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Abstract

Spatial transcriptomic studies are becoming increasingly common and large, posing
important statistical and computational challenges for many analytic tasks. Here, we
present SPARK-X, a non-parametric method for rapid and effective detection of
spatially expressed genes in large spatial transcriptomic studies. SPARK-X not only
produces effective type I error control and high power but also brings orders of
magnitude computational savings. We apply SPARK-X to analyze three large datasets,
one of which is only analyzable by SPARK-X. In these data, SPARK-X identifies many
spatially expressed genes including those that are spatially expressed within the
same cell type, revealing new biological insights.
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Background
Spatially resolved transcriptomic studies perform gene-expression profiling with spatial

localization information on tissues and cell cultures [1–3]. These studies allow us to

examine the spatial expression patterns of genes on the tissue [4–6], characterizing

local structures and microenvironments [7, 8] and detecting cell-cell interactions

across spatial locations [9, 10]. Spatial transcriptomic studies are enabled by various

spatial transcriptomic technologies that are rapidly evolving. While early spatial tran-

scriptomic technologies are often small in scale with relatively low spatial resolution

[11, 12], recent technologies, such as Slide-seq [13, 14] and high-definition spatial tran-

scriptomics (HDST) [15], have enabled transcriptome-wide profiling at micron reso-

lution on tens or hundreds of thousands of spatial locations. The resulting large-scale

spatial transcriptomic data, limited by sequencing depth, are also in sparse forms, with

a prevalence of low counts and a substantial fraction of zero values (Additional file 1:

Table S1). The sheer scale of these recent spatial transcriptomic data, paired with their
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sparse form, has created enormous computational and statistical challenges for many

spatial transcriptomic analytic tasks.

A key analytic task in spatial transcriptomic studies is to identify genes that display

spatial expression patterns, commonly referred to as SE genes. Such SE analysis is an

important first step towards characterizing the spatial and functional organization of

complex tissues [16, 17]. Common methods for performing SE analysis include tren-

dsceek [4], SpatialDE [5], and SPARK [6]. Unfortunately, even the latter two computa-

tionally efficient methods are not readily applicable for analyzing large-scale sparse

spatial transcriptomic data that are being collected today [6, 18]. Specifically, the com-

putational complexity of both SpatialDE and SPARK scales cubically with respect to

the number of spatial locations. Consequently, it would take days to months for either

method to analyze large-scale spatial transcriptomic data. Similarly, the memory re-

quirement of both SpatialDE and SPARK also scales cubically with respect to the num-

ber of spatial locations. Analyzing large-scale spatial transcriptomic data by either

method would require dozens to thousands of GB physical RAM memory, which can

be challenging to satisfy even on large computing clusters [19]. Finally, the large-scale

spatial transcriptomic data are often in the form of sparse counts with a prevalence of

zero values. While the large fraction of zeros is not due to dropout events and can be

effectively accounted for by an over-dispersed Poisson distribution (Additional file 1:

Figure S14), such sparse data is nevertheless challenging to model parametrically. Spe-

cifically, direct modeling of sparse count data with a negative binomial distribution or

other over-dispersed Poisson distributions incurs algorithm stability issues [6, 20, 21],

and, as will be shown below, can lead to a failure of convergence in more than 90% of

genes in large-scale spatial transcriptomic data. On the other hand, approximate mod-

eling of sparse count data by a Gaussian distribution as in SpatialDE and the Gaussian

version of SPARK is not ideal either [22, 23], as such parametric approximation leads

to both power loss and failure of type I error control at small P values that are essential

for detecting SE genes at the transcriptome-wide significance level.

Here, we present SPARK-X (SPARK-eXpedited), a scalable non-parametric test for SE

analysis, that addresses the aforementioned challenges. SPARK-X builds upon a robust

covariance test framework [24–27] and extends it to incorporating a variety of spatial ker-

nels for non-parametric spatial modeling of sparse count data from large spatial transcrip-

tomic studies. With additional algebraic innovations, SPARK-X reduces computational

complexity and physical RAM memory requirement for SE analysis from cubic to linear

with respect to the number of spatial locations, resulting in several orders of computa-

tional speed improvements and several orders of physical RAM memory savings as com-

pared to existing approaches. Importantly, due to its non-parametric nature, SPARK-X is

algorithmically stable and statistically robust with respect to the underlying data genera-

tive process, providing calibrated type I error control and improved power across a range

of data types collected through a variety of technical platforms. We illustrate the benefits

of SPARK-X via applications to three large-scale spatial transcriptomic data collected by

different technologies, one of which is only analyzable by SPARK-X. In the analysis, we

identified many new SE genes including those that display spatial expression pattern

within the same cell type. These SE genes are involved in synaptic organization and func-

tional compartmentalization of the cerebellum and involved in lateral inhibition and odor

discrimination in the olfactory system.
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Results
Simulations

A method schematic of SPARK-X is shown in Fig. 1A, with details provided in the

“Methods” section. We performed realistic simulations (Additional file 1: Figure S16A)

to evaluate the performance of SPARK-X and compare it with three existing ap-

proaches, the Poisson version of SPARK (SPARK), the Gaussian version of SPARK

(SPARK-G) and SpatialDE. Simulation details are provided in the “Methods”. Briefly, in

each scenario, we generated coordinates for a fixed number of spatial locations through

a random-point-pattern Poisson process and simulated 10,000 genes on the spatial lo-

cations based on a negative binomial distribution using parameters inferred from real

data. We examined both type I error control under the null hypothesis and power for

Fig. 1 Method schematic of SPARK-X and simulation results. A Schematic of the SPARK-X method. B Computational
time of different methods for analyzing data with different sample sizes in the simulations. Plot shows computational
time in minutes (y-axis) for analyzing 10,000 genes with different sample sizes (x-axis) for different methods. Compared
methods include SPARK-X (red), SPARK (sky blue), SPARK-G (green) and SpatialDE (steel blue). C Random access
memory (RAM) of different methods for analyzing data with different sample sizes in the simulations. Plot shows
computational memory in gigabytes (y-axis) for analyzing 10,000 genes with different sample sizes (x-axis) for different
methods. Computations are carried out using a single thread of an Intel Xeon E5-2683 2.00 GHz processor. SPARK-X is
much more computationally efficient than SPARK, SPARK-G, and SpatialDE. For ease of computation, we did not apply
SPARK to the data with sample size greater than 3000 and did not apply SPARK-G and SpatialDE to the data with
sample size greater than 30,000. D Representative genes displaying random pattern and other three spatial expression
patterns. E Quantile–quantile plot of the observed −log10(P) from different methods against the expected −log10(P)
under the null simulations with high sparsity (μ=0.005). P values were combined across ten simulation replicates.
Simulations were performed under moderate sample size (n = 10,000) and moderate dispersion (2.5). F Power plots
show the proportion of true positives (y-axis) detected by different methods at a range of sample sizes (x-axis) for the
alternative simulations with high sparsity at an FDR cutoff of 0.05. Simulations were performed under a moderate
fraction of marked cells (20%) and moderate SE strength (threefold) for the hotspot and streak patterns or under
moderate SE strength (30% cells displaying expression gradient) for the gradient pattern
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identifying SE genes under various alternatives. In the null simulations, all genes are

non-SE genes with expression levels randomly distributed across spatial locations with-

out any spatial patterns (Fig. 1D). In the alternative simulations, 9000 genes are non-SE

genes, while 1000 genes are SE genes whose expression levels display one of the three

spatial patterns (hotspot, streak and gradient; Fig. 1D). Because some methods fail to

control for type I error, we measured power in the alternative simulations based on

false discovery rate (FDR) to ensure fair comparison among methods—though P values

from SPARK-X are well calibrated across scenarios and thus can be directly used in

place of FDR for declaring significance. In the simulations, we varied the number of

samples; varied the sparsity of the data to be moderate (average 62.1% zeros; similar to

early spatial transcriptomics data) or high (average 99.5% zeros; similar to recent Slide-

seq data); varied SE strength for SE genes to be either weak, moderate, or strong; and

varied a set of other relevant parameters.

In the null simulations, we found that SPARK-X produces well-calibrated P values at

transcriptome-wide significance levels (Fig. 1E and Additional file 1: Figure S2B), re-

gardless of the data sparsity level. When data sparsity is moderate, both SPARK and

SPARK-G yield reasonably calibrated P values as observed in previous studies [6]. How-

ever, when data sparsity is high, SPARK fails to converge for all genes while SPARK-G

produces inflated P values. The failure of SPARK for sparse data depends on the spars-

ity level of the input data and is presumably due to the numerical instability of the pe-

nalized quasi-likelihood algorithm when the outcome consists of low read counts with

a high percentage of zero values. Such algorithmic issue is not restricted to SPARK and

appears to be general for fitting algorithms of the generalized linear models such as the

negative binomial model (Additional file 1: Table S2). The failure of SPARK-G in con-

trolling for type I error in sparse data is presumably due to the inaccurate approxima-

tion of sparse count data with a Gaussian distribution and the fact that the variance

stability transformation can no longer properly remove the correlation between mean

and variance there [28]. SpatialDE produces overly conservative P values when data

sparsity is moderate and unduly inflated P values when sparsity is high. The failure of

SpatialDE in controlling type I errors in these settings is presumably due to its Gauss-

ian modeling of count data, use of an asymptotic test in place of an exact test, and/or

use of an ad hoc minimal P value combination rule. The P value calibration results in

terms of genomic inflation factor for different methods are consistent across a range of

sample sizes (Additional file 1: Figure S1).

In the alternative simulations, we found that SPARK-X is as powerful as SPARK

when data sparsity is moderate (Additional file 1: Figure S2C) and is more powerful

than all other methods when data sparsity is high (Fig. 1F). Specifically, when data

sparsity is moderate, both SPARK-X and SPARK are more powerful than SPARK-G

and SpatialDE in detecting streak and hotspot patterns, regardless of sample size.

SPARK-X, SPARK-G, and SPARK are more powerful than SpatialDE in detecting the

gradient pattern when the sample size is small, though all four methods have compar-

able power when the sample size is moderate or large. When data sparsity is high,

SPARK-X is more powerful than both SPARK-G and SpatialDE, while SPARK fails to

converge for all genes. The power gain by SPARK-X over SPARK-G and SpatialDE for

sparse data increases with increasing sample size. The power comparison results hold

across a range of simulation settings (Additional file 1: Figures S3 and S4), highlighting
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the robust performance of SPARK-X for analyzing large sparse spatial transcriptomic

data.

Importantly, SPARK-X is much more computationally efficient than the other

methods, with orders of magnitude improvement in terms of computation time and

memory requirement (Fig. 1B, C). For example, it takes SPARK-G and SpatialDE 1125

and 770 min, respectively, to analyze a data with 10,000 genes and 20,000 spatial loca-

tions. In contrast, it only takes SPARK-X 1 min to analyze the same data. Similarly,

while SPARK-G and SpatialDE require 21.2 and 55.3 gigabytes (GB) of physical RAM

memory, respectively, SPARK-X only requires 0.32 GB. The computation gain by

SPARK-X is even more appreciable in data with larger samples. Indeed, with moderate

computation resource, SPARK-X is the only method applicable to data with sample size

exceeding around 30,000.

SPARK-X enables powerful SE analysis in the Slide-seq cerebellum data

We applied SPARK-X along with SPARK-G and SpatialDE to analyze three published

data obtained with three different spatial transcriptomic technologies: one by Slide-seq,

one by Slide-seqV2, and the other by HDST (details in “Methods”). We did not apply

the Poisson version of SPARK to analyze any of these data due to its excessive compu-

tational requirements there.

The first data we examined is a mouse cerebellum data generated through Slide-seq

[13], consisting of gene expression measurements for 17,729 genes on 25,551 beads.

Consistent with simulations, we found that SPARK-X produced calibrated P values

under permuted null, while SPARK-G and SpatialDE did not (Fig. 2A). Also consistent

with simulations, SPARK identified more SE genes as compared to SPARK-G and Spa-

tialDE across a range of empirical FDRs (Fig. 2B, Additional file 1: Figures S5 and S6).

For example, at an FDR of 1%, SPARK-X identified 2336 SE genes, which is approxi-

mately ten times more than that detected by SPARK-G (which identified 212, among

which 180 overlapped with SPARK-X; Additional file 1: Figure S5A). SpatialDE was un-

able to detect any SE genes in the data, consistent with its low power in large-scale

sparse data as observed in the simulations.

We provided three lines of evidence to support the validity of SE genes detected by

SPARK-X. First, we found that SE genes only detected by SPARK-X expressed on com-

parable number of spots as compared to the SE genes detected by both methods (Add-

itional file 1: Figure S5A). In contrast, most SE genes only detected by SPARK-G

appeared to be expressed on very few spots (Additional file 1: Figure S5A and S5C),

suggesting potentially false signals. Second, we obtained a list of 2632 genes related to

mouse cerebellum from the Harmonizome database [29]. Reassuringly, 22% of the

unique SE genes identified by SPARK-X were in the Harmonizome list, while only 3%

of the unique SE genes identified by SPARK-G were in the same list (Fig. 2E). Third,

we obtained a list of 4152 cell type-specific genes identified in a recent single-cell RNA

sequencing study in the mouse cerebellum [30]. Again, 41% of the unique SE genes

identified by SPARK-X were in the marker list, while only 19% of the unique SE genes

identified by SPARK-G were in the same list (Fig. 2E). These three validation analyses

provide convergence support for the higher power of SPARK-X.
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We performed functional enrichment analyses on SE genes detected by SPARK-X

and SPARK-G (“Methods”). A total of 808 enriched Gene Ontology (GO) terms (Add-

itional file 1: Figure S5B and Additional file 2: Table S4) and 328 Reactome pathways

were identified based on SPARK-X SE genes, while only 223 GO terms (overlap = 115)

Fig. 2 Analyzing the mouse cerebellum Slide-seq data. A Quantile–quantile plot of the observed −log10(P)
from different methods against the expected −log10(P) under the null condition in the permuted Slide-seq
data. P values were combined across ten permutation replicates. Compared methods include SPARK-X (red),
SPARK-G (green) and SpatialDE (steel blue). B Power plot shows the number of genes with spatial expression
pattern (y-axis) identified by different methods at a range of FDRs (x-axis) in the Slide-seq data. C Bar plots
show the computation time and RAM usage of different methods for analyzing the mouse cerebellum Slide-
seq data. D An illustration of the mouse cerebellum, where a cross-section shows its lobular organization. E Bar
plot displays the percentage of SE genes identified by either SPARK-X (red) or SPARK-G (green) or both (orange)
that were also validated in two gene lists: one from the Harmonizome database (left) and the other from
literature (right; Wizeman et al). F Visualization of three representative SE genes identified only by SPARK-X in
the Slide-seq data. The top panel shows in situ hybridization results for the three genes obtained from the
Allen Brain Atlas. The bottom panel shows relative gene-expression levels (green, high; antique-white, low),
with P values from SPARK-X displayed inside parentheses
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and 56 Reactome pathways (overlap = 46) were identified based on SPARK-G SE genes.

Many enriched GO terms identified only by SPARK-X were directly related to synaptic

organization of the cerebellum. For example, one enriched GO term was peripheral

nervous system development (GO 0007422; P = 1.57 × 10− 3). Its representative gene

Fa2h encodes the fatty acid 2-hydroxylase and is highly enriched in oligodendrocytes

(Fig. 2D, F). Fatty acid 2-hydroxylase is known to play an important role in synthesizing

myelin galactolipids on oligodendrocytes and facilitates the subsequent myelination that

is essential for axon protection and signal transduction [31]. Another enriched GO

term was synapse organization (GO 0050808; P = 3.19 × 10− 11). Its representative gene

Cbln1 encodes a cerebellum-specific precursor protein precerebellin and is highly

enriched in the granular layer as supported by previous in situ hybridization evidence

[32] (Fig. 2F). Precerebellin is a unique synapse organizer for matching and maintaining

pre- and post-synaptic elements between parallel fibers and Purkinje cells in the cere-

bellum and a key for the functional induction of long-term depression there [33]. As a

last example, the GO term of neurotransmitter secretion regulation is only identified by

SPARK-X (GO 0046928; P = 2.56 × 10− 5). Its representative gene Kcnc3 encodes the

Potassium voltage-gated channel subunit Kv3.3 and is enriched in the Purkinje cells

(Fig. 2F). Kcnc3 plays an important role in regulating the frequency, shape, and dur-

ation of action potentials in the Purkinje cells and facilitates motor coordination [34,

35]. Overall, the new SE genes and GO terms identified by SPARK-X reveal important

spatial and functional organization of the cerebellum that are missed by other SE

methods, highlighting the benefits of running SE analysis with SPARK-X.

SPARK-X enables detection of SE genes not explained by cell types in the Slide-seqV2

cerebellum data

The second data we examined is another mouse cerebellum data generated through

Slide-seqV2 [14], consisting of gene expression measurements for 20,117 genes on 11,

626 beads. In the analysis, SPARK-X produced calibrated P values under permuted null,

while SPARK-G and SpatialDE did not (Additional file 1: Figure S7A). SPARK-X identi-

fied 688 SE genes, which is approximately six times more than that detected by

SPARK-G (which identified 112, among which 68 overlapped with SPARK-X; Add-

itional file 1: Figure S7B). SpatialDE was unable to detect any SE genes in the data.

Functional enrichment analyses on SE genes detected by SPARK-X identified 595

enriched GO terms and 61 Reactome pathways, many of which are again directly re-

lated to synaptic organization of the cerebellum (Additional file 1: Figure S7D and Add-

itional file 3: Table S5).

One important feature of SPARK-X is its ability to control for covariates in the SE

analysis. Such feature, when paired with the high sensitivity of Slide-seqV2 technology,

provides us with a unique opportunity to investigate the extent to which SE genes dis-

play spatial expression pattern beyond those explained by spatial distribution of cell

types. To do so, we inferred cell type compositions on majority of the spatial locations

(82.2%) using RCTD [36] and treated the inferred compositions as covariates for SE

analysis on these spatial locations (details in “Methods”; Fig. 3A and Additional file 1:

Figure S8A). SPARK-X identified 281 and 518 SE genes with and without controlling

for cell type compositions, respectively (overlap = 258, Fig. 3C), with calibrated P values
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under permuted null in the corresponding analyses (Fig. 3B). The result suggests that

approximately half of the SE genes can be accounted for by the spatial distribution of

cell types, consistent with our parallel analysis result that 46.7% SE genes were cell type

markers identified in a recent single-cell RNA sequencing study in the mouse cerebel-

lum [30]. For example, cell type marker genes, such as Cadm3 and Gria1 (Fig. 3D),

Fig. 3 Analyzing the mouse cerebellum Slide-seqV2 data. A Spatial distribution of all major cell types in the
Slide-seqV2 data. Cells are colored by cell types shown in the legend, where the cell type information were
predicted using RCTD. B Quantile–quantile plot of the observed −log10(P) from different methods against
the expected −log10(P) under the null condition in the permuted Slide-seqV2 data. P values were combined
across ten permutation replicates. Permutations were run with SPARK-X with (tan) or without (pale green)
adjusting for cell types. C Venn diagram shows the overlap in SE genes identified by SPARK-X with (tan) or
without (pale green) adjusting for cell types. D Spatial distribution of predicted cell types (left two panels;
blue represents cell type) and spatial expression pattern of four representative SE genes (middle and right
panels; green represents high expression while antique-white represents low expression) in Slide-seqV2
data. P values from SPARK-X with (left side of the arrow) or without (right side of the arrow) adjusting for
cell types are shown inside parentheses
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were no longer SE genes conditional on the cell type composition, suggesting that their

spatial expression patterns were primarily driven by the spatial distribution of the cor-

responding cell types. On the other hand, SE genes such as Ptprt and Aldoc remained

significant after controlling for cell type compositions (Fig. 3D and Additional file 1:

Figure S8B). A careful examination shows that Ptprt is highly expressed in a subset of

granule cells in the anterior lobe of the cerebellum while Aldoc is highly expressed in a

subset of Purkinje cells in the posterior lobe (Fig. 3D). Such distinctive and comple-

mentary spatial expression patterns of Ptprt and Aldoc in the anterior versus posterior

lobe highlight the regional specification and functional compartmentalization of the

cerebellum. Ptprt encodes the protein tyrosine phosphatase receptor rho (PTPρ) that

regulates synapse formation through interacting with cell adhesion molecules [37]. The

expression pattern of Ptprt coincides with the granule cell lineage boundary between

the anterior and posterior lobules around lobule VI [38, 39], supporting its potential

role in the function of granule cells in sensorimotor transmission that is specialized in

the anterior cerebellar cortex [40]. On the other hand, Aldoc encodes aldolase C, which

is a brain-specific glycolytic isozyme and a well-known cerebellum compartmentation

maker. Aldoc is expressed in Purkinje cells in a longitudinal striped fashion in the cere-

bellum. Each Aldoc expressed stripe receives enhanced glutamatergic innervations from

climbing fibers originated from specific subnuclei of the inferior olive and projects to

distinct subdivision of the deep cerebellar nuclei that further sends inhibitory projec-

tions back to the inferior olive [41–43]. Each Aldoc strip thus represents an anatomic-

ally connected olivocerebellar-nuclear module, with highly synchronous neuronal

activity observable within each module and asynchronous activity between modules

[44]. Notably, both Ptprt and Aldoc were also detected as SE genes, along with many

others, in a cell type SE specific analysis where we applied SPARK-X to a subset of

spatial locations that are dominated by either Purkinje cells or granule cells to directly

detect genes that display spatial expression pattern within a cell type (Additional file 1:

Figure S9). Overall, the structural and functional compartmentalization in the cerebel-

lum revealed by cell type adjusted SE analysis highlights the utility of SPARK-X.

SPARK-X enables scalable SE analysis of the HDST olfactory bulb data

SPARK-X provides substantial computational gains over the other methods. For ex-

ample, in the first data, it took SPARK-X 3min to analyze the whole data, while it took

56 h for SPARK-G and 47 h for SpatialDE, respectively (Fig. 2C and Additional file 1:

Table S1). In the second data, it took SPARK-X 2min to analyze the whole data, while

it took 13 h for SPARK-G and 8 h for SpatialDE, respectively (Additional file 1: Figure

S7C and Table S1). The computational gain of SPARK-X becomes even more apparent

in the third data, which is a mouse olfactory bulb data collected through HDST, con-

sisting of 19,913 genes measured on 177,455 spots (Fig. 4A). This data is particularly

challenging for existing SE methods due to the large number of spots measured there.

Specifically, it would take an estimated 114 and 80 days if we use SPARK-G and Spa-

tialDE to analyze the data. These two methods would also require 2100 and 3500 GB of

memory, respectively (Additional file 1: Table S1). The high computational require-

ments for SPARK-G and SpatialDE thus exclude their use in the data. In contrast,
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SPARK-X requires 0.42 GB memory and 3min of computing time and is the only SE

method applicable to the data.

In the analysis, SPARK-X identified a total 125 SE genes, with calibrated P values

under permuted null (Additional file 1: Figure S10A). Almost all SE genes showed clear

spatial expression patterns that were cross validated by in situ hybridization in the

Allen Brain Atlas [45] (Fig. 4B and Additional file 1: Figure S10E). The 125 SE genes

Fig. 4 Analyzing mouse olfactory bulb HDST data. A H&E image of mouse olfactory bulb (left panel) and matching
morphological annotation (middle panel) in the HDST data. Spots are colored by morphological layer shown in the
legend (right panel), where the layer annotations were from ref [15]. H&E image reproduced from ref. [15] with
permission. B Visualization of three representative SE genes identified only by SPARK-X in the HDST data. The top
panels show in situ hybridization of the three genes obtained from the Allen Brain Atlas. The bottom panels show
spatial expression patterns of the three genes at single-cell-level resolution (green, high expression; antique-white, low
expression). P values from SPARK-X are shown inside parentheses. C Heatmap shows expression level of 125 SE genes
(columns) across eight major morphological layers (rows). Colored bar at the bottom represents five gene clusters.
RMS, rostral migratory system; E, ependymal cell zone; GCL, granule cell layer; IPL, internal plexiform layer; M/T, mitral
layer; EPL, external plexiform layer; GL, glomerular layer; ONL, olfactory nerve layer
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are clustered into five clusters that were enriched in distinct morphological layers of

the olfactory bulb (Fig. 4C and Additional file 1: Figure S10C). Functional enrichment

analyses identified 377 enriched GO terms and 39 Reactome pathways, many of which

are related to synaptic organization and signaling (Additional file 1: Figure S10D and

Additional file 4: Table S6). For example, one enriched GO term is synaptic membrane

(GO:0097060, P = 2.50 × 10− 15), with a representative gene Kctd12. Kctd12 encodes an

auxiliary GABAB receptor subunit [46] and is observed to be highly expressed in the ol-

factory nerve layer (Fig. 4B, C), consistent with its enrichment in the glomerulus [47].

Another enriched GO term is the GABA-ergic synapse (GO: 0098982, P = 1.19 × 10− 5)

with a representative gene Gphn. Gphn encodes the protein gephyrin and is observed

here to be highly expressed in the mitral layer and external plexiform layer. Similar to

GABA-ergic synapse, glutamatergic synapse (GO: 0098978, P = 3.35 × 10− 15) is also

enriched. The representative gene of glutamatergic synapse, Dlg2, encodes a

membrane-associated guanylate kinase and is observed here to be highly expressed in

both the granule cell layer and the mitral layer. The complementary expression pattern

of inhibitory GABA-ergic and excitatory glutamatergic neurons as represented by Gphn

and Dlg2 are consistent with the spatial organization of lateral inhibition: mitral cells

activate granule cells that in turn inhibits nearby mitral cells, leading to robust odor

processing and discrimination in the olfactory bulb [48–52].

We performed conditional analysis to investigate the extent to which SE genes dis-

play spatial expression pattern beyond those explained by the spatial distribution of cell

types. Specifically, we extracted 103,602 spots with confident cell type assignment in

the original study (Additional file 1: Figure S11D) and treated the assigned cell types as

covariates for SE analysis on these spatial locations (details in “Methods”). SPARK-X

identified 36 and 66 SE genes with and without controlling for cell types, respectively

(overlap = 35, Additional file 1: Figure S11C), with calibrated P values under the per-

muted null in the corresponding analyses (Additional file 1: Figure S11A). The results

suggest that more than half of the SE genes can be accounted for by the spatial distri-

bution of cell types, consistent with our parallel analysis result that 59.1% SE genes

were cell type markers identified in a recent single-cell RNA sequencing study in the

mouse olfactory bulb [53]. Careful examination of the detected SE genes suggests that

genes that remained significant after controlling for cell types often display spatial ex-

pression pattern across multiple cell types or within the same cell type (Additional file

1: Figure S11E and S11F). For example, Camk1d is enriched in the ventral part of mul-

tiple olfactory bulb layers including the external plexiform layer and the glomerular

layer. Camk1d is also detected as an SE gene when we applied SPARK-X to a subtype

of inhibitory neurons, the olfactory bulb inner horizontal cells, to directly detect SE

genes that display spatial expression pattern within the cell type. In particular, Camk1d

is specifically enriched in a subset of these inhibitory neurons that reside outside the

granule cell layer (Additional file 1: Figure S11F). As another example, Kcnip1 is also

an SE gene that is detected in both conditional analysis and cell type-specific analysis.

Kcnip1 displays similar spatial expression pattern as the Camk1d and its P value be-

comes slightly more significant after controlling for cell types (Additional file 1: Figure

S11E). Camk1d encodes the calcium/calmodulin-dependent protein kinase that oper-

ates in the calcium-triggered CaMKK-CaMK1 signaling cascade [54] and Kcnip1 en-

codes the cytosolic voltage-gated potassium channel-interacting protein that regulates
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neuronal membrane excitability [55]. Their known roles in regulating signaling path-

ways in inhibitory neurons, paired with their restricted spatial expression in a subset of

inhibitory neurons in the external plexiform and glomerular layers, suggest their poten-

tial involvement in lateral inhibition in the olfactory bulb.

Discussion
We have presented a new method, SPARK-X, for identifying SE genes in large-scale

sparse spatial transcriptomic data. In comparison to existing approaches, SPARK-X is

highly computationally efficient, produces well-calibrated P values and ensures robust

performance for large spatial transcriptomic data sets collected across a range of tech-

nologies. The modeling framework of SPARK-X is also flexible, allowing for potential

future extensions towards transcriptome-wide joint modeling of correlated genes. We

have illustrated the benefits of SPARK-X through in-depth analyses of three large

spatial transcriptomic studies.

SPARK-X relies on a non-parametric covariance test for detecting spatial expression

patterns. Its non-parametric feature distinguishes it from existing SE methods that are

primarily parametric in nature. Non-parametric modeling in SPARK-X ensures its ro-

bust performance under various data generating processes in different spatial transcrip-

tomic technologies, leading to calibrated P values and improved power for SE analysis.

Such robust performance of SPARK-X is especially beneficial for analyzing spatial tran-

scriptomic data that are both large-scale and sparse. Compared with small-sample stud-

ies, large-scale spatial transcriptomic studies are better powered, more reproducible,

and are thus becoming increasingly common. We recognize, however, that many spatial

transcriptomic studies are still carried out on moderate number of spatial locations and

that some spatial transcriptomic data are non-sparse [11, 56]. Spatial transcriptomic

data measured on a small number of spatial locations (e.g., hundreds or thousands)

from early spatial transcriptomic technologies can often be modeled effectively through

an over-dispersed Poisson distribution [6]. Consequently, parametric modeling of

spatial count data through generalized linear mixed model framework such as the Pois-

son version of SPARK performs well for these technologies. Indeed, as demonstrated

through our simulations, SPARK and SPARK-X have comparable power for detecting

the hotspot pattern under small-sample settings, though SPARK-X outperforms SPARK

on other patterns or with larger samples. The benefits of SPARK-X over SPARK on de-

tecting SE genes can also be observed in other small data sets collected from other

technologies. For example, on a human heart Visium data, which contains 20,904 genes

measured on 4247 spots (Additional file 1: Figure S12), SPARK-X identified 1536 SE

genes while SPARK identified 644 (533 overlapped; Additional file 1: Figure S12C).

Both these methods produced calibrated P values under permuted null (Additional file

1: Figure S12A). On a human ovarian cancer Visium data, which contains 1198 genes

measured on 3492 spots, SPARK-X identified 651 SE genes while SPARK identified 579

(474 overlapped; Additional file 1: Figure S13C). Importantly, many cancer-related

KEGG and Reactome pathways can only be identified based on the SE genes detected

by SPARK-X (Additional file 1: Figure S13G and Additional file 5: Table S7), highlight-

ing the benefits of SPARK-X analysis. Besides small data, some recent large spatial tran-

scriptomic technologies yield non-sparse count. For example, the STARmap technology

measures expression levels on tens of thousands of spatial locations but only for two
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dozen of genes. Consequently, the read depth per gene from STARmap can be reason-

ably high, resulting in non-sparse high-count data with almost no zero values (Add-

itional file 1: Table S1). For such high-count non-sparse data, the Gaussian distribution

as employed in SPARK-G is an effective approximation to the underlying over-

dispersed Poisson data generating process. We applied both SPARK-G and SPARK-X

on the mouse visual cortex STARmap data that consists of 23 known cell type marker

and 5 activity-regulated genes measured on 32,845 cells (Additional file 1: Figures S14

and S15). In the analysis, both SPARK-G and SPARK-X produced calibrated P values

under permuted null and were able to detect all 28 genes as SE genes. Despite the simi-

lar performance of SPARK-G and SPARK-X for this non-sparse data, the memory sav-

ing by SPARK-X in this data remains substantial: while SPARK-G required 43.45 GB,

SPARK-X only used 0.19 GB (Additional file 1: Table S1). Therefore, SPARK-X serves

as an effective complement of existing SE analysis approaches, especially for large-scale

spatial transcriptomic studies.

We have primarily used the projection covariance function to measure similarity in

either gene expression or coordinates between location pairs. Such similarity measure-

ment is expressed effectively as a product of two input variables from the location pair

and quantifies their coordinated deviation from the mean. The product of two input

variables is commonly used as a key ingredient in many covariance functions other

than the projection covariance function [57–59]. While the product of two input vari-

ables represents one important similarity measurement, other similarity measurements

exist. For example, one could use the Euclidean distance, minimum [60, 61], powered

minimum [62], and other ways [63–65] to measure similarity between two variables.

Different similarity measurements used in various covariance functions [64–66] can be

easily incorporated into SPARK-X to achieve optimal detection of distinct spatial ex-

pression patterns. In the present study, we only used the projection covariance function

as it allows us to achieve orders of magnitude of computational gains as compared with

other approaches. The projection covariance function is also robust and well powered

to detect a range of spatial expression patterns, both simple and complex, in simula-

tions and real datasets. Despite these benefits of the projection covariance function, we

note that the statistical power of the SPARK-X will likely benefit from the use of other

covariance functions in addition to the projection covariance function. Due to compu-

tational reasons, we did not examine other covariance functions but instead explored

the use of different transformations on the coordinates to incorporate into SPARK-X a

wide range of distance covariance matrices. While the number of detected SE genes

varies across different distance covariance matrices, combining the association evidence

across all matrices as in SPARK-X achieves higher power than using any individual

matrix alone (Additional file 1: Table S3). Future methodological development for ex-

ploring the use of other covariance functions as well as other transformations in a com-

putationally efficient manner may help improve the power of SPARK-X further.

Methods
Method overview

We aim to identify genes that display spatial expression patterns, commonly referred to

as SE genes, in large-scale spatially resolved transcriptomic studies. These large-scale
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studies rely on various high-throughput spatial transcriptomic technologies [13–15]

and collect gene expression measurements on tens or hundreds of thousands of spatial

locations. Gene expression measurements in these large-scale spatial transcriptomic

studies are often in the form of low counts with a large fraction of zero values. For SE

analysis, we examine one gene at a time and consider its expression measurements col-

lected on n different spatial locations. We refer to the spatial locations as samples in

the present study. Depending on the technology, a sample may be a single cell (in the

case of STARmap technology) or a cell-sized local region (in the case of HDST technol-

ogy) or a local region that consists of dozens of cells (in the case of Slide-seq and Vis-

ium technologies). The sampled locations have known spatial coordinates recorded

during the experiment. We denote si as the d-vector of spatial coordinates for ith sam-

ple, with i ∈ (1, …, n), and S ¼ ðsT1 ;⋯; sTn ÞT as the corresponding n × d matrix of spatial

coordinates. These spatial coordinates vary continuously over a two-dimensional space

(d = 2; si = (si1, si2) ∈ R
2) or a three-dimensional space (d = 3; si = (si1, si2, si3) ∈ R

3) de-

pending on the technology. We denote yi(si) as the gene-expression measurement for

the ith sample and y = (y1(s1),⋯, yn(sn))
T as the n-vector of gene expression across all

samples. We assume that both y and each coordinate of S has been centered and scaled

to have mean 0 and standard deviation of 1. Centering and scaling do not influence

type I error control but can affect statistical power. Here, our goal is to test whether

the expression level of the gene of focus display any spatial expression pattern. Equiva-

lently, we aim to test whether y is dependent on the spatial coordinates S. We rely on a

general class of covariance tests [24–27], which includes the Hilber-Schmidt independ-

ence criteria test [24] and the distance covariance test [25] as special cases, to perform

SE analysis in a non-parametric fashion. Non-parametric testing ensures robust per-

formance and wide applicability of our method to spatial transcriptomic data that are

collected from various technologies with potentially different data features and different

data generating mechanisms. Our method builds upon the following intuition: if y is in-

dependent of S, then the spatial distance between two locations i and j would also be

independent of the gene-expression difference between the two locations. Conse-

quently, we can construct two sample by sample relationship matrices, one based on

gene expression and one based on spatial coordinates, to examine whether these two

matrices are more similar to each other than expected by chance alone.

Technically, we construct an expression covariance matrix based on the gene-

expression levels as an n by n matrix E = y(yTy)−1yT. We also construct a distance co-

variance matrix for all samples based on spatial locations as an n by n matrix Σ =

S(STS)−1ST. We refer to both matrices as the covariance matrices as they are generated

from the projection covariance function and possess the two key covariance matrix

properties including being symmetric and positive semi-definite. A covariance matrix is

also known as a kernel matrix and a covariance function is also known as a kernel

function. The projection covariance function has been widely used in many applications

in genetics [67–69]. For both matrices, we center them as EC =HEH and ΣC =HΣH,

where H¼ðI−1n1Tn =nÞ with I being an n by n identity matrix and 1n being an n-vector

of 1s. Centering does not alter results here as we have already centered both y and S

before constructing these covariance matrices. We then construct the following test

statistic:
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T ¼ trace ECΣCð Þ=n:

Intuitively, each element in either covariance matrix measures the similarity between

pairs of locations in terms of their coordinated deviation from the mean. When y and S

are independent of each other, the similarity measurement between a location pair in

terms of gene expression will not be correlated with the similarity measurement be-

tween the location pair in terms of distance. Consequently, the test statistics T, which

is effectively a summation of the products between the two similarity measurements

across all location pairs, will be small. When y and S are not independent of each other,

the similarity measurement in terms of gene expression will be correlated with the

similarity measurement in terms of the distance across location pairs, thus leading to a

large test statistics T. Formally, under the null hypothesis that y and S are independent

of each other, T asymptotically follows a mixture of chi-square distributions [27]

1
n2

X
i; j
λE;iλΣ; jz

2
ij;

where λE, i is the ith ordered non-zero eigenvalue of EC; λΣ, j is the jth ordered non-

zero eigenvalue of ΣC; and z2ij are independent and identically distributed χ21 variables.

An extremely large T that is rare under the above null distribution constitutes evidence

against the null hypothesis. Consequently, we can compute a P value to measure the

probability of encountering the same or a larger T as observed in the data based on the

null distribution. The P value for testing the null hypothesis can be calculated using

Davies’ exact method [70].

We employ several important algebraic manipulations to ensure that both computa-

tional complexity and memory requirement of our method are linear with respect to

the number of spatial locations. First, we note that the eigenvalues of EC and ΣC are

equivalent to the eigenvalues of (yTy )−1yTHy (a scalar) and (STS)−1STHS (a d × d

matrix) [71], respectively. The computational cost for obtaining these eigenvalues based

on the later forms is only O(nd2). Second, we note that

Tr EcΣcð Þ ¼ Tr y yTy
� �−1

yTHΣH
� �

¼ yTy
� �−1

Tr yTHΣHy
� �

:

Consequently, we never need to compute E, Σ and their centered versions EC and ΣC

throughout the algorithm. Instead, we only need to compute the key quantities yTy,

yTHy, STS, STHS, and yTHΣHy, all of which require at most O(nd2) computational

complexity and O(nd) memory requirement. Specifically, these key quantities can be

computed efficiently in the following forms:

yTHy ¼ Hyð ÞT Hyð Þ ¼ y−yð ÞT y−yð Þ;

STHS¼ HSð ÞT HSð Þ¼ S−
11T

n
S

� �T

S−
11T

n
S

� �
;

yTHΣHy ¼ yTHS STS
� �−1

STHy ¼ y−yð ÞTS STS
� �−1

ST y−yð Þ:
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Finally, we note that the quantities involving S, including the computation of STS and

STHS as well as the eigen decomposition of (STS)−1STHS, only need to be performed

once at the beginning and need not to be re-computed for every gene in turn. The

quantities involving y, including yTy, yTHy, and yTHΣHy, would vary across genes but

could be computed efficiently relying on the sparsity of y. Indeed, these three quantities

can be computed with a computational complexity that scales linearly with respect to

the number of samples with non-zero values, resulting in substantial computational

savings for large sparse data. Therefore, our method has an overall computational com-

plexity of O(nd2 + pn ′ d) and memory requirement of O(nd2), where p is the number

of analyzed genes and n′ is the number of spatial locations with non-zero counts aver-

aged across genes.

The statistical power of the above covariance test will inevitably depend on how the dis-

tance covariance matrix Σ is constructed and how it matches the true underlying spatial

pattern displayed by the gene of interest. While the above projection kernel construction

allows us to achieve orders of magnitude of computational gains as compared to other

kernels such as the Gaussian and periodic kernels used in SPARK, it is likely not optimal

in detecting every possible expression patterns encountered in real data. For example, the

projection kernel is likely suboptimal in detecting focal expression patterns that are tar-

geted by Gaussian kernels or periodical expression patterns that are targeted by periodic

kernels. To ensure robust identification of SE genes across various possible spatial expres-

sion patterns, we consider different transformations of the spatial coordinates si and sub-

sequent construction of different distance covariance matrices. Specifically, we applied

five Gaussian transformations on the coordinates si = (si1, si2) to obtain five sets of trans-

formed coordinates s′i = (s′i1, s′i2) , with s
0
i1 ¼ expð−s2i12σ21

Þ being the transformed x-

coordinate and s
0
i2 ¼ expð−s2i22σ22

Þ being the transformed y-coordinate in each set. In the

transformation, we used different smoothness parameters σ1 and σ2 in each set to cover a

range of possible local covariance patterns. In addition, we applied five cosine transforma-

tions on si to obtain another five sets of transformed coordinates s′i, with s
0
i1 ¼ cosð2πsi1ϕ1

Þ
being the transformed x-coordinate and s

0
i2 ¼ cosð2πsi2ϕ2

Þ being the transformed y-

coordinate in each set. We also used different periodicity parameters ϕ1 and ϕ2 in each

set to cover a range of possible periodic patterns. The transformation parameters σ1, σ2,

ϕ1, and ϕ2 are predetermined using the 20%, 40%, 60%, 80%, and 100% quantiles of the

absolute values of the x and y coordinates in the data. Using the empirical quantiles of the

data to construct different covariance matrices follows the main ideas of [5, 6]. Compared

to the alternative approach of fixing the transformation parameters to some predeter-

mined values, using the quantiles of the data for transformation has the benefits of being

invariant to any scale transformation of the original data and allows us to construct the

distance covariance matrices in a data-dependent fashion.

We used each transformed s
0
i to construct a distance covariance matrix as described

above, resulting in a total of ten transformed distance covariance matrices in addition

to the untransformed distance covariance matrix (Additional file 1: Figure S17). Intui-

tively, the kernel constructed based on the untransformed coordinates is likely useful to

detect linear expression pattern across the coordinates. The kernels constructed based

on the cosine transformed coordinates are likely useful to detect periodic expression
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patterns on the tissue. While the kernels constructed based on the Gaussian trans-

formed coordinates are likely useful to detect focal expression patterns on the tissue.

Therefore, combining the original and transformed distance covariance matrices would

allow us to detect a wide variety of spatial expression patterns encountered in real data.

To do so, we computed a P value using Davies’ method for each distance covariance

matrix. We then combined all eleven P values into a single P value through the Cauchy

P value combination rule [72, 73].

We have so far described the method in the absence of covariates. In the presence of

covariates, we can replace the n-vector 1n in the H matrix with a corresponding covari-

ate matrix X of dimensionality n by q. The covariate matrix contains a column of 1’s

that represents the intercept, with the remaining columns representing the measure-

ments for the q-1 covariates. Therefore, the centering matrix becomes H= (I −

X(XTX)−1XT). Despite this change, the other steps remain the same.

We refer to the above method as SPARK-X (SPARK-eXpedited), which is imple-

mented in the SPARK R package with underlying efficient C/C++ code linked through

Rcpp and with multiple threads computing capability. The software, together with all

the analysis code for reproducing the results presented in the present study, are freely

available at www.xzlab.org/software.html.

Simulation designs

We performed extensive simulations to comprehensively evaluate the performance of

SPARK-X along with several other existing methods. To make simulations as realistic

as possible, we simulated data based on parameters inferred from two published data

sets that include a spatial transcriptomic (ST) data set [11] and a Slide-seq data set

(Additional file 1: Figure S16). The two data sets represent two different gene-

expression data structures, with the ST data representing a moderately sparse data with

60% of zero values and the Slide-seq data representing a highly sparse data with 99.4%

of zero values (Additional file 1: Table S1). In the simulations, we first randomly simu-

lated the coordinates for a fixed number of spatial locations (n) through a random-

point-pattern Poisson process. On these spatial locations, we simulated expression

levels for 10,000 genes based on a negative binomial distribution with details provided

below. These 10,000 genes were all non-SE genes in the null simulations and consisted

of 1000 SE genes and 9000 non-SE genes in the power simulations. For both non-SE

genes and SE genes, we varied the dispersion parameter of the negative binomial distri-

bution to be either 0.1, 0.2, or 1 for the moderately sparse setting and to be either 1,

2.5, or 5 for the highly sparse setting. These values were selected to match the scale of

dispersion parameter estimated in the two real data sets. For the non-SE genes, we var-

ied the mean parameter of the negative binomial distribution to be either 0.005 or 0.5.

The low value of 0.005 corresponds to the median mean estimate in the Slide-seq data

and represents a highly sparse gene-expression setting. The high value of 0.5 corre-

sponds to the median mean estimate in the ST data and represents a moderately sparse

gene-expression setting. For the SE genes, we simulated their expression levels to dis-

play three distinct spatial patterns (hotspot, streak, and gradient patterns, Fig. 1D).

Specifically, for the first two spatial patterns, we created either a circle (for hotspot

pattern) or a band (for streak pattern) in the middle of the panel and marked spatial
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locations residing in these areas. The size of the circle and the size of the band were de-

signed so that the marked spatial locations inside these areas represent a fixed propor-

tion of all spatial locations, with the proportion set to be either 10%, 20%, or 30%. The

expression measurements of the non-marked spatial locations were randomly generated

from a negative binomial distribution with the mean parameter set to be 0.005 or 0.5.

For the moderately sparse setting, the expression measurements of the marked spatial

locations were generated from a negative binomial distribution with a mean parameter

being either 1.5, 2, or 3 times higher than that in the non-marked spatial locations (for

500 SE genes) or 2/3, 1/2, or 1/3 of that in the non-marked spatial locations (for 500

SE genes), representing low, moderate, or high SE signal strength, respectively. For the

highly sparse setting, the expression measurements of the marked spatial locations were

generated from a negative binomial distribution with a mean parameter being either 2,

3, or 4 higher than that in the non-marked spatial locations (for 500 SE genes) or 1/2,

1/3, or 1/4 of that in the in the non-marked spatial locations (for 500 SE genes), repre-

senting low, moderate, or high SE signal strength, respectively.

For the gradient pattern, the expression levels of a fraction of spatial locations (=20%,

30%, or 40%) were set either in an increasing order (for 500 SE genes) or a decreasing

order (for the other 500 SE genes) along the x-axis. The three fractions used corres-

pond to low, moderate, or high SE signal strength in this setting, respectively. In par-

ticular, we generated the expression measurements for all spatial locations from a

negative binomial distribution. For each SE gene, we randomly selected a fraction of

spatial locations where we assigned their gene-expression values in either increasing or

decreasing order back to them based on their x-axis coordinates. In contrast, the ex-

pression measurements for the non-SE genes were randomly assigned to all spatial lo-

cations, regardless of their spatial locations.

In all these simulations, we varied the number of spatial locations (n = 300, 500,

1000, 2000, or 3000 for the moderate sparsity setting and n = 3000, 10,000, 20,000, 30,

000, or 50,000 for the highly sparse setting), the expression sparsity level (moderate or

high, as measured by the mean parameter in the negative binomial distribution), the

noise level (low, moderate or high noise, as measured by the dispersion parameter in

the negative binomial distribution), the SE strength (weak, moderate, or strong, as mea-

sured by fold change in the mean parameter for the first two spatial patterns and by

the fraction of spatial locations displaying expression gradient for the third spatial pat-

tern), as well as the fraction of spatial locations in the focal/streak area for the first two

spatial patterns.

Real data analysis

Slide-seq data

Slide-seq is a technology which enables transcriptome-wide measurements with 10-

micron spatial resolution by transferring RNA from tissue sections onto a surface cov-

ered in DNA-barcoded beads with known positions and inferring the locations of RNA

using a sequencing-by-ligation strategy. We obtained the Slide-seq dataset collected on

the mouse cerebellum from Broad Institute’s single-cell repository (https://singlecell.

broadinstitute.org/single_cell/) with ID SCP354. We used the file “Puck_180430_6”

which contains 18,671 genes measured on 25,551 beads with known spatial location
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information. The bead size is approaching the size of mammalian cells (10 microns),

though each bead may overlap with multiple cells. After filtering out mitochondrial

genes and genes that are not expressed on any bead, we analyzed a final set of 17,729

genes on 25,551 beads. The data is highly sparse with 99.46% entries being 0 (Add-

itional file 1: Table S1).

Slide-seqV2 data

Slide-seqV2 is a technology that builds upon on Slide-seq with modifications to library

generation, bead synthesis, and array-indexing, thereby markedly improving the mRNA

capture sensitivity. We obtained the Slide-seqV2 dataset collected on the mouse cere-

bellum from Broad Institute’s single-cell repository with ID SCP948. The data contains

23,096 genes measured on 39,496 beads with known spatial location information. The

bead size is the same as that in the Slide-seq data. Following [36], we first cropped the

region of interest and filtered out beads with UMIs less than 100. After filtering out

mitochondrial genes and genes that are not expressed on any bead, we analyzed a final

set of 20,117 genes on 11,626 beads. While the capture sensitivity is improved in the

Slide-seqV2 as compared to Slide-seqV1, the Slide-seqV2 data is still highly sparse with

98.35% entries being zero (Additional file 1: Table S1).

We performed cell decomposition and conditional SE analysis on the Slide-seqV2

data. Specifically, we used the recently developed RCTD software [36] (v.1.0.0) to infer

cell type composition on each spatial location. Following the original RCTD paper, we

used a single-nucleus RNA-seq data [74] to serve as the reference panel for RCTD fit-

ting, which contains 19 cell types. In the analysis, RCTD rejected 1494 beads and

assigned cell type labels to 11,061 cells confidently from 9554 beads. We converted the

inferred cell types into binary indicators and used them as covariates in SE analysis. Be-

cause RCTD produced confident cell type assignment using a set of 3338 genes (after

RCTD filtering) on 11,061 cells (inferred from 9554 beads), we performed analysis on

these genes and locations in the covariate adjusted SE analysis.

Besides conditional SE analysis, we also performed the cell type-specific SE analysis

in the data. Specifically, we rely on the cell type composition estimates from RCTD to

extract the locations that are dominated by Purkinje cells or granular cells. The Pur-

kinje cells are primarily located in the thin Purkinje cell layer while the granule cells

are primarily located in the thick granular layer; both layers are of highly irregular

shapes. After removing genes with no expression on any of the selected cells, we per-

formed SE analysis using SPARK-X for 3006 genes on 652 Purkinje cells and 3288

genes on 5891 granule cells.

High-definition spatial transcriptomics data

High-definition spatial transcriptomics is a method to capture RNA from tissue sec-

tions on a dense, spatially barcoded bead array, allowing transcriptome-wide measure-

ments with 2-micron resolution. We obtained the HDST dataset collected on the

mouse olfactory bulb from Broad Institute’s single-cell repository with ID SCP420. We

used the file “CN24_D1” which contains 19,951 genes measured in 181,380 spots with

known spatial location information. Each spot is a 2-micron well, approaching one fifth

of the size of mammalian cells. We filtered out mitochondrial genes and genes that are
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not expressed on any spot and we removed spots with no gene-expression count. We

analyzed a final set of 19,913 genes on 177,455 spots. The HDST data is extremely

sparse with 99.96% of entries being 0 (Additional file 1: Table S1). We performed clus-

tering analysis on the detected SE genes. To do so, for each gene in turn, we log trans-

formed the raw count and scaled the transformed value further to have a mean of zero

and standard deviation of one across all spots. We then used the hierarchical agglom-

erative clustering algorithm in the R package amap (v.0.8–18) to cluster identified SE

genes into five gene groups.

We performed conditional SE analysis on a subset of the HDST data to examine the

extent to which SE genes display spatial expression pattern beyond those explained by

spatial distribution of cell types. To do so, we first extracted the most likely cell type

for each spot based on the original publication and kept the spots with confident cell

type assignment (P-adjust< 0.05). After filtering out mitochondrial genes and genes that

are not expressed on any spots, we analyzed a final set of 17,121 genes on 103,602

spots. There are 63 cell types including non-neuronal cell types and multiple neuronal

subtypes clustered in the original publication. We treated the assigned cell types as co-

variates for SE analysis on these spots.

We also performed cell type-specific SE analysis on a subtype of inhibitory neu-

rons, the olfactory bulb inner horizontal cells (OBINH2). We selected these inhibi-

tory neurons as they have the largest cell numbers among all cell types in the

data. In the analysis, we extracted spatial locations that are labeled as OBINH2

neurons and removed genes that are not expressed on any of the extracted loca-

tions. In total, we analyzed 11,504 genes measured on 15,650 spatial locations in

the cell type-specific SE analysis.

10X Visium data

The 10X Visium is a platform that builds upon on the original Spatial Transcripto-

mics technology with improvements on both resolution (55-micron resolution, with

smaller distance between barcoded regions) and experimental time. We obtained a

Visium dataset collected on the human heart tissue from the 10X Visium spatial

gene-expression repository (https://support.10xgenomics.com/spatial-gene-

expression/datasets/1.1.0/V1_Human_Heart). The data contains 36,601 genes mea-

sured on 4247 spots with known spatial location information. Each spot is a 55-

micron well. We filtered out mitochondrial genes and genes that are not expressed

in any spot. We analyzed a final set of 20,904 genes on 4247 spots. The 10X

Visium human heart data is relatively sparse with 90.81% of entries being 0 (Add-

itional file 1: Table S1). In addition, we also obtained a Visium dataset collected

on the human ovarian cancer tissue from the 10X Visium spatial gene-expression

repository (https://support.10xgenomics.com/spatial-gene-expression/datasets/1.2.0/

Targeted_Visium_Human_OvarianCancer_Pan_Cancer). The data contains 1198

genes measured on the 3493 spots. After removing spot with no gene-expression

count, we analyzed a final set of 1198 genes on 3492 spots. Since this data is gen-

erated with an enriched library prepared using the Human Pan-Cancer Panel, only

73.78% of entries are 0.
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STARmap data

Spatially resolved Transcript Amplicon Readout Mapping (STARmap) is a technology for

3D intact-tissue RNA sequencing. STARmap integrates hydrogel-tissue chemistry, tar-

geted signal amplification, and in situ sequencing. We obtained the STARmap dataset col-

lected on the mouse visual cortex from STARmap resources (https://www.

starmapresources.com/data). We used the data collected in the sequentially encoded ex-

periment, which contains 28 genes measured in 33,598 cells with known 3D spatial loca-

tion information. These 28 genes include 23 cell type markers and 5 activity-regulated

genes. After filtering out cells with no gene-expression count, we analyzed a final set of 28

genes on 32,845 cells. The STARmap data are of high counts with almost no zero values

(1.2% zeros; Additional file 1: Table S1). We followed the procedures in the original paper

[75] for cell type clustering. Specifically, we first applied log transformation to the raw

count data and obtained the relative gene-expression levels through adjusting for the log-

scale total read counts. We then clustered cells into inhibitory neurons, excitatory neu-

rons, and non-neuronal cells using Gad1, Slc17a7, and four non-neuronal genes (Flt1,

Mbp, Ctss, Gja1) using the K-means clustering algorithm.

For each of the above datasets, we performed permutations to construct an empirical

null distribution of P values for each method by permuting the bead/spot/cell coordi-

nates either ten times (for Slide-seq, Slide-seqV2, HDST, and 10X Visium data) or a

thousand times (for STARmap data). Afterwards, we examined control of type I errors

by the different methods on the basis of the empirical null distribution of P values. We

declared an SE gene as significant based on an empirical FDR threshold of 0.01. We

note that standard P value cutoffs such as Bonferroni-corrected P value threshold can

also be used for SPARK-X due to its calibrated type I error control.

SE gene validation and functional gene set enrichment analysis

For the Slide-seq data, we obtained lists of genes that can be used to serve as unbiased

validation for the SE genes identified by different methods. Specifically, we obtained the

cerebellum gene list from the Harmonizome database [29], which consists of 2632

cerebellum-related genes identified in two datasets (Allen Brain Atlas adult mouse

brain tissue gene-expression profiles; and TISSUES curated tissue protein expression

evidence scores). In addition, we obtained a gene list from Wizeman et al. [30], which

contains 4152 cell type markers genes in cerebellum. We used the two gene lists to val-

idate the SE genes identified by different methods.

We also performed functional gene set enrichment analysis on the significant SE

genes identified by SPARK-X and SPARK-G. We performed enrichment analyses using

the R package clusterProfiler [76] (v.3.12.0) with GO terms and Reactome pathways. In

the package, we used the default “BH” method for multiple-testing correction and set

the default number of permutations to be 1000. We declared enrichment significance

based on an FDR of 0.05.

Compared methods

We compared SPARK-X with three existing methods for detecting genes with spatial

expression patterns: SPARK (v.1.1.0) [6], SPARK-G (the Gaussian version of SPARK),

and SpatialDE (v.1.1.3) [5]. We did not include the trendsceek in the comparison due
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to its high computational burden. For example, it takes trendsceek 40 h to analyze a

simulated data with 10,000 genes measured on 300 locations, which is 5000 times

slower than SPARK-X. The computational burden of trendsceek becomes even heavier

on larger datasets. We applied all four methods to the simulated data with SPARK be-

ing restricted to the settings that have a sample size ≤ 3000 due to its heavy computa-

tional burden. We applied SPARK-X, SPARK-G, and SpatialDE to the Slide-seq and

Slide-seqV2 data. The SPARK-G and SpatialDE are not scalable when the sample size

is over approximately 30,000. Therefore, we did not apply these two methods to the

HDST data. The SpatialDE gave out error when we applied it to the STARmap data;

thus, we only present the results from SPARK-X and SPARK-G there. For SPARK and

SpatialDE, we adopted their default settings to filter data. Specifically, for SPARK, we

filtered out genes that are expressed in less than 10% of the spatial locations and se-

lected spatial locations with at least ten total read counts; for SpatialDE, we filtered out

genes with aggregate expression count less than three and selected spatial locations

with at least ten total read counts. For the SPARK-G, we did not perform any add-

itional filtering. The number of analyzed gene for each method is provided in

Additional file 1: Table S1.
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