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Abstract

Background: The human microbiome plays an important role in cancer.
Accumulating evidence indicates that commensal microbiome-derived DNA may be
represented in minute quantities in the cell-free DNA of human blood and could
possibly be harnessed as a new cancer biomarker. However, there has been limited
use of rigorous experimental controls to account for contamination, which invariably
affects low-biomass microbiome studies.

Results: We apply a combination of 16S-rRNA-gene sequencing and droplet digital
PCR to determine if the specific detection of cell-free microbial DNA (cfmDNA) is
possible in metastatic melanoma patients. Compared to matched stool and saliva
samples, the absolute concentration of cfmDNA is low but significantly above the
levels detected from negative controls. The microbial community of plasma is
strongly influenced by laboratory and reagent contaminants introduced during the
DNA extraction and sequencing processes. Through the application of an in silico
decontamination strategy including the filtering of amplicon sequence variants
(ASVs) with batch dependent abundances and those with a higher prevalence in
negative controls, we identify known gut commensal bacteria, such as
Faecalibacterium, Bacteroides and Ruminococcus, and also other uncharacterised ASVs.
We analyse additional plasma samples, highlighting the potential of this framework
to identify differences in cfmDNA between healthy and cancer patients.

Conclusions: Together, these observations indicate that plasma can harbour a low
yet detectable level of cfmDNA. The results highlight the importance of accounting
for contamination and provide an analytical decontamination framework to allow
the accurate detection of cfmDNA for future biomarker studies in cancer and other
diseases.

Keywords: Cell-free microbial DNA, Plasma, Microbiome, Cancer, Contamination, 16S
rRNA gene
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Background
The human microbiota is a major factor governing health and disease [1–3]. In cancer,

the gut microbiome has emerged as having an important influence on disease progres-

sion, treatment responses and toxicity to immunotherapy [4, 5]. Several landmark stud-

ies in mouse models and melanoma patients have examined changes in the gut flora

after treatment with checkpoint blockade and found that treatment responses were

highly dependent on the diversity and abundance of specific bacterial species [6–9].

These and other findings suggest that characterisation of the host microbiome is critic-

ally important in order to understand and potentially manipulate responses to cancer

therapies. However, a major barrier for analysing the gut microbiome as a cancer bio-

marker is the need for collection of stool samples. Here, there is often significant non-

compliance due to the undesirable nature of this type of collection which can be chal-

lenging from a patient’s perspective [10].

It is currently unclear whether assessment of the human microbiome from other

types of biospecimens, may also prove to be important cancer biomarkers. In addition

to nucleic and mitochondrial sources of cell-free DNA (cfDNA) found in blood plasma,

accumulating evidence indicates that commensal microbiome-derived DNA may also

contribute to the composition of cfDNA [11–15]. However, to date, there has been lim-

ited use of rigorous experimental controls to account for contamination that invariably

affects low-biomass microbiome studies [16–18]. Moreover, the source, type and abun-

dance of specific bacterial DNA in plasma is not well characterised. These steps are es-

sential before the circulating microbiome can be investigated as a potential cancer

biomarker and translated into clinical use.

In this study, we sought to determine if cell-free microbial DNA (cfmDNA) from

plasma could be detected using a rapid and high throughput 16S-rRNA-gene based ap-

proach, well suited to low-biomass, high-host-DNA samples. Through analysis of

plasma samples from stage IV melanoma patients and healthy individuals, we assessed

the influence of contamination and applied a stringent filtering strategy to address the

challenges associated with the low-biomass microbiome, in order to determine if a

genuine circulating cfmDNA signal could be recovered and if differences could be de-

tected between cfmDNA from healthy individuals and cancer patients.

Results
Experimental design

Our study initially analysed 89 plasma samples collected from a cohort of 69 stage IV

melanoma patients showing no sign of infection (Additional file 1: Table S1). The

plasma samples were divided into two distinct groups (Fig. 1). The first group (samples,

n = 16) was used to assess the influence of potential contamination when analysing low

biomass microbiome samples (plasma-derived cfmDNA) versus high biomass micro-

biome samples such as those from the gut (stool) or the oral cavity (saliva). Hence, for

each patient, we analysed temporally matched plasma, stool and saliva samples. Each

plasma sample was extracted in replicate across two separate DNA-extraction-batches

(hereafter referred to as DEB) for which different units of the same DNA extraction kit

were used (batches A and B). A second group of plasma samples (total n = 60) were ex-

tracted for cfDNA across three DEBs (batches C, D, E), each of which also used
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different units of the same DNA extraction kit (Fig. 1). Due to sample availability,

plasma samples in group 2 were not extracted in replicate and did not have temporally

matched stool or saliva samples. Across both groups, every DEB included between 6 to

12 DNA Extraction Negative Controls (DENCs) where nuclease-free water was the only

input used for the DNA extraction. All plasma DNA extractions were conducted by

limited personnel using a disposable surgical gown and gloves in a biosafety cabinet

(solely dedicated to blood handling) in which all equipment had been disinfected and

DNA-cleaned (using 1% virkon, DNA decontamination reagent and UV light).

Concentration levels of cfmDNA from plasma

To assess the absolute levels of microbial DNA concentration across all sample-types and corre-

sponding DENCs, a universal 16S-rRNA-gene droplet digital PCR (ddPCR) assay was run across

a subset of 72 samples and 58 DENCs (see the ‘Methods’ section). As expected, the microbial

DNA concentration in plasma (median of 101 copies/μl of DNA) was much lower than the

concentrations measured in stool (median of 30436 copies/μl of DNA) and saliva (median of

17710 copies/μl of DNA) (Fig. 2A). However, despite showing a much smaller sample to DENC

ratio than stool and saliva, the overall microbial DNA concentration of plasma was greater than

its corresponding DENCs (median of 71 copies/μl of DNA). To assess if this and other differ-

ences in concentrations were statistically significant, we applied generalised estimating equations

(GEE) (see the ‘Methods’ section). For plasma, this showed a significant interaction between

sample-vs-DENC and DEB (p value < 0.001). Therefore, differences between plasma and DENC

were assessed within each DEB (Fig. 2B). A higher microbial DNA concentration of plasma-vs-

DENC was observed across all DEBs, and these differences were consistent and statistically sig-

nificant in all but one DEB (Fig. 2B). Across all plasma samples and DEBs, a mean of 2719 cop-

ies per ml of plasma versus a mean of 1829 copies per ml of nuclease-free water for plasma-

DENCs was observed. Additionally, the microbial DNA concentration levels of plasma-DENC

samples were significantly higher than those of stool and saliva DENCs suggesting that the

plasma DNA extraction kit reagents contained higher levels of contaminant DNA than the stool

and saliva DNA extraction kits used (Fig. 2A).

Fig. 1 Schematic overview of the study. Biospecimens from a total of 69 stage IV melanoma patients
(showing no signs of infection) were analysed across two groups: (1) with matching patient stool, saliva and
plasma samples and (2) with plasma samples only. Samples were extracted for DNA in different batches
totalling n = 1 for stool, n = 1 for saliva and n = 5 for plasma (batches A–E). Thirteen of the sixteen samples
of batch A matched samples of batch B. The number of DNA-Extraction-Negative-Controls (DENCs)
extracted in each one of the depicted batches from left (batch St) to right (batch E) were 12, 6, 9, 9, 8, 8
and 8 respectively. All samples were amplified for the 16S rRNA gene and sequenced across two MiSeq
runs that correspond to each one of the two groups
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Microbial community analysis of cfmDNA

Once we had established that cfmDNA concentrations were significantly higher than

background contamination levels (i.e. DENC), we next assessed if differences could be

observed at the level of the microbial community structure and how this compared

with other sample types. Here, the two groups of samples from the patient cohort (Fig.

Fig. 2 Absolute levels of bacterial DNA from saliva, stool and plasma. A droplet digital PCR (ddPCR)
targeting the V4 region of the 16S rRNA gene was used to measure the absolute levels of all bacterial DNA
from different biospecimen sources. A The levels of bacterial DNA are shown for a subset of 10 stool, 4
saliva and 58 plasma samples collected in the study and a subset of 12, 4 and 40 DNA Extraction Negative
Controls (DENCs) corresponding to each sample-type, respectively. For DENCs, nuclease-free water was the
only input used for the DNA extraction. Levels are also shown for 28 replicates of a non-template control
(NTC) where nuclease-free water was the only input used for the ddPCR reaction. The sample to DENC
median ratio for saliva, stool and plasma were 2064, 2919, and 1.43, respectively. The plasma-DENC to
saliva-DENC and stool-DENC ratio were 8.23 and 6.77, respectively. B The concentration levels of microbial
DNA in plasma are shown for each individual DNA extraction batch (DEB) together with their
corresponding DENCs. The number of plasma samples tested for DEB A-E was 15, 10, 14, 11 and 8,
respectively. The number of plasma-DENC replicates tested for DEB A-E was 9, 9, 8, 8 and 6 respectively. The
plasma to DENC median ratio for DEBs A to E, were 1.62, 1.2, 1.84, 1.34 and 1.6, respectively. Statistical
significance for differences between groups was determined by generalised estimating equations (GEE) test;
*** p < 0.001, ns-not significant
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1) were subjected to separate amplicon sequencing runs covering the 16S rRNA gene

V4 region on the Illumina MiSeq platform (see the ‘Methods’ section, Additional file 1:

Figure S1). Quality processing and correction of amplicon sequencing read errors gen-

erated amplicon sequence variants (ASV) which allowed us to obtain the maximum

phylogenetic resolution possible (see the ‘Methods’ section). From this, saliva, stool and

plasma samples on average generated 25161, 34073 and 56674 reads, respectively (Add-

itional file 1: Figure S2). Saliva DENCs, stool DENCs and plasma DENCs generated an

average of 157, 1333 and 56172 reads, respectively (Additional file 1: Figure S2). To ac-

count for any bias in library preparation, a commercial mock microbial community

composed of genomic DNA of 20 evenly distributed bacterial strains was included in

each sequencing run. The analysis pipeline was able to recover ASVs with genus-level

classifications corresponding to all but one of the strains (Cutibacterium or Propioni-

bacterium) from the mock microbial community across the two Miseq runs (Additional

file 1: Figure S3). This is consistent with previous skin microbiome surveys which have

observed that sequencing of the V4 region of the 16S rRNA gene severely underrepre-

sents the Cutibacterium genus [19]. Reflecting the PCR bias commonly associated with

sequencing of the 16S rRNA gene, the recovered ASVs showed an uneven abundance

distribution (Additional file 1: Figure S3A). However, this abundance distribution was

consistent across separate library preparation and sequencing experiments (Additional

file 1: Figure S3B).

Taxonomic profiling of patient-matching plasma, stool and saliva samples (group 1 in

Fig. 1) showed that the microbial community structure at the phylum level differed by

sample-type (Fig. 3A). As expected, stool samples were dominated by Firmicutes (av.

41%), Bacteroidetes (av. 40%), Proteobacteria (av. 12%) and Verrucomicrobia (av. 3%).

In saliva, the dominant phyla were Proteobacteria (av. 34%), Firmicutes (av. 26%), Bac-

teroidetes (25%), Fusobacteria (av. 11%) and Actinobacteria (av. 4%). In contrast,

plasma samples contained mainly Proteobacteria (av. 53%), Bacteroidetes (av. 15%), Fir-

micutes (av. 11%), Deinococcus-Thermus (av. 6%), Candidate division OD1 (av. 3%),

Actinobacteria (av. 3%) and Verrucomicrobia (av. 3%). Further confirming the extent to

which the microbiome composition differed between sample types, these differences in-

creased with the taxonomic level depth (Additional file 1: Figure S4) and were also ob-

served at the ASV-level (Fig. 3B). A repeated-measure aware permutational analysis of

variance (RMA-PERMANOVA) of pairwise Bray-Curtis dissimilarities showed an over-

all significant difference by sample-type (p value < 0.001) and between all sample-type

pairs (p value < 0.001 for all three pairs of sample types). Patients shared an average of

4 (0–15; 12% of ASVs and 16% of reads) plasma ASVs with stool and 1 (0–7; 6% of

ASVs and 4% of reads) with saliva (Additional file 1: Table S2).

The phylum-level taxonomic profiles of stool and saliva samples were markedly dif-

ferent from their corresponding DENCs (Fig. 3A), and these differences increased with

the taxonomic level depth (Additional file 1: Figure S4). Clear differences were also evi-

dent in the community structure at the ASV-level (Fig. 3B; ‘DNA extraction day’ ad-

justed PERMANOVA p value < 0.001 and p value < 0.01 for Stool vs. Stool-DENC and

Saliva vs. Saliva-DENC comparisons, respectively). In contrast, there was much higher

similarity in the taxonomic profiles of plasma samples and their corresponding DENCs

(Fig. 3A), and this pattern was maintained along the taxonomic hierarchy (Additional

file 1: Figure S4) as well as observed at the ASV-level (Fig. 3B). These results indicate
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that, in contrast to stool and saliva, the characterisation of the plasma microbiome is

highly susceptible to contaminant DNA.

To further compare the microbial community structure of plasma and plasma-

DENCs, we exclusively analysed these two sample-types across the entire patient cohort

(DEB A-E) (Fig. 1 groups 1 and 2). A hierarchical clustering analysis of Bray-Curtis dis-

similarities at the ASV-level showed batch effects due to sequencing run, DEB and

DNA-extraction-day (Fig. 3C and Additional file 1: Figure S5) all of which were statisti-

cally significant (‘sample type’-adjusted RMA-PERMANOVA p value < 0.05 for sequen-

cing run and p value < 0.001 for both DEB and DNA-extraction-day). The overall

pattern which showed that most plasma and DENC samples from the same DEB clus-

tered together (Fig. 3C) and the high taxonomic similarity within each DEB (Fig. 3A,

Additional file 1: Figures S4 and S6) suggested that this effect, at least in part, was the

consequence of contaminant DNA. The batch effect associated with DEB was especially

evident by the fact that despite representing the same plasma samples, the microbial

communities of most samples from DEB A and B clustered separately. Despite these

batch effects, within DEBs most plasma samples clustered separately from their

Fig. 3 Community structure of cell-free microbial DNA in plasma and patient-matching stool and saliva. A
Taxonomic profiles (through 16S rRNA gene sequencing) of patient-matching plasma (batches A and B
only), stool and saliva samples and respective DENCs at the phylum level. The top 15 most abundant phyla
are shown. B Non-metric multidimensional scaling (nMDS) of pairwise Bray-Curtis dissimilarities calculated
from microbial community profiles for patient-matching plasma (batches A and B only), stool and saliva
samples and respective DENCs at the ASV-level. C Dendrogram based on hierarchical clustering analysis
(UPGMA) of pairwise Bray-Curtis similarities for all plasma samples (batches A–E) and their corresponding
DENCs at the ASV-level highlighting batch effects due to sequencing run and DNA extraction batch (DEB).
For both, B and C, prior to calculating Bray-Curtis dissimilarities, ASV counts were rarified (i.e. randomly
subsampled to the minimum sample size) and square-root transformed. D Alpha diversity measurements of
all plasma samples and their corresponding DENCs across the five DNA extraction batches A–E based on
the number of observed ASVs (richness) and inverse Simpson’s Index (diversity). ‘+’ p between 0.1–0.05, * p
< 0.05, ** p < 0.01, ns-not significant
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corresponding DENCs (Fig. 3C) and after adjusting for batch effects, this difference was

statistically significant across the entire cohort (RMA-PERMANOVA p value < 0.05

after adjusting for sequencing-run and DEB separately and p value < 0.001 after adjust-

ing for DNA-extraction-day). To account for the compositional nature of microbiome

data [20], we additionally performed hierarchical clustering analysis based on Aitchison

distances (i.e. Euclidean distances of clr transformed data) (Additional file 1: Figure S7).

Similar to our previous results, significant batch effects were observed (‘sample type’-

adjusted RMA-PERMANOVA p value < 0.01 for sequencing run and p value < 0.001

for both DEB and DNA-extraction-day). However, consistent with our previous find-

ings, there was a significant difference between the microbiome composition of

cfmDNA and negative controls (RMA-PERMANOVA p value < 0.05 after adjusting for

sequencing run and DEB separately and p value < 0.001 after adjusting for DNA-

extraction-day).

A generalised estimating equation (GEE) test showed that after adjusting for DEB,

the overall ASV richness of plasma samples was significantly higher than DENCs (p

value < 0.001), and this difference was significant in three of the individual DEBs (Fig.

3D). Plasma samples showed a smaller inverse Simpson index than DENCs across the

cohort (GEE p value < 0.05). However, when comparing within individual DEBs, this

difference was only statistically significant in DEB B (GEE p value < 0.01) (Fig. 3D).

Overall, these results indicate that whilst there are significant batch effects associated

with contaminant DNA, once adjusted for, a small but significant difference between

the microbiome composition of cfmDNA and DENCs is observed.

In silico decontamination identifies high-confidence plasma ASVs

To identify genuine ASVs from plasma, we developed a strategy to specifically remove

contaminant DNA sequences from our dataset. Previous studies have shown that in order

to separate true signal from contaminant DNA in low-biomass samples, a combination of

bioinformatics techniques must be applied [18, 21]. Due to the high levels of contaminant

DNA affecting our cfmDNA analysis that we had identified, we used a conservative ap-

proach and applied three bioinformatics decontamination criteria that an ASV must meet

in order to be considered as a high-confidence plasma ASV (Fig. 4A): (i) no significant dif-

ferential abundance due to technical variables that cause batch effects (i.e. sequencing

run, DEB and DNA-extraction-day) as assessed with the limma R package [23], (ii) a

higher prevalence in plasma vs. plasma-DENC samples across DEBs as assessed with the

decontam R package [22] and (iii) for ASVs present only in patient-matching DEBs A and

B, to have significant association in detection of the ASV between replicates using an

inter-rater reliability kappa score (p value < 0.05 and kappa > 0.4). Representative exam-

ples of ASVs passing or not passing each of these filtering criteria are shown in Fig. 4B–D.

For instance, Fig. 4C shows a representative example of the prevalence in plasma vs.

DENC across all ASVs present in DEB E and the decontam classification as ‘real’ or ‘con-

taminant’. Similar results were observed for the other DEBs (Additional file 1: Figure S8).

A summary of the number of ASVs that met each criterion separately and in combin-

ation are shown in Table 1. Out of a total of 1506 ASVs present across all plasma sam-

ples, 239 (16%) passed criterion (i), and of these, only 8 and 4 were present across

plasma samples in medium (0.1–1%) and high abundances (> 1%), respectively. A total
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of 329 ASVs (22%) met criterion (ii), and of these, 16 had medium abundances. Show-

ing a significant association of detection between patient-matching samples, 20 ASVs

(1.3%) met criterion (iii) and of these, 6 had medium abundances. After applying criter-

ion (i) and (ii) to all ASVs, and criterion (iii) to ASVs only present in patient-matching

DEBs A and B, a list of 38 low-abundance (< 0.01%) ASVs was obtained. As a final de-

contamination step (criterion (iv)), this list of ASVs was compared against a previously

published ‘contaminants-blocklist ’[16] which compiles a list of taxa commonly found

in laboratory reagents (e.g. DNA extraction kit buffers) that have been reported as con-

taminants in multiple low-biomass microbiome studies. The literature was also

searched for evidence of the ASVs’ taxonomic affiliations being identified as a com-

mensal or human pathogen. Supporting our bioinformatics decontamination strategy,

Fig. 4 Identification of high-confidence plasma ASVs through an in silico decontamination filtering strategy.
A Schematic description of the bioinformatics filtering strategy used to identify high-confidence plasma
ASVs. *but not exclusively in A, B. B Representative example of an ASV not passing criterion (i) due to a
significant differential enrichment in DEB E vs. DEB D (Cupriavidus [blue]) compared to one which passes
this criterion where there is no significant abundance difference between DEBs (candidate division OD1
[red]). C A representative example of the filtering strategy for criterion (ii) showing the prevalence in plasma
vs. DENC across all ASVs present in DEB E and the decontam [22] classification as ‘real’ or ‘contaminant’. The
abundance which is represented by the size of the data points is the average relative abundance (i.e.
number of reads normalised by the sample size) of an ASV across plasma samples. D A representative
example of an ASV not passing criterion (iii) due to a lack of significant association in the detection
between patient-matching plasma samples of DEBs A and B (Comamonadaceae [blue]) compared to an
ASV which passes this criterion where there is a significant association between patient-matching samples
(Deinococcus [red]). Cohen’s kappa inter-rater reliability coefficient was used to assess the agreement of
detection between matching samples. E The prevalence and abundance across plasma samples and DENCs
of 31 high-confidence plasma ASVs identified through using filtering criteria (i) to (iv) as described. The
abundance represents a log10 transformation of the percentage of reads per plasma sample. F Orthogonal
validation of a Faecalibacterium ASV and Clostridium sensu stricto 9 ASV using an ASV-specific ddPCR.
Kappa coefficient was used to assess the agreement of detection between the ddPCR and 16S rRNA
sequencing results. In B, D and F, the sequence abundance represents the percentage of reads per sample
and across the upper and lower panels; each bar corresponds to the same plasma or plasma-DENC sample
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only 7/38 (18%) ASVs had no evidence supporting their role as a commensal or patho-

gen, and of these, five were present in the ‘contaminants blocklist’. These were removed

following the final decontamination step, resulting in a final list of 31 high-confidence

plasma ASVs that were likely to be genuine cfmDNA members (Fig. 4E and Additional

file 2: Table S3).

To orthogonally validate our 16 s rRNA gene sequencing results, two high-confidence

plasma ASVs that were classified as Faecalibacterium and Clostridium sensu stricto 9

were selected for ASV-specific ddPCR, based on their average abundance across the co-

hort (see the ‘Methods’ section). Calculation of the inter-rater reliability kappa score

and Spearman’s correlation indicated good agreement between the ddPCR and the 16S

rRNA gene sequencing in detecting these ASVs (Fig. 4F). These specific ASVs were

measured at a minimum of 2 × 10−1 copies/μl of DNA via ddPCR, within the estab-

lished detection limit of the 16S rRNA sequencing assay (Additional file 1: Figure S1).

Most of the high-confidence plasma ASVs (n = 25) could be classified at the family

or genus level, and for all of these, we found evidence in the literature for them to be

commensals or pathogens (Additional file 2: Table S3). The remaining six high-

Table 1 Number of plasma ASVs that met each decontamination criterion separately and in
combination

All ASVs
(%)

Low abundance
ASVs (%)

Med. abundance
ASVs (%)

High abundance
ASVs (%)

Total 1506
(100)

1384 (100) 110 (100) 12 (100)

Criterion (i)

No batch effect by sequencing
run

612
(40.64)

582 (42.05) 25 (22.73) 5 (41.67)

No batch effect by DEB 277
(18.39)

260 (18.79) 12 (10.91) 5 (41.67)

No batch effect by DNA ext. day 1113
(73.9)

1069 (77.24) 38 (34.55) 6 (50)

No batch effect by any tech. var. 239
(15.87)

227 (16.4) 8 (7.27) 4 (33.33)

Criterion (ii)

Decontam in DEB A 183
(12.15)

144 (10.4) 36 (32.73) 3 (25)

Decontam in DEB B 364
(24.17)

307 (22.18) 51 (46.36) 6 (50)

Decontam in DEB C 573
(38.05)

504 (36.42) 68 (61.82) 1 (8.33)

Decontam in DEB D 431
(28.62)

385 (27.82) 45 (40.91) 1 (8.33)

Decontam in DEB E 452
(30.01)

395 (28.54) 55 (50) 2 (16.67)

Decontam across DEBs 329
(21.85)

313 (22.62) 16 (14.55) 0 (0)

Criterion (iii)

Sample association 20 (1.33) 14 (1.01) 6 (5.45) 0 (0)

Complete bioinformatics
decontamination strategy

38 (2.52) 38 (2.75) 0 (0) 0 (0)

Final list after literature-based filter 31 (2.06) 31 (2.24) 0 (0) 0 (0)

Low abundance, < 0.1%; med abundance, 0.1–1%; high abundance, > 1%; DNA ext. day, DNA extraction day; tech. var.,
technical variable
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confidence plasma ASVs could only be classified at high taxonomic levels (i.e. order or

above), and therefore these ASVs could potentially represent novel or poorly charac-

terised bacterial members of the human microbiome. Covering a large phylogenetic di-

versity, the high-confidence plasma ASVs belonged to the phyla Firmicutes (48%),

Patescibacteria group (16%), Bacteroidetes (13%), Proteobacteria (10%), Actinobacteria

(6%), Bdellovibrionota (3%) and Deinococcus-Thermus (3%). Interestingly, the taxon-

omies of 18/31 (58%) of the high-confidence ASVs obtained from this cohort were also

identified as genuine cfmDNA in another recent study using a whole-metagenome se-

quencing approach (Additional file 2: Table S3) [15].

We also examined the overlap between the high-confidence plasma ASVs and those

identified in stool and saliva samples. Eleven (35%) high-confidence plasma ASVs were

also present in stool across a range of 2 (13%) to 12 (80%) of the patients (Additional

file 2: Table S3). Most of these ASVs were classified into genera of bacteria commonly

found in the gut such as Faecalibacterium, Bacteroides and Ruminococcus. Only one

high-confidence plasma ASV of the genus Veillonella was also present in saliva sam-

ples. This ASV was present in saliva from all 15 patients and was also present in stool

samples across three patients (Additional file 2: Table S3). Although determining the

origin of cfmDNA was beyond the scope of the present study, these observations sug-

gest that the gut microbiome may represent a significant source of cfmDNA.

Identification of cfmDNA in healthy individuals versus cancer patients

We then assessed whether our current framework could be utilised to identify high-

confidence ASVs from plasma of healthy individuals in addition to late stage cancer pa-

tients, thus providing an opportunity to compare the cfmDNA profile between these

groups. We applied our 16S RNA gene sequencing protocol and analysis pipeline to a

new extension cohort of stage IV melanoma patients (n = 15) (Additional file 1: Table

S4) and healthy controls (n = 15) (Fig. 5A) to allow direct comparison. Here, melanoma

and healthy plasma samples were extracted across two DEBs (F and G) with the same

samples extracted in each batch. Each DEB consisted of three extraction runs (5 melan-

oma and 5 healthy controls) and included 4 DENCs. All samples were run on a single

MiSeq run (Fig. 5A).

Sequencing of the same mock microbial community used in the initial cohort gener-

ated results consistent with our previous observations (Additional file 1: Figure S9A).

After quality processing and generation of ASVs, healthy plasma, melanoma plasma

and plasma DENC on average generated 27630, 26394 and 27679 reads, respectively

(Additional file 1: Figure S9B). Taxonomic profiling of plasma samples showed a micro-

biome composition similar to that of the first cohort and exhibited a high similarity be-

tween plasma and plasma DENC for both melanoma and healthy samples (Additional

file 1: Figure S9C). This indicates that plasma samples, regardless of belonging to mel-

anoma patients or healthy individuals, are highly susceptible to contaminant DNA.

Consistent with the Bray-Curtis dissimilarity analysis at the ASV-level of the first co-

hort, ‘sample type’-adjusted RMA-PERMANOVA tests showed evidence of batch ef-

fects by DEB and DNA-extraction-run (Additional file 1: Table S5). However, in

contrast to the initial cohort, here the effect size that these technical variables had on

the community structure was smaller (Fig. 5B). In keeping with this smaller effect size,
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compositional analysis using PERMANOVA tests based on Aitchison distances showed

no statistically significant differences by DEB or by DNA-extraction-run (Additional file

1: Table S5). In line with our observations in the initial cohort, Bray-Curtis dissimilarity ana-

lysis showed a degree of separation between plasma and DENC samples (Fig. 5B) and after

adjusting for batch effects, PERMANOVA tests indicated that this difference was statistically

significant, both for all plasma samples analysed together and for healthy and melanoma sam-

ples analysed separately (Additional file 1: Table S5). PERMANOVA tests based on Aitchison

distances showed the same results (Additional file 1: Table S5). In contrast to the first cohort,

batch effect-adjusted GEE tests showed no statistically significant difference in the ASV rich-

ness of plasma and DENCs (Additional file 1: Figure S9D and Table S5). However, consistent

with the first cohort, plasma samples showed a statistically significant smaller inverse Simpson

index than DENCs, and this could be observed both for all plasma samples analysed together

and for melanoma and healthy samples analysed separately (Additional file 1: Figure S9D and

Table S5). Overall, these results show that the same batch effects associated with contaminant

DNA can be present when analysing plasma samples from healthy individuals; however, once

adjusted for, a small but significant difference between the microbiome composition of

cfmDNA from healthy individuals and DENCs is observed.

Comparison of the community structure of healthy vs. melanoma samples showed no

observable nor statistically significant differences (Fig. 5B and Additional file 1: Table

S5). Whilst no statistically significant difference was observed for ASV richness, a

DNA-extraction-run adjusted GEE test using the inverse Simpson index indicated that

plasma from healthy individuals had a higher diversity than plasma from melanoma pa-

tients (Additional file 1: Figure S9D and Table S5).

Fig. 5 Sequencing analysis of an extension cohort of healthy individuals and melanoma patients. A
Schematic of the experimental design used in an extension cohort of plasma samples from stage IV
melanoma patients and healthy individuals. B Non-metric multidimensional scaling (nMDS) of pairwise Bray-
Curtis dissimilarities calculated from microbial community profiles of plasma (batches F and G) and
respective DENCs at the ASV-level. C The abundance across plasma samples and DENCs of an ASV that
passed all the bioinformatics decontamination criteria (with kappa = 0.667, p value < 0.001) and that was
classified into the Castellaniella genus. A significant differential abundance was observed between
melanoma vs. healthy control plasma samples (FDR < 0.01) based on analysis with limma
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To identify high-confidence plasma ASVs from the extension cohort, we applied our

in silico decontamination framework (Additional file 1: Table S6). Consistent with the

smaller batch effects observed in this data set, likely contributed to by the smaller sam-

ple size and fewer DEBs, the majority of ASVs (1674/1675 (99.9%)) had no significant

batch effects and therefore passed criterion (i). A total of 347 (21%) ASVs passed criter-

ion (ii) demonstrating a significantly higher prevalence in plasma vs. DENC samples

(Additional file 1: Figure S9E) and 38 (2.3%) ASVs passed criterion (iii) exhibiting a sig-

nificant association of detection between patient-matching samples across DEBs. A

total of six ASVs passed all three criteria (Additional file 1: Figure S9F), and of these,

two passed the literature-based criterion (iv) (Additional file 3: Table S7). The genera

of two of these six ASVs were identified as genuine cfmDNA in a recent study using a

whole-metagenome sequencing approach (Additional file 3: Table S7) [15].

The six high-confidence ASVs that passed criteria (i) to (iii) were not part of the list

of 31 high-confidence ASVs found in the first cohort. However, three of the ASVs were

classified into the Gracilibacteria class, Weeksellaceae family and Deinococcus genus

and ASVs belonging to the same taxa were part of the high-confidence list of the first

cohort (Additional file 3: Table S7). Of the list of 347 ASVs that passed criteria (i) and

(ii), three ASVs classified as Absconditabacteriales (SR1), Oxalobacteraceae and Blautia

were part of the 31 high-confidence ASVs found in the initial cohort. ASVs belonging

to the Pseudomonas, Deinococcus, Bacteroides, Chryseobacterium, Bacillus, Lactococcus,

Clostridium senso stricto 9 and Blautia genera, as well as the Oxalobacteraceae family,

were represented in both lists of ASVs.

To identify any differentially abundant ASVs between healthy and melanoma sam-

ples, we applied limma hypothesis testing on the set of 347 ASVs that met criteria (i)

and (ii). Using linear models that separately adjusted for DEB and DNA-extraction-run,

only one differentially abundant ASV was found after correcting for multiple testing

(Fig. 5C). This ASV was only present in healthy individuals and was absent from any of

the plasma DENC samples. It was classified into the Castellaniella, and although we

could not find any evidence in the literature indicating that this genus could represent

a human commensal or pathogen from analysis of high-biomass samples, it passed all

three in silico decontamination criteria and was recently identified as a genuine

cfmDNA member [15] (Additional file 3: Table S7).

Discussion
In recent years, the role of the microbiome in cancer has been increasingly recognised,

including its influence on response and toxicity to immunotherapy [5, 8, 9]. It is there-

fore not surprising that interest in the development of microbiome-based cancer bio-

markers has grown [15, 24, 25]. Most of the evidence characterising the microbiome in

cancer has come from the study of the gut microbiome. Currently, there is limited un-

derstanding of cell-free microbial nucleic acids and if these could be valuable for clin-

ical application. Here, we examined whether a 16S rRNA gene sequencing approach of

blood plasma DNA could be used to detect a genuine cfmDNA signal. From this ana-

lysis, we found that due to its low-biomass, the characterisation of cfmDNA in plasma

from cancer patients and healthy individuals can be heavily affected by contaminant

DNA which can produce large batch effects in the microbial diversity and community

structure. However, once the variation produced by these batch effects is adjusted for,
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we found a small but significantly higher bacterial concentration in plasma compared

to controls and a significant difference between the community structures of these two.

Furthermore, we were able to leverage our experimental design to identify high-

confidence plasma ASVs. Together, these observations indicate that plasma from

healthy individuals and cancer patients can harbour a low yet detectable level of

cfmDNA and that this framework can be utilised to identify potential differences in

cfmDNA between healthy and cancer patients.

Our findings support those of several recent studies which have analysed the pres-

ence of cell-free microbial nucleic acids from plasma. Recent studies that have explored

plasma cfmDNA through whole-genome sequencing include those of Kowarsky et al.

[12] who reported large numbers of previously unidentified members of the human

microbiome and that of Huang et al. [11] who found differences in the diversity and

abundance of certain taxa between healthy females and those with early-onset breast

cancer. However, these studies did not report stringent decontamination analyses and

the impact that contamination can have in microbiome studies, particularly those with

low endogenous biomass, such as plasma, has been widely reported in the literature

[16, 21, 26–29]. Whilst our findings and those of previous studies support the existence

of cfmDNA in plasma, our observations suggest that the levels and diversity are consid-

erably lower than previously thought, once the influence of contamination is addressed.

Due to the ubiquitous presence of microbes, sources of contaminant DNA include the

laboratory environment, laboratory reagents and experimental procedures, as well as

the researchers themselves [26, 27, 29–31]. In particular, widespread contaminant DNA

in laboratory reagents and kits has led some researchers to refer to this as the ‘kitome’,

which has been seen consistently across different laboratories [26]. A recent study by

Poore et al. [15] was the first to apply strict decontamination strategies when analysing

plasma-derived cfmDNA. By performing whole metagenome sequencing analysis of

cfDNA from plasma along with contamination-controls, they were able to validate dis-

tinct cancer-type specific cfmDNA signatures that were identified by analysing a large

collection of tissue and blood samples. This highlights the potential of cfmDNA based

diagnostics in cancer, when appropriate decontamination strategies are applied.

Here, we implemented a framework that can be utilised for the analysis of cfmDNA

which adopts guidelines to address the impact of contamination [16, 32]. Our approach

included (1) modification of DNA extraction procedures to mitigate contamination, (2)

inclusion of appropriate negative controls with each DNA extraction and sequencing li-

brary preparation, (3) analysis of the levels and types of contaminant taxa in negative

controls via 16S rRNA gene based ddPCR and sequencing, (4) assessment and adjust-

ment for batch effects associated with technical variables and (5) the application of in

silico decontamination criteria to filter out contaminating sequences and identify high-

confidence plasma ASVs. Future analyses of additional data sets and/or simulated mi-

crobial communities could help refine the in silico decontamination criteria to further

optimise accuracy and sensitivity. We elected to perform 16S rRNA gene sequencing

rather than whole metagenome analysis in our study. Whilst previous studies have uti-

lised whole-genome sequencing and showed positive detection of circulating bacterial

DNA from plasma, this can be an inefficient approach as only a minute fraction of total

sequencing reads come from circulating bacterial DNA [12, 15]. In contrast, 16S rRNA

gene sequencing specifically targets microbial DNA which makes it an option better
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suited for samples with low microbial biomass such as plasma. However, analysis of the

16S rRNA gene limits investigation to bacteria whose 16S rRNA gene subfragment has

been characterised and may not accurately represent the whole range of microbial

DNA that may be detected in the circulation [12, 15].

Our results have major implications for the analysis of cell-free microbial DNA and

its potential clinical applications. Ideally, ultraclean cell-free DNA extraction kits

should be developed that minimise the amount of contaminant DNA introduced into

the analysis, as has been done for other sample types such as whole blood. This is sup-

ported by our results, where we found that DNA contamination levels in the cfDNA

extraction kit were much higher than in extraction kits designed for microbiome ana-

lysis of stool and saliva samples. Coupling new kits with workflows that can minimise

external sources of contaminant DNA and account for technical variability could sig-

nificantly reduce the batch effects and allow a more accurate dissection of real signal

from noise. Using this optimised workflow, further analyses with larger cohorts will be

needed to identify and validate distinct ASVs associated with cancer versus healthy in-

dividuals and determine if cfmDNA can be utilised as a biomarker for clinical

management.

Conclusions
Our results serve to highlight the challenges and caveats, yet future promise of

cfmDNA analysis. Despite high levels of contaminant DNA, our evidence suggests that

genuine cell-free microbial DNA exists in plasma, but this can only be accurately deter-

mined when stringent decontamination analyses are applied. Future developments and

refinements in laboratory and bioinformatics practices will be necessary in order for it

to be exploited as a clinically viable minimally invasive biomarker for cancer and other

diseases.

Methods
Clinical cohort and specimen collection

All plasma, stool and saliva samples were collected from stage IV melanoma patients as

part of the Melanoma Biomarkers Study at the Peter MacCallum Cancer Centre in

Melbourne, Victoria. Healthy control plasma was collected from donors through the

Victorian Cancer Biobank (Study ID VCB_ 19014). Blood was collected in EDTA tubes

and processed within 2 h of collection. Whole blood was first centrifuged at 1600g for

10 min to separate the plasma from the peripheral blood cells, followed by a further

centrifugation step at 20,000g for 10 min to pellet any remaining cells and/or debris.

The plasma was then stored at − 80 °C until plasma DNA extraction. Stool samples

were collected into 1× OMNIgene®•GUT (OMR-200) tubes as per manufacturer’s

protocol. These were stored at room temperature for delivery to the testing laboratory

and stored for up to 2 months. Saliva samples were collected into 1× Oragene® Saliva

Collection Kit (DNA Genotek, OG500) tubes as per manufacturer’s protocol.

DNA extraction and extraction controls

Plasma DNA was extracted from up to 2 ml of plasma using the QIAmp Circulating

Nucleic Acid Kit (Qiagen) according to the manufacturer’s instructions. All plasma
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DNA extractions were performed under sterile conditions (using disposable surgical

gown and gloves) in a Biosafety Level 2 cabinet dedicated only to plasma DNA extrac-

tions in which all equipment had been disinfected and DNA-cleaned using 70% etha-

nol, 1% Virkon, DNA decontamination reagent (Sigma LookOut DNA Erase) and UV

light for a minimum of 30min. The plasma DNA was eluted into 50 μl buffer AVE and

stored at − 20 °C. Faecal specimens were extracted for DNA using the MoBio PowerFe-

cal DNA isolation kit (Qiagen) according to the manufacturer’s instructions and stored

at − 20 °C. Saliva samples were extracted for DNA using the Qiasymphony SP and the

QIAsymphony DSP DNA Kit (Qiagen). DNA Extraction Negative Controls (DENC)

were employed where nuclease-free water (Promega) was the only input performed in

each extraction to assess for possible contamination arising from the different extrac-

tion kits. E. coli derived DNA was extracted using the DNeasy Blood and Tissue Kit

(Qiagen) according to the manufacturer’s protocols, quantified using the Qubit high-

sensitivity dsDNA kit (Thermo Fisher Scientific) and diluted in nuclease-free water for

the dilution series.

16S rRNA gene sequencing

Based on the 16S rRNA gene Illumina amplicon protocol of the Earth Microbiome Pro-

ject, the V4 hypervariable region of the bacterial 16S rRNA marker gene (16Sv4) was

targeted for PCR amplification [33, 34]. This PCR protocol has been used multiple

times for the study of a large variety of environmental and human microbiomes [35].

Primers 515F-OH1 (ACACTGACGACATGGTTCTACAGGACTACNVGGGTWTC

TAAT) and 806R-OH2 (TACGGTAGCAGAGACTTGGTCTGTGYCAGCMGCC

GCGGTAA) were used, which included consensus sequences (underlined) to provide a

target for the subsequent introduction of Illumina sequencing adaptors and Fluidigm

index barcodes to the amplicon target for paired-end sequencing on the Illumina

MiSeq instrument [36–38]. Primary 16S rRNA gene PCR amplification was performed

in duplicate using the Platinum Hot-Start PCR Master Mix (2X) (ThermoFisher Scien-

tific) with the following conditions: 94 °C for 3 min followed by 25 cycles for stool and

saliva samples and 30 cycles for plasma at 94 °C for 45 s each, 55 °C for 1 min, and

72 °C for 1 min and a final extension step at 72 °C for 10 min. Amplicons from the pri-

mary amplification were then diluted 1/10 and used as template for the secondary amp-

lification. In the secondary amplification, the overhang sequences were used to

introduce Illumina sequencing adaptors and Fluidigm index barcodes to the amplicon

target. Following amplification, products were pooled together, purified using AMPure

XP beads and quantified using an Agilent D1000 screentape (Agilent Technologies).

The indexed pool was diluted to 6pM and sequenced with the MiSeq system (Illumina)

using paired end 600-cycle (2 × 311) kit. A mock bacterial community control (20

Strain Even Mix Genomic Material-ATCC® MSA-1002 T) was included in each PCR

amplification run to assess for uniformity in PCR amplification. Non-template controls

were also included in each run to assess for DNA contamination during the PCR amp-

lification process.

To determine the limit of detection of the sequencing approach, this was applied to a

ten-fold dilution series of E. coli genomic DNA ranging from 104 to 10−2 genome cop-

ies/μl of DNA (Additional file 1: Figure S1). This showed that starting from a
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concentration of 102 genome copies/μl of DNA, the total number of reads decreased with

increasing dilutions and that E. coli sequences were detectable at the lowest concentration

of 10−2 genome copies/μl of DNA which recovered 336 E. coli reads. As shown in previ-

ous studies, the increasing number of microbial DNA serial dilutions was correlated with

the diversity (and proportion) of contaminant ASVs sequenced [26, 39].

Sequence processing

The demultiplexed 16S rRNA gene amplicon sequences from each of the three sequen-

cing runs were separately processed using the QIIME2 suite (version 2018.11.0) [40].

After trimming of PCR primer sequences using ‘qiime cutadapt trim-paired’ with de-

fault parameters, ‘qiime dada2 denoise-paired’ with --p-trunc-len-f 246 and --p-trunc-

len-r 213 was used to generate an Amplicon Sequence Variant (ASV) per sample

counts table. Using ‘qiime feature-classifier classify-sklearn’ and the Silva database (119

SSU Ref NR 99 515F/806R release) [41], ASV representative sequences were taxonom-

ically classified. QIIME2 artefacts corresponding to the ASV per sample count table,

representative sequences and taxonomic classification from each of the sequencing runs

were merged and exported for downstream analyses.

Comparative diversity and statistical analyses

Files containing an ASVs per sample count table, representative sequences and a taxo-

nomic profile covering the complete sample collection were imported into R using the

Phyloseq package (version 1.28.0) [42]. ASVs taxonomically classified as eukaryota,

mitochondria or chloroplast were removed. Sequencing PCR replicates from the same

biological sample (e.g. plasma DNA sample from a specific patient extracted on a cer-

tain date) were merged by summing all counts together. ASVs with an abundance

across samples of the same sample type below 0.01% were removed. Previous to every

comparative diversity analysis, samples were normalised by rarefying (i.e. subsampling

without replacement) to a minimum sample size (i.e. number of reads) that varied de-

pending on the sizes of the samples being compared.

For the alpha diversity analysis, richness (number of observed ASVs) and inverse

Simpson values and plots were obtained using the estimate_richness and plot_richness

functions of phyloseq, respectively. To test for differences in alpha diversity between

plasma and plasma-DENC, generalised estimating equations (GEE) were applied using

the geeglm function from the geepack R package (version 1.3-1) [43] with the family

parameter set to default ‘Gaussian’. This function accounts for any potential correlation

between repeated measurements as in the patient-matching plasma samples of the

DNA-extraction-batches (DEBs) A and B. The regression model included the terms

‘sample type’, DEB and their interaction term (‘sample type’ x DEB) to test if differences

in alpha diversity between plasma and plasma-DENC changed between DEBs.

Beta diversity analysis was performed by using the ‘distance’ function of phyloseq

with method = ‘bray’ which calculates the Bray-Curtis dissimilarity of community struc-

ture between all pairs of samples. Bray-Curtis-based UPGMA hierarchical clustering

and non-metric multidimensional scaling analyses were performed using the hclust

(with method = ‘average’) function from the R stats package and the ordinate function

(with method = ‘NMDS’ and distance = ‘bray’) from phyloseq, respectively. The count
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data used for both visualisation methods was square-root transformed. Because the

quantity of reads obtained in any microbiome study is an arbitrary number imposed by

the sequencing process, microbiome count data are in fact compositions for which the

abundance of each component depends on all the other components [20, 44]. To ac-

count for the compositional nature of the data and to compare against the Bray-Curtis

based analysis, the Aitchison distance between samples was also calculated. For this, an

offset of ‘1’ was added to the non-rarified and non-transformed ASV count data to then

be centred log ratio transformed (CLR) by using the clr function of the composition R

package. To obtain the Aitchison distance, the Euclidean distance was then applied.

The circular UPGMA hierarchical clustering dendogram of plasma and plasma-DENC

samples was obtained by modifying the R output using Dendroscope (version 3.7.2)

[45]. To assess for statistical significance between the community structure of different

groups of samples with no repeated measurements (e.g. stool vs. stool-DENC), the ado-

nis function from the vegan R package (version 2.5-6) [46] was used to perform a

PERMANOVA (permutational analysis of variance) test based on Bray-Curtis dissimi-

larities or Aitchison distance. When samples belonged to the same patient (e.g. samples

from different sample types (i.e. plasma, stool and saliva) or plasma samples extracted

in replicate (i.e. across DEBs A/B and DEBs F/G), a previously published function called

PERMANOVA_repeated_measures which is a modified version of adonis that imple-

ments a repeated measurement aware PERMANOVA (RMA-PERMANOVA) was used

[47]. To account for repeated measurements, this function performs permutations

blocked within subject. For the overall and pairwise comparison between sample types

(i.e. plasma, stool and saliva), only the factor ‘sample type’ was included in the statistical

model. To adjust for the potential variation due to ‘DNA extraction day’, this factor

along with ‘sample type’ and the interaction (‘DNA extraction day’ x ‘sample type’) was

included in stool vs. stool-DENC, saliva vs. saliva-DENC and plasma vs. plasma-DENC

comparisons, where samples and their corresponding DENCs were co-extracted across

different days. For the plasma vs. plasma-DENC comparison, tests that adjusted for

DEB or ‘sequencing run’ instead of ‘DNA extraction day’ and that also included the

interaction of these factors with ‘sample type’, were also performed.

Identification of high-confidence plasma ASVs

To search for ASVs that were more likely to be genuinely present in plasma instead of

having originated from contaminant sources, we applied three independent bioinfor-

matics filters to each one of the ASVs observed across plasma samples. These criteria

have been applied for the study of other low-biomass microbiomes [18, 26] and have

been recommended in this context, as strategies for addressing the issue of contamin-

ation [16, 21, 32].

Criterion (i) consisted of the identification of ASVs with no significant differential

abundance associated with any technical variables that cause batch effects (i.e. sequen-

cing run, DEB and ‘DNA extraction day’). For this, the limma R package (version

3.40.2) [23] was used. Library sizes were normalised using the trimmed mean of log ex-

pression ratios (TMM) method [48]. ASV counts were transformed to log2-counts per

million (CPM) with associated precision weights using voom [49]. To account for the

high sparsity of the ASV-by-samples counts that can underestimate the ‘genewise’ (in
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this case the ‘ASV-wise’) variances, a correction was applied [50]. To account for re-

peated measurements (i.e. different samples belonging to the same patient), the limma

duplicateCorrelation function in which the ‘patient IDs’ were blocks was used to obtain

a consensus correlation which was incorporated to the lmFit function and empirical

Bayes moderated t statistics. Because we had an experimental design in which ‘DNA

extraction day’ was nested in DEB and this was in turn, nested in ‘sequencing run’, a

single linear regression model with ‘DNA extraction day’ as the only factor was built

and the comparisons of interest were defined as contrasts. Whilst for testing the effect

of DEB, contrasts corresponding to all possible DEB combinations were performed; for

testing the effect of ‘DNA extraction day’, contrasts were only made for days within

DEBs. P values were adjusted with the Benjamini and Hochberg method to control the

FDR. An ASV with an FDR ≤ 0.05 in any of the contrasts made to test the effect of

each one of the three technical variables (i.e. ‘DNA extraction day’, DEB and ‘sequen-

cing run’) was considered as a batch effect.

Criterion (ii) consisted of the identification of ASVs with a higher prevalence in plasma

vs. plasma-DENC samples, and for this, the isContaminant function (with method =

‘prevalence’, threshold = 0.55 and batch = DEB) of the decontam R package (version

1.4.0) [22] was used. To each ASV, this function applies a chi-square statistic (or a Fisher’s

exact test in case of low number of samples) on the 2 × 2 presence-absence table in true

samples and negative controls in which a score statistic P is defined as the tail probability

of the chi-square distribution at that value. Using the ‘batch’ parameter of the isContami-

nant function, a score statistic was computed for each DEB independently and then com-

bined by taking the minimum score across batches.

Criterion (iii) consisted of the identification of ASVs that across patient-matching DEBs

(batches A and B or F and G) showed agreement of detection between replicates. For this, we

used the kappa2 function of the irr R package (version 0.84.1) which implements the Cohen’s

kappa coefficient which is an index of interrater agreement between two raters on categorical

data. ASVs with a kappa score > 0.4 and a p values < 0.05 were considered to meet the criterion.

ASVs that met criterion (i) and (ii), and for ASVs present only in patient-matching

DEBs A and B or F and G that also met criterion (iii), were selected. These ASVs were

then taxonomically classified using an updated version of the Silva database (138 SSU

Ref NR 99 515F/806R release) using both a Naive Bayes classifier (qiime feature-

classifier classify-sklearn) and a consensus BLAST approach (qiime feature-classifier

classify-consensus-blast with parameters --p-perc-identity 0.9 --p-min-consensus 0.8).

Using a manually built consensus of the classifications obtained with these two ap-

proaches (see Additional file 2: Table S3 and Additional file 3: Table S7), the filtered

ASVs were then subjected to criterion (iv) which consisted of the classification of each

ASV in one of six mutually exclusive categories. These categories were defined based

on the presence of the ASV’s taxonomic classification in a previously published list of

‘common contaminant taxa’ in low-biomass microbiome studies [16] and in a literature

search for evidence that the taxa can be a ‘human pathogen or commensal’. This litera-

ture search only included high-biomass microbiome studies (e.g. intestinal tract, oral

cavity) rather than studies that analysed blood or plasma samples. The definition of

these categories is stated in Additional file 2: Table S3. ASVs in the ‘likely contaminant’

or ‘no evidence of commensal or pathogen’ were discarded and all the remaining ASVs

were considered as high-confidence plasma ASVs.
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Measurement of microbial DNA concentration

FAM-labelled fluorophore reporter droplet digital PCR (ddPCR) assays to validate the

16S-rRNA gene sequencing results of high-confidence plasma ASVs classified as a Fae-

calibacterium (DADA2 feature ID: 59777186ad2e0947e97615b5d6225136) and Clos-

tridium sensu stricto 9 (DADA2 feature ID: 82a260faafef55efd1b8176ecb781ecf) were

custom designed. For this, a multiple sequence alignment and a phylogenetic tree built

from the representative sequences of the ASVs obtained from plasma, plasma-DENC

and NTC samples were obtained using ‘qiime alignment mafft’ and ‘qiime fragment-

insertion sepp’ with the Greengenes 13_8 99% reference phylogeny, respectively. Based

on the phylogenetic tree, the aligned sequences of the clade where the high-confidence

plasma ASV was located and neighbouring clades were selected. This subset of the

multiple sequence alignment was then manually inspected for primer/probes target re-

gions that would maximise the number of mismatches between the high-confidence

plasma ASV and neighbour ASVs. To control for the specificity of the assay, positive

and negative gBlock gene fragments (Integrated DNA Technologies) were synthetized

using the DNA sequence of the high-confidence plasma ASV and that of a

neighbouring-clade ASV, respectively. For the Faecalibacterium (DADA2 feature ID:

59777186ad2e0947e97615b5d6225136) assay, Forward, Reverse and Probe sequences

for this ASV-specific ddPCR assay were ACTGGGTGTAAAGGGAGCGC, GAATTC

CGCCTACCTCTGCAC and AAGACAAGTTGGAAGTGAAATCCATGGGC, re-

spectively. For the Clostridium sensu stricto 9 (DADA2 feature ID: 82a260faafef55efd1-

b8176ecb781ecf) assay, Forward, Reverse and Probe sequences for this ASV-specific

ddPCR assay were AGCTTAACTTGGGTGCTGCATTTG, CTGTTTGCTCCCCACG

CTTTCAT and TTCCACTTACCTCTCCTGCACTCTAGATAT, respectively. The

assay was multiplexed with a HEX-labelled fluorophore reporter ddPCR assay designed

using primers and a probe from a previously published universal 16SrRNA TaqMan

quantitative PCR assay [51]. This assay was also used to measure the absolute levels of

microbial DNA across sample types and DENCs.

ddPCR analysis was performed using the Bio-Rad Droplet Digital PCR system following

manufacturer’s protocols. ddPCR reactions were 25 μL aqueous volumes that contained

final concentrations of 1x ddPCR supermix for probes (without dUTP) (Bio-Rad), 0.9 μM

each primer and 0.25 μM probe. The thermal cycling conditions were 95 °C: for 10min,

followed by 40 cycles of 95 °C for 15 seconds and annealing for 1 min at 65 °C. Each sam-

ple was analysed by at least two technical replicates comprising of at least 10000 individ-

ual reactions. A Poisson correction was applied to determine the number of amplifiable

molecules, which was used to further derive the number of copies of DNA carrying a par-

ticular ASV per millilitre of plasma. Data analysis was carried out using the QuantaSoft

Software, version 1.7 (Bio-Rad). An ASV was defined as detectable if there was ≥ 2 copies

detected across the duplicate reactions. To test for differences in the concentration of

gene copies between plasma and plasma-DENC, GEEs were applied by employing the

same function and regression model used to test differences in alpha diversity.
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