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Editorial

Our genome is littered with DNA of no clear function. Yet, as shown recurrently

by this Special Issue on Regulatory Elements, sequences outside of protein-coding

exons are responsible for many, if not most, of the phenotypic differences ob-

served amongst species and individuals. Over the course of evolution, these non-

coding regions can provide the raw materials to Jacob’s tinkerer [1], yielding new

regulatory switches that shift the spatiotemporal specificity of gene expression. As

reviewed by Panigrahi and O’Malley [2], exquisite resolution of genome organisa-

tion, accessibility, transcription factor binding, and DNA modifications, now allows

the discovery and characterisation of enhancers, promoters, silencers, and other

regulatory elements en masse. Tracing the evolutionary origins of these elements

in different species provides a window into their often similar histories, as well as

their present functions. By consequence, this Special Issue of Genome Biology is of

exceptionally broad biological scope. It presents molecular and computational ana-

lyses of diverse experimental systems. The works contained within are however

unified by their intent to simplify and better understand the complex relationships

between regulatory elements and protein-coding genes.

Transposable elements (TEs) occupy a large proportion of most eukaryotic ge-

nomes and, as first shown by McClintock [3], are a major source of gene regula-

tory innovation. Judd et al. [4] report that the circadian transcriptional network in

mouse liver incorporates a number of circadian-responsive TE enhancers contrib-

uted by members of the immobile murine RSINE1 family. Focusing on another

class of TEs, Troskie et al. [5] use PacBio long-read sequencing to survey the tran-

scriptome of human pseudogenes and identify alternative promoters for various

protein-coding genes, such as RB1, that are embedded in upstream pseudogenes.

A theme of these TE studies, and one shared by the analysis of duplicated gene

(ohnolog) regulation in several fish species by Gillard et al. [6], is that TEs spread

tissue-specific regulatory elements encoding novel transcription factor binding

sites.

Another common thread of this Special Issue is the measurement of protein-

coding gene transcription as a readout of regulatory element activity. For instance,
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the spatial organisation of chromatin is thought to influence the pairing of regula-

tory elements and protein-coding genes. This is elegantly shown by Furlan-Magaril

et al. [7], again using the mouse liver circadian cycle, but here surveying chromo-

some conformation at high resolution to reveal the influence of differential

promoter-enhancer interactions upon gene expression within topologically associ-

ated domains. Intriguingly, their results, as well as those of Huang et al. [8] ob-

tained by studying androgen receptor-dependent enhancers in prostate cancer,

suggest transcription factors can govern enhancer interactions with promoters.

Transcription factors can also attract histone modifying complexes to enhancers.

As an example of how perturbed histone modifications can lead to widespread ab-

errant enhancer activity, Di Giorgio et al. [9] find downregulation of the histone

deacetylase HDAC4 in senescent cells leads to H3K27 hyperacetylation of en-

hancers linked to senescence-associated genes. Shifting focus to more direct regula-

tory pathways, Spiegel et al. [10] and Schwich et al. [11] explore the impact of

proteins binding to G-quadruplex structures and alternative polyadenylation sites at

gene 5′ and 3′ termini, respectively. Finally, Lee et al. [12] survey the regulatory

element mutational landscape for thousands of whole cancer genomes and find sig-

nificant associations between specific cancer subtypes and mutations in certain

regulatory elements.

In the near future, more articles will be added to this Special Issue. Together, these

works foster a more complete understanding of regulatory element function and evolu-

tion, as well as their impact on physiology and disease.
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