. A The decision boundaries for 1dFDR-A
(blue line) and 2dFDR (red line) at 5% FDR for a highly confounded scenario (ρ ≈ 0.8). 1dFDR-A relies on
adjusted statistic |ZA| only (one dimension), while 2dFDR is based on both the adjusted and unadjusted
statistic |ZA| and |ZU| (two dimensions). |ZU| is used to exclude a large number of irrelevant features (red
vertical line). After that, a less stringent cutoff of |ZA| (red horizontal line) can be used to achieve a higher
power while maintaining the same FDR. The aim of 2dFDR is thus to find the best cutoffs on the two
dimensions to maximize the power. B, C The power (true positive rate) difference between 1dFDR-A and
2dFDR increases with the correlation between the variable of interest and the confounder. When the
correlation is low (“+,” ρ ≈ 0.2), |ZA| and |ZU| are highly correlated, and |ZU| provides little extra information.
The power of 2dFDR is thus similar to that of 1dFDR-A. When the correlation is higher (“++,” “+++,” ρ ≈ 0.6,
0.8), the signals (brown) and noises (blue) are more difficult to separate on |ZA|. By using |ZU|, 2dFDR
excludes a large number of noises without losing many signals. The signal density on |ZA| is thus enriched,
leading to a significant power gain
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We first study the performance of 2dFDR under varying signal density, signal

strength, and cor(x, z) (“Methods”). Both 1dFDR-A and 2dFDR controlled the FDR at

the target level across settings, while 1dFDR-U and 1dFDR-H failed to control the FDR

under a medium or high cor(x, z) (Fig. 2A). 2dFDR was substantially more powerful

than 1dFDR-A when cor(x, z) was high and was comparable when cor(x, z) was low

(Fig. 2B). The power increase was more pronounced for weak and sparse signals, with a

percent increase of more than 100% (Fig. 2B). This is particularly relevant for real ap-

plications, where weak signals and strong confounding are the most challenging situ-

ation that needs novel methodological developments.

We next study the effect of the confounding signals’ strength and density by varying

their magnitudes (Fig. 3) while fixing the true signals’ strength and density. Similarly,

2dFDR maintained the FDR at the target level across settings (Fig. 3A) and was signifi-

cantly more powerful when cor(x, z) was medium or high (Fig. 3B). The power differ-

ence, however, decreased as the confounding signals became denser (top to bottom).

When the confounder affected 50% of the features, 2dFDR could be less powerful than

1dFDR-A even when cor(x, z) was high (Additional file 2: Figure S1). This is expected

since if the confounder affects every omics feature, 1dFDR-A, which adjusts the con-

founder for every omics feature, is optimal. Higher strength of the confounding signals

Fig. 2 Performance on simulated datasets across varying density and strength of the true signals. Average
false discovery proportions and true positive rates are compared at 5% FDR using simulated datasets.
1dFDR-U and 1dFDR-A represent the one-dimensional FDR control procedures based on the unadjusted
model and confounder-adjusted model, respectively. 1dFDA-H is a heuristic adaptive procedure that uses
the adjusted or unadjusted model depending on whether the confounder effect is significant (nominal p
value < 0.05). The performance is evaluated at varying signal strength (left: weak, right: strong), signal
density (top: low, bottom: high), and the correlation between the variable of interest and the confounder
(inside the panel, “+,” “++,” and “+++” represent a low, medium, and high correlation (ρ ≈ 0.2, 0.6, 0.8),
respectively). The density of the confounding signals is 10%, and the strength is moderate. 2dFDR and
1dFDR-A control the FDR at the target level (dashed line), while 1dFDR-U and 1dFDR-H fail to control the
FDR properly when the confounding is not weak (A). 2dFDR becomes substantially more powerful than
1dFDR-A as the correlation between the variable of interest and the confounder increases (B). The
difference is more pronounced when the signals are weak and sparse, as indicated by the percent increase
shown on top of the bars
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(left to right) also reduced the power difference. The results remained the same if we

simulated five confounders (Additional file 2: Figure S2).

We also studied the effect of colocation between the true and confounding signals,

where the omics features were affected by both the variable of interest and the con-

founder (Additional file 2: Figure S3). We found that 2dFDR was more powerful than

1dFDR-A when the density of the confounding signals was low and cor(x, z) was high.

However, as the confounding signals became denser, 2dFDR could be less powerful

than 1dFDR-A when cor(x, z) was low.

Since 2dFDR is developed based on the assumption that the omics features are inde-

pendent, it is important to study the robustness of 2dFDR to the correlations among

omics features. We thus simulated block and autoregressive correlation structures

(“Methods”), which were commonly observed for omics data. We found that 2dFDR

was quite robust to these two correlation structures (Additional file 2: Figures S4 and

S5), and the FDR was controlled near the target level. 2dFDR maintained the power in

these scenarios.

2dFDR offers asymptotic FDR control, i.e., the FDR is proved to be controlled if the

sample size and feature size are large. It is interesting to study the sample size and fea-

ture size where it breaks down. We thus simulated sample sizes of 50 and 25 (Add-

itional file 2: Figure S6) and feature sizes of 500 and 100 (Additional file 2: Figure S7).

We found that the performance 2dFDR remained robust and powerful at the sample

Fig. 3 Performance on simulated datasets across varying density and strength of the confounding signals.
Average false discovery proportions (A) and true positive rates (B) are compared at 5% FDR using simulated
datasets. 1dFDR-U and 1dFDR-A represent the one-dimensional FDR control procedures based on the
unadjusted model and confounder-adjusted model, respectively. 1dFDA-H is a heuristic adaptive procedure
that uses the adjusted or unadjusted model depending on whether the confounder effect is significant
(nominal p value < 0.05). The density of the true signals is 10%, and the strength is moderate. The
performance is evaluated at varying confounding signal strength (left: weak, right: strong), confounding
signal density (top: low, bottom: high), and the correlation between the variable of interest and the
confounder (inside the panel, “+,” “++,” and “+++” represent a low, medium, and high correlation (ρ ≈ 0.2,
0.6, 0.8), respectively). 2dFDR maintains the FDR at the target level across settings and is significantly more
powerful when the correlation between the variable of interest and the confounder is not low (++/+++).
The power difference decreased as the confounding signals become denser (top to bottom)
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size of 50 and the feature size of 500. However, it became less powerful than the trad-

itional procedure at the sample size of 25. The FDR also started to be inflated at the

feature size of 100, especially when cor(x, z) was high. We also found that increasing

the sample size or feature size alone did not rescue the performance deterioration due

to the other being small (Additional file 2: Figure S8). Overall, 2dFDR is robust up to a

moderate sample size and feature size. For a very small sample or feature size, applying

2dFDR is not recommended.

2dFDR is computationally efficient and can scale up to a large sample and feature

size. It can be run in parallel on each grid point to further increase its computational

speed. Additional file 2: Figure S9 shows the computational time for running a simula-

tion instance at different sample sizes and feature sizes. With n = 800, m = 512k and

one confounder, 2dFDR completes the analysis in 546 s using a search grid of 50 × 50

without parallelization on a MacBook Pro laptop. The memory requirement is the same

as fitting regular linear regressions and requires only accommodating a matrix multipli-

cation of Ap × n Bn ×m, where p, n, and m are the number of covariates, sample size, and

feature size, respectively.

Evaluation of the detection power on real omics datasets

We apply 2dFDR to three different types of omics datasets to demonstrate its empirical

power on real data. We compare to the traditional adjusted procedure 1dFDR-A based

on the numbers of detected omics features at the same FDR level.

The first is a hepatocellular carcinoma transcriptomics dataset from TCGA [20] (n =

342, m = 19,329), which is used to detect gene expressions associated with human hepa-

titis B virus (HBV) infection [21]. Gender and ethnicity are confounders for this dataset

and were adjusted in the model. 2dFDR detected more genes than 1dFDR-A across dif-

ferent FDR levels (Fig. 4A). At the standard 5% FDR level, 1dFDR-A failed to identify

any HBV-associated genes, while 2dFDR successfully identified 27 genes.

The second is a metabolomics dataset [22, 23] (n = 289, m = 1,201), where the aim is

to identify serum metabolites associated with insulin resistance (IR), accounting for the

confounding effect of body mass index (BMI). Again, 2dFDR detected more IR-

associated metabolites at different FDR levels (Fig. 4B). At 5% FDR, 2dFDR and

1dFDR-A recovered 481 and 412 metabolites, respectively. 2dFDR was able to identify

the majority of the metabolites by 1dFDR-A (378 out of 412) and it also recovered 103

metabolites missed by 1dFDR-A.

Finally, we benchmark 2dFDR using an extensive collection of epigenomics datasets

from various epigenome-wide association studies (EWAS) using tissue samples [24]

(Additional file 2: Table S1). The objective is to identify differentially methylated CpG

positions (DMPs) associated with a condition of interest. Since a tissue sample contains

a mixture of cell types, each with a distinct methylation profile, the covariation of their

mixture proportion with the condition could strongly confound the associations of

interest [5]. To capture the cell mixture, we used surrogate variable analysis (SVA), and

the estimated surrogate variables were adjusted in the model [25]. For these EWAS

datasets, 2dFDR detected significantly more DMPs than 1dFDR-A in most datasets with

a median increase of 136% (Fig. 4C, D, Additional file 2: Table S1). Consistent with the

simulations, the power improvement was more pronounced when the signals were
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weak (lower part of the box plot in Fig. 4C). Moreover, 2dFDR was able to detect

DMPs in six datasets, where 1dFDR-A failed to identify any.

Validation of the increased detection power on EWAS datasets

To validate the additional DMPs detected by 2dFDR, we resorted to the five age-related

EWAS datasets (Additional file 2: Table S1) to see if the additional DMPs from one age

dataset had evidence of support from the other four. This was achieved by examining

the confounder-adjusted p value distribution of the DMPs detected by 2dFDR only (at

5% FDR) in the other four age datasets. If these DMPs from one age dataset were truly

age-associated, we expect to see smaller p values for them in the other age datasets,

compared to the p values of random CpG loci. Clearly, the distribution was enriched in

small p values, indicating the plausibility of DMPs detected by 2dFDR (Fig. 5A). Valid-

ation based on the two SLE datasets reached a similar conclusion (Fig. 5B).

Fig. 4 The empirical power of 2dFDR on real omics datasets. 2dFDR made more discoveries than 1dFDR-A
across FDR target levels for A TCGA hepatocellular carcinoma transcriptomics (RNA-Seq) dataset (m =
19,329, confounder: gender and ethnicity), B insulin resistance metabolomics dataset pooling polar
metabolites and molecular lipids (m = 1201, confounder: BMI). C, D Evaluation of 2dFDR on 54
epigenomics (450 K methylation array) datasets from EWAS of various phenotypes (m≅ 450,000,
confounder: cell mixtures). C Boxplot comparing the number of DMPs (differentially methylated positions)
detected by 2dFDR and 1dFDR-A at 5% FDR over the 54 datasets. 2dFDR recovered more DMPs than
1dFDR-A in 43 datasets. Each gray dot represents a dataset, and the same dataset is connected by a line. D
The distribution of the percent increase in detection power over the 54 datasets. 2dFDR achieves a median
percent increase of 136% over 1dFDR-A
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Fig. 5 Validation of 2dFDR using EWAS datasets. A The distribution of the confounder-adjusted p values for
those 2dFDR-exclusive DMPs in other age EWAS datasets. The diagonal parts show the densities of p values
of all loci for the five age EWAS datasets, serving as a baseline. The off-diagonal parts show the distribution
of p values of 2dFDR-exclusive DMPs in other age datasets. For instance, the first row shows the distribution
of p values for the 2dFDR-exclusive DMPs from EWAS26 in EWAS27 (green), EWAS30 (purple), EWAS39
(brown), and EWAS45 (orange). The distribution is enriched in smaller p values than the distribution of all p
values for the respective dataset (diagonal). B Similar validation using two systemic lupus erythematosus
(SLE) EWAS datasets (EWAS28 and EWAS29, Additional file 2: Table S1). C Validation using a downsampling
strategy on EWAS22 (n = 111). First, a list of “gold standard” DMPs (gDMPs) was created using Bonferroni
correction based on the p values from the adjusted analysis on the full dataset. Next, the full dataset was
downsampled to smaller sample sizes, and the ability of 2dFDR and 1dFDR-A in recovering those gDMPs
was compared. For each sample size, 100 replications were performed, and means and standard errors are
plotted. 2dFDR is more powerful in identifying these gDMPs at smaller sample sizes
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We further performed a downsampling analysis to validate the improved power of

2dFDR. We first curate a list of highly significant features using Bonferroni correction

based on the p values from the adjusted analysis on the full dataset. Next, we down-

sample the full dataset to smaller sizes and compare the ability of 2dFDR and 1dFDR-A

in recovering these highly significant features as a way of power assessment. We illustrate

this strategy using one EWAS dataset (EWAS22, n = 111), where the genome-wide

methylation difference was compared between smokers and non-smokers in African

American women using peripheral blood mononuclear cells [26]. With Bonferroni correc-

tion (alpha = 0.05) to the p values based on the full dataset, we identified 10 differentially

methylated CpG positions (DMPs) and these DMPs were treated as “gold standard” (we

label them as “gDMPs”). We then subsampled the full dataset to sample sizes of 20, 40,

60, 80, and 100, and compared the power (recovery rate) of 2dFDR and 1dFDR-A in re-

covering these gDMPs. We observed that 2dFDR outperformed 1dFDR-A at nearly all

sample sizes (Fig. 5C). The power improvement was more significant in the middle range

(i.e., n = 60 and 80). At the sample size of 100, the recovery rates of both 2dFDR and

1dFDR-A both reached nearly 100%.

Discussion
Confounding and high-dimensionality are the two major statistical challenges in omics

data analysis. Previous research separates these two problems, and methodological de-

velopments are focused on each of them. In this study, we integrate the confounder ad-

justment into multiple testing by performing two-dimensional false discovery rate

control based on both the adjusted and unadjusted statistics. Although the unadjusted

statistic is biased, it can be leveraged to enrich signals and reduce the multiple testing

burden. The resulting procedure, 2dFDR, has proven to offer asymptotic FDR control

and dominate the power of the traditional procedure based on the adjusted statistic

only. Through simulations and real data applications, we demonstrate that 2dFDR is

substantially more powerful than the traditional procedure. We also show that 2dFDR

is robust to the typical correlation structures seen in omics data and performs well at

moderate sample sizes and feature sizes.

The 2dFDR procedure is the most powerful when the correlation between the vari-

able of interest and the confounder is high, and/or the signals are weak. This makes it a

practically very useful approach since existing methods have limited power in these sce-

narios. 2dFDR also works best when the confounder only affects a subset of omics fea-

tures. This is usually a reasonable assumption for many conditions, such as age and

gender [15–18]. However, there could be situations where the assumption is violated.

For example, strong batch effects could possibly affect a large number of omics fea-

tures. In such a case, 2dFDR has a limited power advantage or could be less powerful

than the traditional procedure (Additional file 2: Figure S1). One diagnostic approach is

to calculate the percentage of the genomic variance explained (R2) by the variable of

interest and the confounder, respectively, using multivariate methods such as PERM

ANOVA [27]. If the R2 of the confounder is substantially larger than that of the vari-

able of interest, it indicates that the confounder signals may be very dense. Another ap-

proach is to study the distribution of the p values of the confounder from the adjusted

analysis. If we see a spike on the left end of the p value distribution, it also suggests

dense confounder signals.
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Since 2dFDR depends on the unadjusted statistic to filter features, when the con-

founder and variable of interest have opposite effects on the omics feature with similar

magnitude, they will cancel out each other’s effect, and the omics feature could be ex-

cluded erroneously in the first dimension. The optimal cutoff of j ZU
i j is thus deter-

mined based on the tradeoff between power reduction due to erroneously excluding

these relevant features in the first dimension and power increase due to reducing the

multiple testing burden and increasing the signal density in the second dimension. If

the true signals can only be revealed after adjusting for the confounder, for example,

when the true and confounding signals co-locate with opposite directions, unadjusted

statistics will not be informative. In this case, the best cutoff on j ZU
i j should be 0 and

2dFDR is then reduced to the traditional 1dFDR-A. However, in finite samples, it may

not always be possible to reduce 2dFDR to 1dFDR-A exactly and 2dFDR could be less

powerful than 1dFDR-A in such situations (Additional file 2: Figure S10A, 10% true

and confounding signals co-locate with opposite directions).

When the correlation between the variable of the interest and the potential confounder

is small, adjusting the confounder will lead to power improvement if the confounder has

large effects on the outcome and will not hurt the power much if the confounder has no

effects on the outcome. Therefore, in such situation, performing adjusted analyses is a

good choice. In fact, when cor(x, z) is 0, the test statistic ZU
i and ZA

i are almost perfectly

correlated (Additional file 2: Figure 10B), and performing two-dimensional FDR control

based on ZU
i and ZA

i is almost equivalent to performing one-dimensional FDR control

based on ZA
i . Again, in finite samples, there could be some power loss for 2dFDR (Add-

itional file 2: Figure 10B). Fortunately, cor(x, z) can be known before the analysis. We thus

do not recommend running 2dFDR when cor(x, z) is small.

The proposed method belongs to the general topic of using auxiliary data to increase

power in multiple testing, which has been an active research area recently [24, 28–32].

To be effective, the auxiliary data has to be informative of the probability of the null hy-

pothesis or the statistical power. In our case, the unadjusted statistic can be considered

as a particular type of auxiliary data, which informs the prior null probability (the

smaller the statistic, the more likely the null hypothesis). However, as the auxiliary data

(unadjusted statistic) and the primary data (adjusted statistic) are correlated even under

the null hypothesis, existing structure-adaptive multiple testing methods are not dir-

ectly applicable in our problem. 2dFDR explicitly addresses such correlation to enable

asymptotic FDR control.

Although developed in the linear model setting, the idea of 2dFDR can be extended

to the generalized linear model or generalized linear mixed effects model [33] using the

Wald z-statistic. Another interesting extension is to adapt 2dFDR to the setup where

the omics features are treated as covariates. For example, in genome-wide association

studies (GWAS), the genetic variants are usually modeled as covariates. We expect that

the same 2dFDR idea could be applied to GWAS to significantly increase its power,

since population stratification, which occurs when samples come from genetically di-

verse underlying populations, is an important confounder for GWAS [34].

In summary, 2dFDR is a new approach to confounder adjustment under multiple

testing. It is powerful, robust, and scalable. As a general methodology, we envision its

broad applicability of 2dFDR in omics association studies.
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Methods
The 2dFDR procedure

Here we give an overview of the method. Details could be found in Additional file 1:

Note S2. Consider the following m linear models

E Y ij
� � ¼ x jαi þ zTj βi; 1≤ j≤n; 1≤ i≤m ð1Þ

where n and m are the sample size and feature size, respectively, (Yi1,…, Yin)
T ∈ℝn × 1 is

the measurement of the omics feature i, x = (x1,…, xn)
T ∈ℝn × 1 is the vector of the co-

variate of interest, (z1,…, zn)
T ∈ℝn × d is the design matrix for the confounding factors,

and αi ∈ℝ, βi ∈ℝ
d × 1 are the coefficients associated with the covariate and confounding

factors respectively. Under the model, there are four different categories of features to

consider: (A) Solely associated with the covariate of interest: αi ≠ 0, βi = 0;(B) Solely as-

sociated with the confounder: αi = 0, βi ≠ 0; (C) Associated with both the covariate of

interest and the confounder: αi ≠ 0, βi ≠ 0; (D) Not associated with either the covariate

of interest or the confounder: αi = 0, βi = 0. Our goal is to develop a multiple testing

procedure for simultaneously testing m hypotheses H0, i : αi = 0 vs H1, i : αi ≠ 0 (i = 1,…,

m) in the presence of confounding effects. Let ZA
i be the z-statistic for testing whether

αi = 0 after adjusting for the confounding factors, and ZU
i be the unadjusted version

without adjusting for the confounding factors, i.e., setting βi = 0 in the model. Given

the thresholds t1, t2 ≥ 0, the 2dFDR procedure can be described as follows:

Dimension 1: Signal enrichment. Use the unadjusted statistic ZU
i to retain more

promising features S1 ¼ f1≤ i≤m : jZU
i j≥t1}.

Dimension 2: Excluding false positives. For i ∈ S1, reject H0, i with ZA
i ≥ t2:As a result,

the final set of discoveries is given by S2 ¼ f1≤ i≤m : jZU
i j≥ t1; jZU

i j≥ t2}.
Given t1, t2 ≥ 0 , the FDP is defined as

FDP t1; t2ð Þ ¼
Pm

i¼11 jZU
i j≥ t1; jZA

i j≥ t2; αi ¼ 0
� �

1∨
Pm

i¼11 jZU
i j≥ t1; jZA

i j≥ t2
� � ð2Þ

The key here is to select the thresholds t1, t2 to maximize the number of discoveries

while controlling the FDR (expectation of FDP) at the desired level.

As the number of false rejections is unknown (the numerator of FDP(t1, t2)), we re-

place it by the expected number of false rejections. We can show that the expected

number is given by
P

i:αi¼0Lðμi; t1; t2Þ ¼ PðjV 1 þ μij≥ t1; jV 2j≥ t2Þ with μi being a nuis-

ance parameter that depends on the confounding effect (the magnitude of βi and the

correlation between x and z) and (V1,V2) being bivariate mean-zero normal random

variables, whose covariance can be calculated from the data (Additional file 1: Note

S2.2). Note that the correlation between V1 and V2 is not equal to zero in general,

which captures the dependence between the two dimensions.

An intrinsic difficulty here is that the expected number of false rejections depends on

the effects of the confounding factors (i.e., μi) on each feature. As the number of fea-

tures could be huge, it thus requires estimating a large number of nuisance parameters.

To tackle this challenge, we adopt a Bayesian viewpoint by assuming that the nuisance

parameters μi are generated from a common prior distribution G. The Bayesian view-

point allows us to express the expected number of false rejections as a functional of the

prior distribution. Therefore, we can translate the task into estimating the prior
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distribution instead of the direct estimation of a large number of nuisance parameters.

The prior distribution can be estimated via the general maximum likelihood empirical

Bayes estimation [19, 35], which can be cast into a convex optimization problem (Add-

itional file 1: Note S2.3). Denote Ĝ the estimate of G.Then we can derive an approxi-

mate upper bound for FDP(t1, t2)), as follows:

FDP t1; t2ð Þ≲ m−1Pm
i¼1L μi; t1; t2ð Þ

m−1
Pm

i¼11 ZU
i

�� ��≥ t1; ZA
i

�� ��≥ t2� � ≈

R
L μ; t1; t2ð ÞdĜ μð Þ

m−1
Pm

i¼11 ZU
i

�� ��≥ t1; ZA
i

�� ��≥ t2� �≔dFDP t1; t2ð Þ: ð3Þ

For a desired FDR level α ∈ (0, 1), we choose the optimal threshold such that

t�1; t
�
2

� � ¼ argmax t1;t2ð Þ∈ℱ α

Xm

i¼1
1 ZU

i

�� ��≥ t1; ZA
i

�� ��≥ t2� �
; ð4Þ

where F α ¼ fðt1; t2Þ∈ℝþ � ℝþ : dFDPðt1; t2Þ≤αg: Finally, we select features with jZU
i j≥

t�1; jZA
i j≥ t�2 . This procedure can be viewed as two-dimensional generalization of the

Benjamini-Hochberg (BH) procedure [12]. It is well known that when the number of

signals is a substantial proportion of the total number of hypotheses, the BH procedure

will be overly conservative. To adapt to the signal density, we develop a modification of

John Storey’s approach [13] in our setting (Additional file 1: Note S2.4).

Data simulation

We conduct comprehensive simulations to evaluate the finite-sample performance of

the proposed method and compare it to competing methods. For genome-scale mul-

tiple testing, the number of hypotheses could range from thousands to millions. For

demonstration purposes, we start with m = 10,000 features, n = 100 samples, one covari-

ate of interest x,and one confounder z. To comprehensively evaluate the proposed

method’s performance under different scenarios, we study the following important

parameters:

� The correlation between the covariate of interest (x) and the confounder (z)

(denoted as “cor(x, z)”);

� The density and strength of the true signals;

� The density and strength of the confounding signals;

� The degree of colocation of the true signals and confounding signals.

To induce the correlation between x and z, we let x0~N(0, 1), x = cx0 +N(0, 1), z =

cx0 +N(0, 1). We set c = 0.5, 1.25 and 2, which achieves a correlation (ρ) about 0.2, 0.6,

and 0.8 respectively, representing weak (“+”), moderate (“++”) and strong confounding

(“+++”) level. For the multiple-confounder scenario, we simulate each z in the same

way.

Next, we generate

yi ¼ αixþ βizþ ϵi; i ¼ 1;…;mð Þ ð5Þ

where αi; βi � π
2 Unif ð− l −δ;−lÞ þ π

2Unif ðl; l þ δÞ þ ð1−πÞ I0 , I0 is a mass at 0 and

ϵi~N(0, 1). For both the covariate of interest and the confounder, we simulate three

levels of signal density (π = 5 % , 10%, and 20%—representing low, medium, and high

density) and three levels of signal strength (δ = 0.2 and l = 0.2, 0.3 and 0.4, representing

weak, moderate, and strong effect). In the basic setup, αi, βi are independently drawn
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from the distribution mentioned above. To study the effect of the colocation of the true

and confounding signals (nonzero αi and βi), we further simulate two scenarios:

� Non-colocation: j, αiβi = 0

� 50% colocation: ∣Sαβ∣ = 0.5 min{| Sα| , | Sβ| }, where Sαβ = {i |αiβi ≠ 0},

Sα = {i | αi ≠ 0}, Sβ = {i|βi ≠ 0}.

In addition, we investigate the robustness of the proposed method to correlated er-

rors. Specifically, we study:

� First-order autoregressive (AR(1)) correlation structure, where ρ(ϵi, ϵk) = 0.6|i − k|.

� Block correlation structure, where we simulate 100 blocks with within-block correl-

ation 0.6.

We compare 2dFDR to the following methods:

� 1dFDR-U: linear regression with the covariate of interest without adjusting for the

confounder.

� 1dFDR-A: linear regression with the covariate of interest adjusting for the

confounder, which is the traditional procedure.

� 2dFDR-H: a heuristic hybrid procedure, which first runs “1dFDR-A,” and if the

confounder is not significant (nominal p < 0.05), “1dFDR-U” is used.

All the methods use the q-value approach for FDR control [13], following the compu-

tation of feature-wise p values. We evaluate the performance based on FDR control

(false discovery proportion) and power (true positive rate) at a target FDR level of 5%.

Results are averaged over 100 simulation runs (for small feature sizes, 1000 simulation

runs are performed to reduce variability). Both the means and 95% CIs are reported in

the bar plots.

Real datasets

Transcriptomics dataset

The dataset consists of 342 RNA-Seq samples from patients with hepatocellular

carcinoma from The Cancer Genome Atlas (TCGA) [20]. We use this dataset to

identify gene expressions associated with chronic infection of the hepatitis B virus

(HBV). HBV status was examined by counting the percentage of reads mapped to

HBV genome [36], resulting in 103 and 239 HBV-positive and HBV-negative cases.

Ethnicity and gender are confounders in this analysis since they are correlated with

the HBV status (OR 0.051 and 2.67, respectively, p < 0.001) and are known to

affect the gene expressions. The raw FASTQ files were processed through Mayo’s

internal MAP-RSeq pipeline (Version 3.0) [37]. The gene counts were generated by

FeatureCounts using the gene definitions files from Ensembl v78 [38]. Quality con-

trol was carried out using RSeqQC [39], and a total of 19,329 genes were included.

Transcript per million (TPM) was calculated, quantile normalized, and log-

transformed before analysis.
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Metabolomics dataset

The dataset came from a study of the impact of the gut microbiome on host serum me-

tabolome and insulin sensitivity in non-diabetic Danish adults [22]. It consists of mea-

surements of 1201 metabolites (325 serum polar metabolites and 876 serum molecular

lipids) on 289 serum samples using mass spectrometry. The cleaned dataset was down-

loaded from https://bitbucket.org/hellekp/clinical-micro-meta-integration [23]. We use

this data set to identify insulin resistance (IR)-associated metabolites. IR was estimated

by the homeostatic model assessment [22]. Body mass index (BMI) is a confounder for

this dataset since it is highly correlated with IR (Spearman’s ρ = 0.67) and is known to

affect the serum metabolome. Two samples without IR measurement were excluded.

For metabolites with zero measurements, zeros were replaced by half of the minimal

nonzero value. Log transformation was performed to make the data more symmetric-

ally distributed before analysis.

Epigenomics datasets

The datasets came from 51 epigenome-wide association studies (EWAS) of various

phenotypes using Infinium Human Methylation 450 K BeadChip. They were collected

and processed as previously described [24]. A total of 54 datasets with binary or con-

tinuous phenotypes and sample sizes larger than 100 were included in the evaluation

(Additional file 2: Table S1). Since these EWAS studies all used tissue samples, which

consist of a mixture of different cell types, each with a distinct methylation profile, the

shift in the cell mixture proportions with regard to the phenotype of interest could

strongly confound the association analysis [5]. For the peripheral blood sample, it con-

sists of different leukocyte subtypes, whose composition usually changes with the onset

of disease as a host immune defense mechanism. Since the cell mixture proportions

were not directly available for these datasets, we used the surrogate variable analysis

[25] to infer the latent factors (also called surrogate variables) that capture the cell mix-

tures. Specifically, the “isva” R package [40] was used to estimate the number of surro-

gate variables based on random matrix theory, and the “SmartSVA” R package [18] was

used to compute the surrogate variables. The inferred surrogate variables were highly

correlated with the phenotypes (a median R2 0.49, Additional file 2: Table S1) and were

adjusted in the regression analysis. All the analysis was performed on the methylation

M-values [41], and 5% FDR was used to identify differentially methylated CpG positions

(DMPs).
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