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Abstract

High-throughput chromosome conformation capture assays, such as Hi-C, have shown
that the genome is organized into organizational units such as topologically
associating domains (TADs), which can impact gene regulatory processes. The sparsity
of Hi-C matrices poses a challenge for reliable detection of these units. We present
GRiINCH, a constrained matrix-factorization-based approach for simultaneous
smoothing and discovery of TADs from sparse contact count matrices. GRINCH shows
superior performance against seven TAD-calling methods and three smoothing
methods. GRINCH is applicable to multiple platforms including SPRITE and HiChIP and
can predict novel boundary factors with potential roles in genome organization.

Keywords: Three-dimensional (3D) genome organization, High-throughput
chromosomal conformation capture (Hi-C), Topologically associating domains (TADs),
Matrix factorization

Background

The three-dimensional (3D) organization of the genome has emerged as an important
layer of gene regulation in developmental processes, disease progression, and evolution
[1-6]. High-throughput chromosome conformation capture (3C) assays such as Hi-C
[7, 8], SPRITE [9], and GAM [6] provide a comprehensive view of 3D organization by
measuring interactions among chromosomal regions on a genome-wide scale. High-
throughput 3C data captured from diverse biological contexts and processes has led to an
improved understanding of DNA packaging in the nucleus, the dynamics of 3D conforma-
tion across developmental stages [10], and between normal and disease cellular states [4,
11]. Analysis of such datasets has shown that chromosomal regions preferentially interact
with one another, giving rise to higher-order structural units such as chromosomal terri-
tories, compartments, and topologically associating domains (TADs) which differ in the
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size of the structural unit and molecular features associated with the constituent regions.
Although the relationship between TADs and changes in gene expression is debated
[12-14], these units have been shown to be conserved across species [5, 15] and also asso-
ciated with developmental [16] and disease processes [11, 17—19]. Therefore, accurate
identification of TADs is an important goal for linking 3D genome organization to cellular
function.

Recently, a large number of methods have been developed to identify TADs, utilizing
different computational frameworks, such as dynamic programming, [20, 21], com-
munity and subgraph detection within networks [20, 22], Gaussian mixture modeling
[23, 24], and signal processing approaches [25]. However, comparison of TAD-finding
methods [26—28] have found large variability in the definition of TADs and high sen-
sitivity to the resolution (size of the genomic region), sequencing depth, and sparsity
of the input data. A lack of a clear definition for a TAD leads to difficulty in down-
stream interpretation of these structures [29]. To address the sparsity of datasets, different
smoothing-based approaches have been proposed [30—32]; however, it is unclear whether
and to what extent TAD identification or identification of significant loops can benefit
from pre-smoothing the matrices.

Here, we present Graph Regularized Non-negative matrix factorization and Cluster-
ing for Hi-C (GRiINCH), a novel matrix-factorization-based method for the analysis
of high-throughput 3C datasets. GRINCH is based on non-negative matrix factoriza-
tion (NMF), a powerful dimensionality reduction method used to recover interpretable
low-dimensional structure from high-dimensional datasets [33—35]. However, a standard
application of NMF is not sufficient because of the strong distance dependence found in
Hi-C data, that is, regions that are close to each other on the linear genome tend to have
more interactions. We employ a graph regularized NMF approach, where the graph cap-
tures the distance dependence of contact counts such that the learned lower-dimensional
representation is smooth over the graph structure [36]. Furthermore, by exploiting NMF’s
matrix completion property, which imputes missing entries of a matrix from the product

of the low-dimensional factors, GRINCH can smooth a sparse input matrix.
We perform a comprehensive comparison of GRINCH and existing TAD-finding meth-

ods using a number of metrics: similarity of interaction profiles of regions belonging to
the same TAD, stability to different resolutions and depth of input data, and enrichment
of architectural proteins and histone modification known to facilitate or correlate with 3D
genome organization. Despite the general trend of trade-off in performance among differ-
ent criteria, e.g., a high performing method based on enrichment of architectural proteins
is not as stable to resolution and depth, GRiNCH consistently ranks among the top across
different measures. Furthermore, compared to existing smoothing approaches, GRINCH-
based smoothing of downsampled data leads to the recovery of TADs and significant
interactions best in agreement with those from the original high-depth dataset. We apply
GRiINCH to Hi-C data from two different developmental time courses; we successfully
recapitulate previously identified topological changes around key genes, identify previ-
ously unknown topological changes around genes, and predict novel boundary factors
that could interact with known architectural proteins to form topological domains. Taken
together, GRINCH is a robust and broadly applicable approach to discover structural units
and smooth sparse high-throughput 3C datasets from diverse platforms including Hi-C,
SPRITE, and HiChIP.
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Results

GRiINCH, a non-negative matrix factorization-based method for analyzing high-throughput
chromosome conformation capture datasets

GRiINCH uses graph-regularized non-negative matrix factorization (NMF) to identify
topologically associating domains (TADs) from a high-dimensional 3C count matrix
(Fig. 1; see the “Methods” section). GRINCH has several properties that make it attrac-
tive for analyzing these count matrices: (1) matrix factorization methods including NMF
have a “matrix completion” capability, which can be used to smooth noisy, sparse matri-
ces; (2) the low-dimensional factors provide a clustering of the row and column entities
that can be used to define chromosomal structural units; (3) the non-negativity con-
straint of the factors provide a parts-based representation of the data and is well suited
for count datasets (such as Hi-C matrices); and (4) GRiNCH can be applied to any count
matrix measuring chromosomal interactions between genomic loci such as Hi-C, [37],
SPRITE [9], and HiChIP [38] datasets. Previously, NMF has been used for bias correc-
tion and dimensionality reduction of Hi-C data [39]; however, this approach is applicable
to only symmetric matrices while GRINCH implementation can be easily extended to
handle asymmetric matrices. Furthermore, smoothing properties of NMF has not been
considered for Hi-C data.

For the ease of description, we will consider a Hi-C matrix as the input to GRiNCH.
In GRiNCH, the count matrix is approximated by the product of two lower dimensional
matrices, U and V, both with dimension #n x k, where # is the number of genomic regions
in the given chromosome, and k is the rank of the lower-dimensional space. Because
Hi-C matrices have a strong distance dependence, we use a constrained formulation of
NME, where the columns of the U and V matrices are favored to be smooth on a graph
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Fig. 1 Overview of GRINCH. GRINCH applies non-negative matrix factorization (NMF) to a Hi-C or a similar
high-throughput 3C matrix to find clusters of densely interacting genomic regions. NMF recovers
low-dimensional factors U and V of the input matrix X that can be used to reconstruct the input matrix. As
nearby genomic regions tend to interact more with each other, we regularize the factor matrices with a
neighborhood graph to encourage neighboring regions to have a similar lower-dimensional representation,
and subsequently belong to the same cluster. We cluster the regions by treating one of the factor matrices as
a set of latent features and applying k-medoids clustering. The clusters represent topological units such as
TADs. The factor matrices can be multiplied together to yield a smoothed version of the input matrix which is
often sparse and noisy
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of genomic regions (Fig. 1), such that regions that are connected in the graph have simi-
lar sets of values in the lower-dimensional space. The graph in turn captures the distance
dependence using a local neighborhood, where two regions i and j have an edge between
them if they are within a particular radius r of each other in linear distance along the
chromosome. GRiINCH has three parameters, k used for both the rank of the lower
dimensional space and the number of TADs, r to control the size of the neighborhood,
and A to control the strength of graph regularization. After factorization, GRINCH uses
chain-constrained k-medoids clustering to define clusters of contiguous regions, which
we consider as TADs. We probed the impact of the three parameters, &, r, and A, on
the resulting GRINCH TADs (Additional File 1, Figure S1). We determined that setting
k to identify TADs of size ~1Mb, with a neighborhood size of » = 250kb and a small
amount of regularization (A = 1), yields the best results. Notably, the regularization
yields TADs with higher CTCF enrichment than vanilla matrix factorization without any
regularization (i.e., A = 0).

GRiINCH TADs are high quality and stable to varying resolution and depth of input Hi-C data
To assess the quality of GRINCH TADs, we considered seven existing TAD identifica-
tion methods (see the “Methods” section) and applied them along with GRINCH to Hi-C
data of five different cell lines from Rao et al. [37] for comparison. The quality of a TAD
was measured with two internal validation metrics used for cluster evaluation, Davies-
Bouldin index (DBI) and Delta Contact Count (DCC), both assessing the similarity of
interaction profiles of regions within defined TADs. DBI of a cluster measures how well
separated the given cluster is from other clusters; in our case, how distinct each TAD’s
interaction count profile is from other TADs (see the “Methods” section); a lower value
for DBI indicates a more distinct, better-separated cluster. DCC measures the difference
between intra-TAD interaction counts and inter-TAD interaction counts, with higher dif-
ference associated with better TADs. For each TAD-finding algorithm, we measured the
percentage of predicted TADs with significantly better DBI or DCC value compared to
DBI or DCC values from randomly shuffled TADs within the same chromosome (see the
“Methods” section). When comparing DBI, TopDom, GRiNCH, and directionality index
have the highest percentage of their TADs with significant DBI in majority of the cell
lines (GM12878, HUVEC, K562); based on DCC, HiCseg, GRiNCH, and Directionality
rank the highest across all cell lines (Fig. 2A). Overall GRINCH was among the top three
methods for both internal validation metrics in TAD quality evaluation.

Many TAD-calling methods are sensitive to the input data resolution (size of genomic
region), with the resulting TAD lengths varying greatly as a function of resolution [28]. A
robust method is expected to yield TADs with consistent length distribution and compo-
sition when given the same user-specified parameter settings, regardless of the resolution.
Therefore, we next assessed the ability of GRINCH and the seven TAD calling methods
for their ability to recover stable TADs across different resolutions, 10kb, 25kb, and 50kb.
We first compared the overall length distribution across different resolutions (Fig. 2B;
Additional File 1, Figure S2) and found that GRINCH and directionality index are the
most stable, with the exception of NHEK where directionality index learns longer TADs
at 10k resolution (Additional File 1, Figure S2). We next evaluated the overall similarity
of TADs identified at different resolutions with metrics to quantify the similarity of pairs
of clustering results: Rand index and mutual information (see the “Methods” section).
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Fig. 2 Characterizing TADs with internal validation metrics, TAD size, and composition. A Percentage of TADs
with significant Davies-Bouldin index (DBI) and Delta Contact Count (DCC) values. Shown are values for
GRINCH and six other methods. The higher the bar, the better a method. Note: 3DNetMod outputted
overlapping TADs and was excluded from this analysis which involves TAD shuffling. B The size distribution
of TADs from GM12878. Y-axis is in log10 scale of base pairs. The white dot represents the median; the black
box ranges from the 25th percentile to 75th. 10kb data from insulation is missing because it did not return
any TADs when using the same hyperparameters as in 25kb and 50kb data. € Similarity between TADs from
higher- and lower-resolution data (e.g., 10kb vs. 25kb) measured by Rand index. The higher the number, the
higher the similarity. The error bar denotes the standard deviation from the mean across chromosomes.
Note: 3DNetMod outputted overlapping TADs and was excluded from this analysis due to the requirement
of unique cluster assignment for each region

Intuitively, Rand index is a measure of cluster membership consistency; it measures
whether two data points (in our case, two region bins) that belonged to the same clus-
ter (TAD) in one clustering result also stayed together in the other result, and whether
two data points that belonged to different clusters stayed separate. Rand index ranges
from O to 1, with 1 being perfect concordance. Mutual information is an information-
theoretic metric measuring the dependency between two random variables, where each
variable indicates a clustering result. A mutual information of 0 indicates complete dis-
agreement and the higher the mutual information value the better the agreement between
the corresponding clustering results. To enable comparison across resolutions with dif-
ferent number of bins, we split the lower-resolution (10kb, 25kb, 50kb) bins to constituent
bins of size 5kb, the size of the lowest common denominator. We assigned these 5kb bins
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the same cluster as the original lower-resolution bin (see the “Methods” section). We find
that for every pair of resolutions compared, e.g., TADs from 10kb vs. 50kb, TopDom,
GRiNCH, and rtGMAP rank in the top three for both Rand index (Fig. 2C) and mutual
information (Additional File 1, Figure S3). These results suggest that GRINCH is robust

to different resolutions, recovering consistent TADs across different resolutions.

TAD-calling methods can be sensitive to the sparsity of the Hi-C matrices due to low
sequencing depth [28]. To assess the robustness of each method to low-depth, sparse
datasets with many zero entries, we first took the highest-depth dataset (GM12878, 4.9
billion mapped paired-end reads) and downsampled to the depth and sparsity level of
lower-depth data from other cell lines (e.g., K562, the second “deepest” cell line with 932
million reads). We then compared the similarity of the TADs from the original high-depth
data and those from the downsampled counterpart (Fig. 3A; see the “Methods” section),
again using Rand index and mutual information. Based on Rand index, TopDom, HiCseg,
and GRiNCH vyield the most reproducible TADs across different depths, particularly at
the lower depths of HMEC, HUVEC, and NHEK cell lines. Based on mutual information,
TopDom is the most consistent followed by GRiNCH and HiCseg. Other methods were

generally less consistent based on the mutual information metric.
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Fig. 3 Evaluating the stability of different TAD-calling methods to datasets of different depths. A The mean
similarity, across chromosomes, between TADs from high-depth GM12878 dataset and TADs from low-depth
GM12878 datasets obtained by downsampling the GM12878 dataset to different depths observed in our five
cell-line dataset. The similarity of the TADs is measured by Rand index and mutual information. The error bar
denotes the standard deviation from the mean. B Similarity of TADs from pairs of TAD-calling methods (e.g.,
GRINCH vs. TopDom), measured by Rand index. The higher the number, the higher the similarity. C Similarity
of TADs from pairs of TAD-calling methods measured by mutual information. Note: 3DNetMod outputted
overlapping TADs and was excluded from this analysis due to the requirement of unique cluster assignment
for each region
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A third hindrance in the interpretation of results from TAD finding methods is the
disagreement on the TAD definitions [28, 29]. Hence, we further evaluated whether dif-
ferent TAD-calling methods yielded relatively similar TADs, and which sets of methods
yielded the most similar TADs to one another. Here again, we used Rand index and mutual
information as metrics to compare the sets of TADs from different methods. All pair-
wise comparisons of TAD-calling methods yielded high values of Rand index (>0.8) and
high mutual information (Fig. 3B, C). Furthermore, GRINCH and TopDom yield the most
similar sets of TADs, followed by rGMAP across all cell lines. This pattern is fairly
consistent even when analyzed for each cell line individually (Additional File 1, Figure S4).

To summarize, our internal validation and stability analysis showed that the top per-
forming methods depends upon the evaluation criteria. However, GRINCH is among the
top performing methods for all the criteria we examined (Fig. 4), producing TADs that are
as good or better than existing methods and are stable to varying resolution and depth.

GRiNCH TADs are enriched in architectural proteins and histone modification signals

We next characterized GRINCH TADs as well as TADs from other methods for their abil-
ity to capture well-known one-dimensional signal enrichment patterns. In particular, one
hallmark of TADs is the enrichment of architectural proteins such as CTCF and cohesin
elements (RAD21, SMC3) on the boundaries of TADs [29, 40]. We tested the TAD bound-
aries from each method for the enrichment of peaks of CTCF, RAD21, and SMC3 in the
five Rao et al. cell lines with Hi-C data (Fig. 5A; see the “Methods” section). All methods
identified boundaries enriched for peaks of these proteins; however, the methods varied
in their relative performance across cell lines. GRINCH TAD boundaries have comparable
or better enrichment as the other top performing methods, namely, directionality index

Validation Resolution Depth Coiisistency Enrichment
DBI DCC Size RI MI RI MI o CTCF Histone
GRINCH & & 9 ¢ ¥ © o o
3DNetMod
rGMAP v 9 o
Armatus ‘o'
Directionality & bt o
Insulation 1+
HiCseg b f  ©
TopDom

Fig. 4 Summary of benchmarking TAD-calling methods. Shown are different criteria of evaluation. A medal
denotes whether the given TAD-calling method is among the top 3 methods for a particular criteria
(gold/yellow: 1st place; silver/gray: 2nd place; bronze/brown: 3rd place). Validation: internal validation metrics
for measuring the cohesiveness of predicted TADs. DBI: percentage of TADs with significant Davies-Bouldin
index (Table S1a); DCC: percentage of TADs with significant Delta Contact Counts (Table S1b). Resolution:
measuring stability of TADs to changing input data resolution (e.g., 10kb, 25kb, 50kb). Size: stability of median
TAD size to Hi-C resolution (Table S1¢); RI, MI: similarity of TADs from high- and low-resolution data, measured
by Rand index (RI, Table S1d) and mutual information (MI, Table S1e). Depth: measuring stability of TADs to
the depth and sparsity of input data. RI, MI: similarity of TADs from high-depth and low-depth data, measured
by Rand index (RI, Table S1f) and mutual information (MI, Table S1g) Consistency: a group of methods yielding
TADs with highest similarity, with gold for the pair of methods with highest similarity according to
hierarchical clustering. Enrichment: measuring enrichment of regulatory signals. CTCF: fold enrichment of
CTCF and cohesin elements in TAD boundaries (Table STh); Histone: proportion of TADs with significant
mean histone signal (Table S1i). Supplementary Tables S1a-i are available in Additional File 3
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Fig. 5 Evaluating TAD-calling methods with enrichment of boundary elements and regulatory signals. A Fold
enrichment of binding signals of architectural protein in TAD boundaries. Shown are the mean fold
enrichment of CTCF ChiP-seq peaks and accessible motif instances of cohesin proteins, RAD21 and SMC3,
estimated across multiple chromosomes. The error bar denotes the standard deviation from the mean. B
Proportion of TADs with significant mean histone modification signal (i.e, empirical p-value <0.05). The
darker the entry the higher the proportion of TADs with significant histone enrichment. The average
ChlP-seq signal for each histone modification mark was taken from within each TAD; the p-value of each TAD
is derived from an empirical null distribution of mean signals in randomly shuffled TADs. Note: 3DNetMod
outputted overlapping TADs and was excluded from this analysis as it involves TAD randomization/shuffling

and insulation score in most cell lines, and HiCseg in K562 and HUVEC. All these meth-
ods including GRiINCH have significantly higher enrichment than 3DNetMod, rGMAP,
and Armatus across different cell lines. The lower performance of these three methods
could be due to their focus on hierarchical topological domains.

As histone modifications have been shown to be associated with three-dimensional
organization [41], we next measured the proportion of TADs with significant lev-
els of mean histone modification signals (Fig. 5B) compared to randomly shuffled
TADs (see the “Methods” section). The histone modification signals include promoter-
(H3K4me3, H3k4me2), elongation- (H3K79me2, H3k36me3), and enhancer-associated
marks (H3K27ac), and repressive chromatin marks (H3K27me3). A larger proportion of
GRiINCH TADs, along with Armatus and HiCseg TADs, are consistently enriched for the
activating histone marks such as H3K27ac, and the elongation marks, H3K36me3 and
H3K79me2 across multiple cell lines and different resolutions (Additional File 1, Figure
S5). Interestingly, with the exception of GM12878, the enrichment of histone marks in
the TADs from insulation and directionality index was much lower than the other meth-
ods suggesting these methods tend to find TADs defined by CTCF and might miss other
types of TADs [40]. These enrichment patterns show that when considering existing
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methods, there is a tradeoff in the ability to recover TADs that are associated with CTCF
and TADs that are associated with significant histone modifications. However, GRINCH
ranks among the top methods for both criteria (Fig. 4) suggesting that GRINCH TADs
capture a diverse type of TADs.

GRiINCH smoothing of low-depth datasets help recover structure and significant
interactions

Our analysis so far compared different TAD-finding methods for their ability to recover
stable and biologically meaningful topological units. However, most Hi-C datasets are
sparse, which can influence the TAD predictions significantly. Smoothing the input Hi-
C matrix to impute missing values can enhance the visualization of topological units on
the matrix [30, 31], improve the agreement among biological replicates [30], and assist
in identifying loops and differential interactions [42, 43]. Unlike existing TAD-calling
methods, the matrix factorization framework of GRiINCH provides a natural matrix
completion solution that can generate a smoothed version of the sparse input Hi-C
matrix.

We first compared GRINCH’s smoothing functionality to common smoothing tech-
niques such as mean filter [30] and Gaussian filter [43], which have been used for Hi-C
data pre-processing [30, 42, 43]. We additionally compared against a supervised learn-
ing method, HiCNN [32], which is based on a convolutional neural network and predicts
high-resolution Hi-C data after training with high and low-depth data. We used three pre-
trained models provided by HiICNN, trained on GM 12878 data downsampled to 1/8,1/16,
and 1/25 depth. We used two metrics to assess the quality of smoothing: (a) recovery of
TADs and (b) recovery of significant interaction after smoothing downsampled data (see
the “Methods” section). To perform these comparisons, we again used the downsampled
GM12878 datasets with depths equal to each of the other four cell lines from Rao et al.

To assess TAD recovery from low-depth data, we identified TADs on the original high-
depth GM12878 dataset and compared them to the TADs identified in the downsampled
and smoothed data matrices using Rand index and mutual information. Here, to avoid
any bias in our interpretation, we used the directionality index method to call TADs.
We find that based on both Rand index and mutual information, TADs recovered from
GRiINCH-smoothed matrices are the most similar to the TADs from the high-depth
dataset, performing better than mean filter and Gaussian filter for different parameter set-
tings. Furthermore, GRiNCH outperforms HiCNN in all downsampled datasets across all
three pre-trained HICNN models (Fig. 6A). The usefulness of GRiNCH is more apparent
for lower-depth datasets (e.g., downsampled to NHEK depth).

To compare the smoothing methods on the recovery of significant interactions from
low-depth data, we applied Fit-Hi-C on the original GM12878 dataset and on the down-
sampled and smoothed datasets to identify significant interactions (q-value <0.05).
Treating the significant interactions in the original high-depth dataset as the ground
truth, we measured precision and recall as a function of the statistical significance of
interactions from the smoothed datasets and computed the area under precision-recall
curve (AUPR). The higher the AUPR, the better the recovery of significant interac-
tions after smoothing. As HICNN predictions are limited to interactions less than 2Mb
apart, we measured AUPR for interactions less than 2Mb and for all interactions sepa-
rately (Fig. 6B). When comparing interactions less than 2Mb apart, the HICNN model
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Fig. 6 Evaluating the benefits of smoothing in GRINCH. Recovery of topology and significant interactions
from downsampled then smoothed data. A Rand index and mutual information were used to measure the
similarity between TADs from high-depth GM12878 dataset and TADs from downsampled datasets
smoothed by different methods (GRINCH, Mean Filter, Gaussian Filter, HICNN). Directionality was used as a
TAD-calling method independent of any of the smoothing methods, i.e., GRINCH. The mean is computed
across chromosomes and the error bar denotes deviation from the mean. B Area under precision-recall curve
(AUPR) was used to measure the recovery of significant interactions called by Fit-Hi-C. Precision and recall
were measured for significant interactions from downsampled and smoothed datasets against the “ground
truth” defined by the significant interactions from the high-depth GM12878 dataset. Since the pretrained
HICNN models imputes interactions up to 2MB apart, the AUPR for interactions <2MB apart and for all
interactions are shown here

trained with 1/8 depth of the original GM12878 dataset outperformed the other meth-
ods (mean filter, Gaussian filter, GRINCH). This is not surprising as HICNN was trained
on the GM12878 cell line. HICNN models trained on even lower depth (1/16, 1/25)
data are at par or worse than GRiNCH for most datasets. Compared to mean filter and
Gaussian filter, GRINCH has a higher recovery of significant interactions on all the down-
sampled datasets with the exception of K562, where Gaussian filter outperformed both
GRINCH and HiCNN. When comparing all interactions including those further than
2Mb, GRiINCH has the highest AUPR compared to mean filter and Gaussian filter.

We additionally applied GRINCH smoothing to Hi-C data collected from the same bio-
logical context but using different Hi-C protocols in order to evaluate whether it can help
overcome artifacts introduced by the experimental protocol (e.g., the restriction enzyme
used for digestion) and improve the concordance of TADs and significant interactions
identified from these datasets. Using GRiNCH, we smoothed GM12878 25-kb resolution
datasets from three Hi-C protocols: in situ Hi-C using DpnlI for digestion, in situ Hi-C
using Mbol, and a dilution Hi-C experiment using HindIII (see the “Methods” section).
To independently verify the smoothing capability of GRINCH, we again used a differ-
ent TAD-calling method (directionality index) to identify TADs on the original and the
smoothed data. The similarity of TADs, measured by Rand index and mutual information,
was higher among GRiNCH-smoothed datasets than among the original datasets with-
out smoothing (Additional File 1, Figure S6a,b). We next used Fit-Hi-C [44] to identify
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significant interactions (q-value < 0.05) in the original and the smoothed data. We mea-
sured the overlap in the significant interactions identified from different datasets using
Jaccard index. We find that GRINCH-smoothed data shared a larger portion of signif-
icant interactions compared to the original unsmoothed data (Additional File 1, Figure
S6¢). This demonstrates that GRINCH smoothing is not sensitive to experimental arti-
facts such as restriction enzymes and can help improve the concordance between datasets
from different platforms to detect shared topological units and significant interactions.
Overall, our experiments show that GRINCH smoothing enables improved recovery
of TAD structures and long-range interactions from lower-depth datasets, and helps
recapitulate shared underlying biological signals beyond the experimental artifacts.

GRiINCH application to chromosomal organization during development

To assess the value of GRINCH in primary cells and to examine dynamics in chromo-
somal organization, we applied GRiNCH to two time-course Hi-C datasets profiling 3D
genome organization during (a) mouse neural development [45] and (b) pluripotency
reprogramming in mouse [46]. Bonev et al. [45] used high-resolution Hi-C experiments
to measure 3D genome organization during neuronal differentiation from the embryonic
stem cell state (mESC) to neural progenitor cells (NPC) and cortical neurons (CN). We
applied GRiNCH on all chromosomes for all three cell types and compared them based on
the overall similarity of TADs between the cell lines. Based on the two metrics of mutual
information and Rand index, the overall TAD similarity captured the temporal ordering
of the cells, with mESC the most distinct and CN being closer to NPC (Additional File
1, Figure S7). To assess whether GRINCH can recover previously identified TAD dynam-
ics, we next focused on a specific 4Mb region around the Zfp608 gene, which was found
by Bonev et al. as a neural-specific gene associated with a changing TAD boundary. In
both NPC and CN, GRiNCH predicts a TAD near the Zfp608 gene, which is not present
in the mESC state. Zfp608 was also associated with increased expression, and activat-
ing marks, H3K27ac and H3K4me3 at these time points, which is consistent with Zfp608
being a neural-specific gene (Fig. 7A). To identify novel genomic regions associated with
changing 3D structure, we compared GRiINCH TADs across the time points (see the
“Methods” section) and identified 966 regions with dynamic 3D structure. Several of these
regions are associated with neural-specific gene expression or implicated in neurological
disorders. For example, we found TAD splits in the vicinity of Syapl and Apls2 genes in
the neural progenitor and cortical neuron cells, accompanied by corresponding increase
in their gene expression (Fig. 7B). Syap1-deficient mice have been shown to display motor
and movement defects [47]; Apls2 has been associated with intellectual disability, basal
ganglia disease, and seizures accompanying Pettigrew syndrome [48]. Another exam-
ple of dynamic 3D organization identified by GRINCH was near the Arl6ipl and Foxpl
genes (Additional File 1, Figure S8). These genes are involved in glutamate neurotrans-
mitter transport [49] and neural differentiation [50], respectively. Visual inspection of
results from other top-performing TAD-calling methods in the corresponding regions
(Additional File 1, Figure S9-11) did not capture these dynamic reconfigurations either
because they did not predict any TADs or the TADs were too small. Overall this sug-
gests that GRINCH’s ability to smooth and define TADs provides greater stability and
sensitivity to detect these novel dynamic shifts in TAD structure between developmental
stages.
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Fig. 7 GRINCH applied to Hi-C datasets along developmental time courses. A Interaction profile near the
Zfp608 gene in mouse embryonic stem cells (MESC), neural progenitors (NPC), and differentiated cortinal
neurons (CN). Heatmaps are of Hi-C matrices after log2-transformation of interaction counts for better
visualization. GRINCH clusters are visualized as blocks of different colors under the heatmap of interaction
counts. Genes in the nearby regions are marked by small boxes, and a heatmap of their corresponding
RNA-seq levels (in log-transformed TPM) is shown underneath each gene. ChIP-seq signals from H3K27ac,
H3K4me3, and CTCF are shown as separate tracks. B Interaction profile near Syap1 and Ap1s2 in mouse
embryonic stem cells (MESC), neural progenitors (NPC), and differentiated cortinal neurons (CN). € Top 20 TFs
from a collection of 746 TFs ranked based on their motif enrichment in GRINCH TAD boundaries from the
mouse reprogramming time course data. The significance of their fold enrichment was calculated with the
hypergeometric test and TFs were ranked by descending negative log p-value

We examined another time-course dataset which studied the 3D genome organiza-
tion during reprogramming of mouse pre-B cells to pluripotent stem cells (PSC), with
four intermediate time points (days 2, 4, 6, and 8; see the “Methods” section). As in the
neural developmental time course, we applied GRiINCH to all chromosomes from each
time point and compared the overall 3D genome configuration over time. Here too we
observed that time points closer to each other generally had greater similarity in their
TAD structure with replicates within the same time point displaying even greater simi-
larity (Additional File 1, Figure S12). We examined the interaction profile in the 1.3 Mb
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around the Sox2 gene, a known pluripotency gene (Additional File 1, Figure S13). We see
a gradual formation of a boundary around Sox2, which is also associated with concordant
increase in expression, accessibility and the presence of H3K4me2, an active promoter
mark.

While architectural proteins such as CTCF and cohesin play important roles in estab-
lishing TAD boundaries, it is currently unclear if there are additional DNA binding
proteins that could, independently or in concert with CTCE, contribute towards establish-
ing these boundaries, especially in a cell type-specific manner. Previous work to identify
such regulatory proteins has focused on a single time point [51] or stage [52]. As chro-
matin accessibility data was measured at each timepoint in the reprogramming dataset,
we asked if we could identify additional regulatory proteins that could play a role in
establishing TADs (see the “Methods” section). Briefly, we tested the GRINCH TAD
boundaries from each mouse cell type, from pre-B cell to pluripotent cells, for enrich-
ment of accessible motif instances of 746 transcription factors in the JASPAR 2020 core
vertebrate motif database [53]. We ranked the TFs based on their significant enrichment
in each cell type (Fig. 7C, Additional File 3, Table S2). The top-ranking TF across the cell
types was CTCE, which is consistent with its role as an architectural protein in establish-
ing TADs (Fig. 7C). We also found other factors in the same zinc finger protein family as
CTCF [54], such as ZBTB14, Plagl2/1, ZIC1/3/4/5, CTCFL, and YY1/2 that were enriched
across the cell types. YY1 and YY2, which are 65 and 56% identical in their DNA and
protein sequence respectively in humans [55], are of interest as YY1 has been identi-
fied as an enforcer of long-range enhancer-promoter loops [56]. Interestingly, we found
several hematopoietic lineage factors, such as STAT3 and FOXP3, ranked highly in the
pre-B cell TADs compared to other time points. STAT3 is needed for B cell development
[57]. FOXP3 is a master regulator of T cells [58], but could be involved in the suppres-
sion of B cells. We also found a number of HOX transcription factors, HOXA4, HOXAS5,
HOXB2, HOXB5, HOXB7, and the transcription factor MEIS3 to be ranked highly in the
B cells. The HOX genes depend upon MEIS3 [59] to bind to their targets, supporting the
simultaneous enrichment of these factors.

We repeated this analysis for the Rao et al. cell lines (Additional File 3, Table S3). Here
too we found CTCF and YY1/2 proteins highly enriched across cell lines. However, there
was lesser degree of cell-line specificity for this dataset. Taken together, this analysis sug-
gests that GRINCH captures high-quality TADs, which can be used to define global and
locus-specific similarities and differences in 3D genome organization between cell types.
Furthermore, the GRINCH boundary enrichment analysis identified novel transcription
factors that could be followed up with downstream functional studies to examine their
role in 3D genome organization.

GRINCH can be used for a variety of 3D conformation capture technologies

Although Hi-C is still the most widely used technology to map 3D genome structure,
recently several new methods have been developed to measure chromosomal contacts on
a genome-wide scale [6]. To assess the applicability of GRINCH to these technologies, we
considered two complementary techniques to measure 3D genome organization: Split-
Pool Recognition of Interactions by Tag Extension (SPRITE) [9] and HiChIP [38]. SPRITE
measures multi-way chromatin interactions and captures interactions across larger spa-
tial distances than Hi-C. In HiChIP, long-range chromatin contacts are first established
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in situ in the nucleus before lysis; then chromatin immunoprecipitation (ChIP) is per-
formed with respect to a specific protein or histone mark, directly capturing interactions
associated with a protein or histone mark of interest [38]. A common property of both
technologies is that they generate a contact count matrix, which is suitable for GRINCH.

We applied GRINCH to GM 12878 contact matrices measured with SPRITE[9], cohesin
HiChIP [38], and H3k27ac HiChIP [60]. A visual comparison between these datasets for
an 8Mb region of chr8 shows regions of good concordance between datasets (Fig. 8A-D).
We quantified the global similarity of GRINCH TADs from the four different datasets,
for all chromosomes with Rand index and mutual information (Fig. 8E, F). Interest-
ingly, the GRINCH TADs from Hi-C are the most similar to those from cohesin HiChIP
and this similarity measure is higher than between the two HiChIP datasets. This is
consistent with cohesin being a major determinant for the formation of loops detected
in Hi-C datasets. The H3K27ac HiChIP data is as close to Hi-C as it is to cohesin
HiChlIP. Finally, the most distinct set of TADs are identified by SPRITE, which is con-
sistent with SPRITE capturing multi-way and longer-distance interactions. Despite the
differences in the specific TAD boundaries, overall the datasets look similar across dif-
ferent platforms (Rand index >0.97). Taken together, this shows that GRINCH is broadly
applied to different experimental platforms for measuring genome-wide chromosome
conformation.
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Fig. 8 Applying GRINCH to datasets from different 3D genome conformation capture technologies. Visual
comparison of the interaction profile and GRINCH TADs from a 8Mb region in chr8, GM12878 cell line.
GRINCH TADs are visualized as blocks of different colors under the heatmap of interaction counts. A Hi-C vs
SPRITE. The top heatmap and clusters are from Hi-C; bottom from SPRITE. B HiChIP with cohesin (top) vs
HiChIP with H3k27ac (bottom). € Hi-C (top) vs HiChIP with cohesin (bottom). D Hi-C (top) vs HiChIP with
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similarity of GRINCH TADs from Hi-C and other 3D genome conformation capture platform (e.g., SPRITE,
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Discussion

We present GRINCH, a graph-regularized matrix factorization framework that enables
reliable identification of high-quality genome organizational units, such as TADs, from
high-throughput chromosome conformation capture datasets. GRINCH is based on a
novel constrained matrix factorization and clustering approach that enables recovery
of contiguous blocks of genomic regions sharing similar interaction patterns as well as
smoothing sparse input datasets.

A lack of gold standards for TADs emphasizes the need to probe both the statistical
and biological nature of inferred TADs. Through extensive comparison of GRiNCH to
existing methods with good performance in other benchmarking studies, we identified
strengths and weaknesses of existing approaches. In particular, methods like directional-
ity index and insulation score identify TADs that are generally more enriched for signals
such as CTCF and cohesin. However, when comparing statistical properties such as sta-
bility across resolutions and cluster coherence, these methods do not necessarily perform
better. GRINCH was among the top methods for both criteria, identifying clusters of
genomic regions with high degree of similarity in their interaction profiles, stable to low-
depth, sparse datasets, and enriched in architectural proteins and histone modification
signals with known roles in chromatin organization.

A unique advantage of GRiINCH lies in its smoothing capability via matrix comple-
tion. Smoothing has been an independent task from TAD-calling and a key processing
step in downstream analysis of Hi-C data (e.g., measuring reproducibility or concordance
between Hi-C replicates [31]). We find that GRINCH smoothing outperforms existing
unsupervised smoothing methods (mean filter and Gaussian filter) and comparable to
supervised models trained on low-depth datasets in its ability to retain TAD-level and
interaction-level features of the input Hi-C data. Furthermore, GRINCH is applicable to
datasets from a wide variety of platforms, including SPRITE and HiChIP. Application of
GRiNCH shows that Hi-C and HiChIP datasets capture more similar topological units
than SPRITE. Interestingly, TADs from Hi-C and cohesin HiChIP are much closer than
the two HiChIP datasets we compared. This shows that GRINCH is capturing TADs that
are reproducible across platforms. To study the ability of GRINCH to identify dynamic
topological changes along a time course, we applied GRiINCH to published develop-
mental time-course datasets. GRINCH recapitulated global temporal relationships in 3D
organization and also transitions in topological units around previously studied and new
genomic loci. Thus, GRINCH should be broadly applicable for analysis of chromosome
conformation capture datasets with different experimental design, sequencing depths,
and platforms.

The 3D organization of the genome is determined through a complex interplay of archi-
tectural proteins such as CTCEF, cohesin elements, and other transcription factors such
as WAPL [61]. Application of GRINCH to Hi-C datasets representing cell lines and tem-
porally related conditions identified known and novel transcription factors that could be
important for establishing these boundaries in a cell-type-specific or generic manner. In
particular, we recovered YY1/2 proteins that have been shown to interact with CTCF
to establish long-range regulatory programs during lineage commitment [62]. Among
the novel factors that were present in both the cell lines and the mouse reprogram-
ming dataset were several zinc finger proteins, e.g., PLAGL1, ZIC1, ZIC4/5, and ZBTB14;
such proteins can be investigated for their role in establishing organizational units in
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mammalian genomes. We also found several factors that were specific to cell lines and
time points. For example, FOXI1, a forkhead protein, was ranked highly in K562. Fork-
head proteins are involved in genome organization and replication timing in yeast [63]
and zebra fish [64], but their role in mammalian genome organization is not well known.
The time course data identified additional unique TFs that are likely involved in deter-
mining specific lineages, e.g., STAT3, MEIS3, FOXP3, and HOX genes in pre-B cells.
HOX genes [65], FOXP3 [66], and STAT3 [57] in particular have been shown to play crit-
ical roles in B cell and T cell development. While MEIS1 and MEIS2 are involved in the
hematopoietic lineage, MEIS3 is specifically involved in the binding of HOX TFs to tar-
get genes in the brain [59]. Therefore, the simultaneous enrichment of MEIS3 and HOX
sites is consistent with HOX proteins requiring MEIS3 for binding; however, its specific
role in the hematopoietic lineage is yet unknown. Investigating the interactions of these
proteins with well-known architectural proteins such as CTCF and cohesin could provide
mechanistic insight into the factors governing 3D genome organization [29, 67].

There are several directions of future work that are natural extensions to our frame-
work. Although our current approach of analyzing temporal organization in time-course
data extracted interesting biological insights, TADs are identified independently for each
time point, making it difficult to study the conservation and specificity of individual
TADs. One area of future work is to allow joint identification of TADs or similar struc-
tural units across multiple conditions [68, 69]. GRINCH currently infers one level of TADs
for a given input set of parameters. Expanding GRiNCH to provide nested or hierar-
chical TADs is an additional direction of future work. Another direction is to leverage
one-dimensional features to potentially inform the TAD-finding algorithm. The GRINCH
framework makes use of a distance dependence graph of regions; however, one could use
the similarity of epigenomic profiles to construct an additional graph to constrain the
NME solution.

Conclusion

GRINCH offers a unified solution, applicable to diverse platforms, to discover reliable
and biologically meaningful topological units, while handling sparse high-throughput
chromosome conformation capture datasets. The outputs from GRiNCH applied to
time course datasets can be used to study changes in 3D genome organization and
predict novel boundary elements, enabling us to test possible hypotheses of other mech-
anisms for TAD boundary formation. We have made GRiINCH publicly available at
roy-lab.github.io/grinch with a GNU General Public License (GPL) and a comprehensive
installation and usage manual. As efforts to map the three-dimensional genome organiza-
tion expand to more conditions, platforms, and species, a method such as GRINCH will
serve as a powerful analytical tool for understanding the role of 3D genome organization

in diverse complex processes.

Methods

Graph-regularized non-negative matrix factorization (NMF) and Clustering for Hi-C data
(GRINCH) framework

GRiNCH is based on a regularized version of non-negative matrix factorization (NMF)
[36] that is applicable to high-dimensional chromosome conformation capture data
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such as Hi-C (Fig. 1). Below we describe the components of GRINCH: NMF, graph
regularization, and clustering for TAD identification.

Non-negative matrix factorization (NMF) and graph regularization

Non-negative matrix factorization is a popular dimensionality reduction method that
aims to decompose a non-negative matrix, X € R(Z"OX " into two lower dimensional non-
negative matrices, U € R(:()Xk) and V € R(fOXk), such that the product X* = UVT, well
approximates the original X. We refer to the U and V matrices as factors. Here k << 1, m
is the rank of the factors and is user-specified.

In application of NMF to Hi-C data, we represent the Hi-C data for each chromosome
as a symmetric matrix X = [xij] € RO where x;; represents the contact count between
region i and region j. We note that in the case of a symmetric matrix, U and V are the
same or related by a scaling constant.

The goal of NMF is to minimize the following objective: ||X —uvT ||§ ,stU>0, V>0
[33], where ||X||p indicates the Frobenius norm. A number of algorithms to optimize this
objective have been proposed; here we used the multiplicative update algorithm, where
the entries of U and V are updated in an alternating manner in each iteration:

XV (XTU),
Vik < ij(

VUTU), @

Uik < Uik

T TY),

Here u;; corresponds to the i row of column U(;, k) and Vjx corresponds to the j™ row
of column V(;, k).

Standard application of NMF to Hi-C data is ignorant of the strong distance depen-
dence of the count matrix, that is, genomic regions that are close to each other tend to
interact more with each other. To address this issue, we apply a constrained version of
NMEF with graph regularization, where the graph represents additional constraints on the
row (and/or column) entities [36]. Graph regularization enables the learned columns of
U and V to be smooth over the input graph. In our application of NMF to Hi-C data,
we define a graph composed of genomic regions as nodes, with edges connecting neigh-
boring regions in the linear chromosome, where the size of the neighborhood is an input
parameter. Specifically, we define a symmetric nearest-neighbor graph, W:

1, ifx; € Ny(x)) and x; € Ny (x;)
= . (2)
0, otherwise
where N, (x;) denotes r nearest neighbors in linear distance to region x;.
Graph regularized NMF has the following objective:
IX = UVT 2 + ATr (VTLV> AT (UTLU) , 3)

where D is a diagonal matrix whose entries are column (or row, since W is symmetric)
sums of W, i.e., D;; = Zj Wi L = D — W denotes the graph Laplacian and encodes the
graph topology. The second and third terms are the regularization terms and measure
the smoothness of U and V with respect to the graph. Here A is the regularization hyper-
parameter. This new objective has the effect of encouraging the factors to be smooth on
the local neighborhood defined by the graph. Accordingly, the multiplicative update rule

from (1) gains regularization terms [36]:
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VWU (XTU+aWV),
(UVTV+apU), 7T T (VUTU DY),

Uik < Uik (4)

Both r (neighborhood radius) and A are parameters that can be specified, with A setting
the strength of regularization (A = 0 makes this equivalent to basic NMF). See section on
“Selecting GRINCH hyper-parameters” below.

Chain-constrained k-medoids for clustering and TAD calling

The factors U (or V) can be used to extract clusters of the row (or column) entities of
the input matrix. When X is symmetric, e.g., in our application to Hi-C, either U or V
can be used to define the clusters (the factors are equivalent up to a scaling constant).
Assuming we use U, there are two common approaches for finding clusters from NMF
factors: (1) assign each row entity i to its most dominant factor, i.e., assign it to cluster
approaches fall ,sl{ort in our application. The first approach is sensitive to extreme val-
ues which can still be present in the smoother factors, yielding non-informative clusters.
Furthermore, neither approach reinforces contiguity of genomic regions in each cluster
along their chromosomal position. As a result, a single cluster could potentially contain
genomic regions from two opposite ends of the chromosomes instead of being a contigu-
ous local structural unit. To address this problem, we apply chain-constrained k-medoids
clustering. k-medoids clustering is similar to k-means clustering, except that the “center”
of each cluster is always an actual data point, rather than the mean of the datapoints in the
cluster. In its chain-constrained version (Additional File 2, Algorithm 1), adopted from
spatially connected k-medoids clustering [70], each cluster grows outwards from initial
medoids along the linear chromosomal coordinates. The algorithm assigns a genomic
region to a valid medoid region either upstream or downstream along the chromosome,
ensuring the contiguity of the clusters and resilience to noise or extreme outliers pro-
vided by using a robust ‘median’-like cluster center rather than a ‘mean’-like center used
in k-means clustering.

Selecting GRINCH hyperparameters

GRiINCH has three hyper-parameters: (a) &, the rank of the lower-dimensional matrices,
which can alternately be viewed as the number of latent features or clusters; (b) r, the
radius of the neighborhood in the graph used for regularization; and (c) A controlling the
strength of regularization.

The parameter k determines the number of latent features to recover and the resulting
number of GRINCH TADs. We can obtain subTAD-, TAD-, or metaTAD-scale clusters
(Additional File 1, Figure S14a) by setting k such that the expected size of a cluster is
500kb, 1Mb, or 2Mb, i.e., k equals the given chromosome’s length divided by the expected
size. We find that a larger portion of subTAD-scale clusters (i.e., expected TAD size =
500kb) have significant internal validation metric values (Additional File 1, Figure S14b).
SubTAD-scale clusters tend to be more stable to depth and sparsity (Additional File 1,
Figure S14c) and are also more enriched in boundary elements like CTCF (Additional File
1, Figure S15a). As a tradeoff, higher proportion of metaTAD-scale clusters (i.e., expected
cluster size = 2Mb) are enriched in histone modification marks (Additional File 1, Figure
S15b). Based on the use case of GRINCH, k can be set dynamically by the user; by default,
GRiNCH sets k such that the expected size of a cluster is 1Mb, or at TAD-scale.



Lee and Roy Genome Biology (2021) 22:164 Page 19 of 31

For regularization strength, A € {0,1,10,100,100} were considered, with A = 0
equivalent to standard NMF without regularization. For neighborhood radius, r €
{25K, 50K, 100K, 250K, 500K,1M} were considered, where » = 100K in a Hi-C dataset of
25-Kb resolution will use 4 bins on either side of a given region as its neighbors. We find
that some regularization, with A = 1, yields better CTCF enrichment than other A values
(Additional File 1, Figure Sla). With regularization, a neighborhood radius of 100Kb or
larger yields higher CTCF enrichment (Figure S1B). We also note that the regularization
parameters do not discernibly change the TAD size distribution (Additional File 1, Figure
$16). Based on these results, the default regularization parameters for GRINCH are set at
A =1 and r =250kb.

Memory consumption and runtime

In graph-regularized NMEF, the size of the input matrix # and the reduced dimension k are
the main drivers of computational complexity which is O(k#n?) [36]. We measured mem-
ory consumption (maximum resident set size) and runtime of GRiNCH across five cell
lines (GM12878, HMEC, HUVEC, NHEK, K562) with different combinations of input
matrix size (determined by chromosome length and Hi-C resolution), expected clus-
ter/TAD size (which determines k for a given matrix), and regularization parameters (A €
{0,1,10, 100, 100} and neighborhood radius € { 25kb, 50kb, 100kb, 250kb, 500kb, 1Mb}).
These runs were completed across a distributed computing platform with machines of
varying computing power. We plot the maximum resident set size and runtime against
input matrix size in Figure S17 (Additional File 1). We observe that, in concordance
with the computational complexity, time consumption increases in a quadratic fashion
with respect to the input matrix size and in a linear fashion to k. Memory consump-
tion increases in a similar manner, i.e., if the input matrix size doubles, the memory

requirement approximately quadruples.

Stability and initialization of NMF

The NMF algorithm is commonly initialized with random non-negative values for the
entries of U and V. The initial values can significantly impact the final values of U and V
[71]. This leads to instability of the final factors hinging on the randomization schemes or
changing seeds. To address the instability, we used Non-Negative Double Singular Value
Decomposition (NNDSVD), which initializes U and V with a sparse SVD approximation
of the input matrix X [72]. Since the derivation of exact singular values can considerably
slow down the initialization step, we use a randomized SVD algorithm which derives
approximate singular vectors [73]. NNDSVD initialization with randomized SVD results
in lower loss, i.e., factors that can better approximate the original Hi-C matrix, in fewer
iterations (Additional File 1, Figure S18a,b), and more stable results than direct random
initialization (Additional File 1, Figure S18c,d).

Datasets used in experiments and analysis

High-throughput chromosome conformation capture datasets

We applied GRiINCH to interaction count matrices from in situ Hi-C (with Mbol as the
restriction enzyme) for five cell lines, GM12878, NHEK, HMEC, HUVEC, and K562 at
10-kb, 25-kb, and 50-kb resolution [37] (GEO accession: GSE63525). From the same
source, we additionally used GM12878 25kb-resolution data from in situ Hi-C using
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DpnllI as the restriction enzyme, and GM12878 25-kb resolution data from dilution Hi-C
using HindlII as the restriction enzyme in our analysis on smoothing.

To demonstrate the applicability of GRINCH to multiple high-throughput chromosome
conformation capture platforms, we applied GRiNCH to datasets from other technologies
that capture the 3D genome structure and chromatin interactions: Split-Pool Recognition
of Interactions by Tag Extension (SPRITE) [9] and HiChIP [38]. We used the SPRITE data
for GM12878 cell line (GEO accession: GSE114242). For HiChIP, we applied GRINCH to
the contact matrices from cohesin HiChIP (GEO accession: GSE80820) [38] and H3k27ac
HiChIP (GEO accession: GSE101498) [60].

To demonstrate the utility of GRINCH to study 3D genome organization in dynamic
processes, we applied GRINCH to two different mouse developmental time course data:
(a) neural differentiation Hi-C data from embryonic stem cells (mESC), neural progen-
itors (NPC), and cortical neurons (CN) (GEO accession: GSE96107) [45] and (b) Hi-C
data from reprogramming pre-B cells to induced pluripotent state [46] (GEO accession:
GSE96553). For (a) neural differentiation dataset, Juicer Straw tool [74] was used to obtain
25kb Hi-C matrices with vanilla-coverage square-root normalization. For (b) reprogram-
ming, we applied GRiINCH to published normalized Hi-C data from pre-B cells, Bx cells,
day 2, day 4, day 6, and day 8 of reprogramming, and finally, pluripotent cells.

ChIP-seq, DNase-seq, ATAC-seq, and motif datasets

To interpret the GRINCH results and for comparison to other methods, we obtained
a number of ChIP-seq datasets. For CTCF, ChIP-seq narrow-peak datasets available
as ENCODE Uniform TFBS composite track [75] were downloaded from the UCSC
genome browser (wgEncodeEH000029, wgEncodeEH000075, wgEncodeEH000054,
wgEncodeEH000042, wgEncodeEH000063).

As ChIP-seq data for SMC3 and RAD21 are not available in the five cell lines from
Rao et al. [37], we generated a list of cell-line-specific accessible motif sites. Accessible
motif sites were defined as the intersection of motif match regions and DNase-accessible
regions in the given cell line. The SMC3 and RAD21 motif matches to the human genome
(hgl9) were obtained from [76]. To create a union of DNase accessible regions from
replicates within a cell line, BEDtools [77] merge program was used. Finally, the inter-
section of DNase accessible regions and motif match regions was calculated for each
cell line using BEDtools intersect program. DNase accessibility sites were obtained from
the ENCODE consortium [78, 79]: ENCFF856MFN, ENCFF235KUD, ENCFF491BOT,
ENCFF946QPV, ENCFF968KGT, ENCFF541JWD, ENCFF978UNU, ENCFF297CKS, and
ENCFF569UYX.

We obtained ChIP-seq datasets for histone modification marks from the ENCODE con-
sortium [78, 79]. To generate genome-wide histone modification levels for each mark,
fastq reads were aligned to the human genome (hg19) with bowtie2 [80] and aggregated
into a base-pair signal coverage profile using SAMtools [81] and BEDtools [77]. The base-
pair signal coverage was averaged within each 25-kb bin to match the resolution of Hi-C
dataset. The aggregated signal was normalized by sequencing depth within each replicate;
the replicates were collapsed into a single value by taking the median.

In order to identify novel transcription factors that could play a role in 3D genome
organization, we obtained motifs of 746 different transcription factors from JASPAR core
vertebrate collection [53]. Next, we obtained their accessible motif match sites in hgl9 for



Lee and Roy Genome Biology (2021) 22:164 Page 21 of 31

the five cell lines from [37] using the same process that was used for SMC3 and RAD21
motifs. To identify the accessible motif sites for mouse cells during pluripotency repro-
gramming [46], we aligned ATAC-seq fastq reads to the mouse genome (mm10) with
bowtie2 [80] and deduplicated with SAMtools [81]. Accessible peaks were called with
MACS2 [82]. The ATAC-seq peaks were then used in place of DNase-seq sites to find the
accessible motif sites as was done for SMC3 and RAD21 motifs.

TAD-calling methods

GRINCH was benchmarked against 7 other TAD-calling methods: directionality index
method [23], Armatus [20], insulation score method [25], rGMAP [24], 3DNetMod [22],
HiCseg [83], and TopDom [84]. For all methods, default or recommended parameter
values were used when available. Execution scripts containing the parameter values used
for these methods are available to download (“Availability of data and materials” section).

Directionality index

Directionality index uses a hidden Markov model (HMM) on estimated directionality
index (DI) scores. The DI score for a genomic region is determined by whether the region
preferentially interacts with upstream or with downstream regions. A bin can take on one
of three states (upstream-biased, downstream-biased, or not biased) based on the inter-
action profile within a fixed-sized (e.g., 2Mb) window up- and downstream of the bin,
with directionally biased bins becoming TAD boundaries. TADs were called using the
directionality index method implementation in TADtool [85], version as of April 23, 2018.

Armatus

Armatus uses dynamic programming to find subgraphs in a network where the nodes
are the genomic regions, and the edge weights are the interaction counts. The objective
is to find the set of dense subgraphs; subgraph density is defined as the ratio of the sum
of edge weights to the number of nodes within the subgraph. Armatus predicts a set of
overlapping TADs, then consolidates them into consensus TADs. The consensus TADs

were used in our analysis. Armatus version 2.3 was used for comparison.

Insulation score

In the insulation score method, each bin is assigned an insulation score, calculated as the
mean of the interaction counts in the window (of a predefined size) centered on the given
bin. Bins corresponding to the local minima in the vector formed by these insulation
scores are treated as TAD boundaries. TADtool [85] implementation of insulation score
method, version as of April 23, 2018, was used in our experiments.

3DNetMod

3DNetMod employs a Louvain-like algorithm to partition a network of genomic regions
into communities where the edge weights in the network are the interaction counts.
It uses greedy dynamic programming to maximize modularity, a metric of network
structure measuring the density of intra-community edges compared to random distri-
bution of links between nodes. 3DNetMod outputs a set of overlapping TADs. It was
excluded from any analysis that required a unique TAD assignment for each genomic
region or involved TAD shuffling. Software version 1.0 (10/06/17) was used in our

comparison.
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rGMAP

rGMAP trains a two-component Gaussian mixture model to group interactions into
intra-domain or inter-domain contacts. Putative TAD boundary bins are identified by
those with significantly higher intra-domain counts in its upstream window or down-
stream window of predefined size. The chromosome is then segmented into TADs
flanked by these boundaries. rGMAP outputs a set of hierarchical, overlapping domains
and a set of non-overlapping TADs; we used the latter in our analysis. Software version as
of April 23, 2018, was used for comparison.

HiCseg

HiCseg treats the Hi-C matrix as a 2D image to be segmented, with each block-diagonal
segment corresponding to a TAD. The counts within each block are modeled to be drawn
from a certain distribution (e.g., Gaussian distribution for normalized Hi-C data). Using
dynamic programming, HiCseg finds a set of block boundaries that would maximize the
log likelihood of counts in each block being drawn from an estimated distribution. Version

1.1 was used in our experiments.

TopDom

TopDom generates a score for each bin along the chromosome, where the score is the
mean interaction count between the given bin and a set of upstream and downstream
neighbors (neighborhood size is a user-specified parameter). Putative TAD bound-
aries are picked from a set of bins whose score forms a local minimum; false-positive

boundaries are filtered out with a significance test. Version 0.0.2 was used in our analysis.

TAD evaluation criteria
We evaluated the quality of TADs using different enrichment metrics as well as internal
validation metrics used for comparing clustering algorithms.

Enrichment analysis

Enrichment of known architectural proteins. We estimated the enrichment of three
known architectural proteins (CTCF, RAD21, and SMC3) in the TAD boundaries of five
cell lines from Rao et al. [37]. TAD boundaries are defined by the starting bin and the
ending bin of each predicted TAD, along with one preceding the starting bin and one
following the ending bin. Let N be the total number of bins in a chromosome, ngiNp be
the number of bins with one or more ChIP-seq peaks or accessible motif sites, ntap be
the number of TAD boundary bins, and ntap-ginp be the number of TAD-boundary bins
with a binding event (ChIP-seq peak or accessible motif match site). The fold enrich-
ment for a particular protein is calculated as: %. Within each cell line, the fold
enrichment across all chromosomes was averaged; then, the mean across cell lines was
used to rank the TAD-calling methods (Additional File 3, Table S1h).

Histone modification enrichment. We used the proportion of predicted TADs that are
significantly enriched in histone modification signals (compared to the “null” histone-
modification signal distribution of randomly shuffled TADs) as a validation metric to
assess the quality of TADs, similar to Zufferey et al. [28]. For each predicted TAD, we
calculated the mean histone modification ChIP-seq signal within the TAD. Next, we
find the “null” histone-modification signal distribution from randomly shuffled TADs.
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To generate randomly shuffled TADs, we take the lengths of all predicted TADs within
a chromosome, as well as the lengths of interspersed stretches between the TADs (i.e.,
“non-TAD” stretches) if a TAD-calling method skips over regions of the genome. Next, we
randomly move around the TAD and non-TAD stretches within the chromosome to pre-
serve the TAD length distribution. We repeat this procedure 10 times. Then, we compute
the mean histone modification ChIP-seq signal within each of these randomly shuffled
TADs, generating the null or background distribution of histone modification signals. The
empirical p-value of a predicted TAD’s histone modification signal was calculated as the
proportion of randomly shuffled TADs with higher ChIP-seq signal than that of the given
TAD. A TAD was considered significantly enriched if its empirical p-value was less than
0.05, i.e., more than 95% of randomly shuffled TADs had a lower histone modification
signal. Finally, for each TAD-calling method, we found the proportion of predicted TADs
with significant histone modification signal; this is visualized across cell lines in Fig. 5B.
The mean proportion of TADs with significant enrichment across chromosomes and cell
lines was used to rank the TAD-calling methods (Additional File 3, Table S1i).

Internal validation metrics

Since a TAD represents a cluster of contiguous regions that tend to interact more among
each other than with regions from another TAD or cluster, we used two internal vali-
dation or cluster quality metrics, Davies-Bouldin index (DBI) and Delta contact count
(DCC), to evaluate the similarity of interaction profiles among regions within a TAD.
Specifically, for each method, we generated a background/null distribution of DBI and
DCC from randomly shuffled TADs, then measured the proportion of actual TADs called
with significant DBI and DCC level (p-value <0.05) against this null distribution (similar
procedure to “Histone modification enrichment” above).

Davies-Bouldin index (DBI). The DBI for a single cluster C; is defined as its similarity
to its closest cluster C;, where i,j € {1,...,k},i # j: DBl; = max;%; S;;. The similarity
metric, S, between C; and C; is defined as:

_ ditd
a distance;;

ij (5)
where d; is the average distance between each data point in cluster C; and the cluster cen-
troid and distance;; is the distance between the cluster centroids of C; and C;. In applying
DBI to Hi-C data, a data point consists of a vector of a genomic region’s interaction counts
with other regions in the chromosome (e.g., an entire row or column in the Hi-C matrix);
a cluster corresponds to a group of regions within the same TAD; the cluster centroid is a
mean vector of rows that belong to the same cluster/TAD. The smaller the DBI, the more
distinct the clusters are from one another.

For each method, we computed the DBI of each individual TAD. To measure the sig-
nificance of a TAD’s DBI value, we generated a background/null distribution of DBI
values from randomly shuffled TADs (refer to the procedure in “Histone modification
enrichment” above). The empirical p-value of a TAD was calculated as the proportion of
randomized TADs with lower DBI (recall a lower DBI means better clustering) than that
of the given TAD. A TAD was considered to have a significant DBI if its empirical p-value
was less than 0.05; the proportion of TADs with significant DBI was calculated for each
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method and used for comparing different TAD calling methods (Additional File 3, Table
Sla).

Delta Contact Count (DCC). DCC for cluster C; is defined as follows: let in; denote the
mean interaction counts between pairs of regions that are both in C;, and out; denote the
mean interaction counts between pairs of regions where one region is in cluster C; and
the other region is not. Then DCC; = in; — out;.

We expect that for a good cluster, the pairs of regions within the cluster should have
higher contact counts. Therefore, the higher the value of DCC, the higher the quality of
the cluster. Again, a cluster corresponds to a group of regions within the same TAD. Given
the DCC values for each TAD, we determined its significance against the null/background
distribution of DCC values from randomly shuffled TADs (refer to procedure in “Histone
modification enrichment” and “Davies-Bouldin index (DBI)” above). The mean propor-
tion of TADs with significant DCC across cell lines was used to compare the TAD-calling
methods (Additional File 3, Table S1b).

TAD similarity and stability metrics

When assessing the similarity or stability of TADs, we used two cluster comparison met-
rics, Rand index and mutual information. First, TADs were converted to clusters so that
regions in the same TAD were all assigned to the same cluster; all non-TAD regions, if
a TAD-calling algorithm should have them, were assigned to a single cluster together.
When comparing TADs across different resolutions of Hi-C data, 10-kb, 25-kb, and 50-
kb bins were split into a size of lowest common denominator, i.e., 5kb. Then all 5-kb
bins were assigned to the same cluster as in the original lower-resolution bin (e.g., a 10-
kb bin assigned to cluster i would yield two 5-kb bins assigned to cluster i). For these
comparisons, we computed these metrics at the 5-kb resolution.

For Rand index, each genomic region is treated as a node in a graph; two nodes are
connected by an edge if they are in the same cluster. Then, the number of edges that
were preserved between clustering result A and clustering result B is divided by the total
number of pairs of nodes, i.e., number of edges in a fully connected graph. Rand index
of 1 corresponds to perfect concordance between two clustering results; Rand index of 0
means no agreement.

Mutual information (MI) is an information-theoretic metric measuring the dependency
between two random variables, where each variable can be a clustering result. Specifically,
for two discrete variables A and B, MI is defined as

p,B)(a,b) )
MI(4; B) = bylog (L@ @D .
(A; B) g g PAB (a,b)log <pA(tl)p3(b) ©)

For clustering comparisons, A and B are cluster assignments to be compared, e.g., A is
the cluster assignment corresponding to TADs from high-depth data and B is the clus-
ter assignment based on TADs from downsampled data. Mutual information is O if the
joint distribution of A and B p(4,8)(a, b) equals the product of each marginal distribution,
i.e., A and B are independent, or in an information-theoretic sense, knowing A does not
provide any information about B. The higher the mutual information value, the greater
the information conveyed by the variables about each other; in the context of measuring
clustering agreement, one clustering result is similar to the other.
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Both metrics were used to evaluate the stability of TADs across resolution and depth,
the similarity of TADs from different TAD-calling methods, the recovery of TADs from
smoothed Hi-C data, the similarity of TADs along the time-course data, and the consis-
tency of GRINCH TADs from different 3D genome capturing technologies (e.g., SPRITE,
HiChIP). To rank TAD-calling methods based on stability across resolution and depth,
the mean Rand index or mutual information across cell lines was used (Additional File 3,
Table S1d-g).

Robustness to low-depth data

To assess the robustness or stability of TADs to low-depth input data, the TADs from a
high-depth dataset (GM12878) [37] were compared to the TADs from a downsampled,
low-depth dataset. If the TADs from the downsampled data are similar to TADs from
the high-depth dataset, they are considered to be stable to low depth. The similarity met-
rics, mutual information and Rand index described in the “TAD similarity and stability
metrics” section, were used.

In order to downsample a high-depth Hi-C matrix (e.g., from GM12878) to a lower
depth one (e.g., from HMEC), a distance-stratified approach was used to match both
the mean of non-zero counts and sparsity level between the two datasets. First, for each
distance threshold d, let /LZ denote the mean of the non-zero counts in the high-depth

dataset and uﬁi denote the mean of non-zero counts in the low-depth dataset. The scaled
h
down value for each non-zero entry of the original high-depth dataset is: x;; = %
Halltq
where xf} is the value for the i,j bin pair in the high-depth dataset. Then, to increase the
sparsity of the high-depth dataset, z; of the non-zero counts in the high-depth dataset
at distance d is randomly set to zero, where z; is the number of additional entries in the

low-depth dataset that are zero compared to the high-depth dataset.

Identification of candidate genomic regions involved in 3D organization changes during
mouse neural development

To identify genomic regions potentially involved in local topological changes during the
mouse neural development, we took GRiINCH clusters from the Hi-C data of mouse
embryonic stem cells (mESC), neural progenitors (NPC), and cortical neurons (CN) [45]
and looked for cluster merges or splits across the time points. We first performed pair-
wise cluster matching between time points (e.g., mESC vs CN). For each pair of clusters
from time point A (e.g., cluster i from mESC) and time point B (e.g., cluster j from CN),
we calculated their overlap in genomic regions with Jaccard index, i.e., the ratio of the
size of the intersection (regions in both clusters) to the size of the union (regions in either
cluster). We then considered clusters matched to two or more clusters in another time
point with a Jaccard index of at least 0.2. For example, if cluster 5 from mESC matched
to clusters 4, 5, and 6 from CN with Jaccard index of 0.3, 0.25, and 0.4, respectively, then
we considered cluster 5 in mESC as a site of potential topological changes, identified by
cluster splits in CN. We selected a random subset of these clusters from different chro-
mosomes and visualized the interaction profile of the regions belonging to these clusters.
The regions and clusters visualized in Fig. 7b and Additional File 1, Figure S8 are from
this subset.
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Identification of novel factor enrichment at GRiINCH TAD boundaries

A similar procedure to CTCF boundary enrichment was used to identify novel boundary
elements, by assessing whether the accessible motif sites of 746 transcription factors (TFs)
from the JASPAR core vertebrate collection [53] are enriched in GRINCH TAD bound-
aries. This procedure was applied to the five cell lines from Rao et al. [37] and the time
points from the mouse reprogramming timecourse data [46]. One change to the proce-
dure was that instead of calculating fold enrichment per chromosome, all counts were
aggregated across all chromosomes within the given cell line or time point. The hyper-
geometric test was used to calculate the significance of the number of TF sites in the
boundaries and were ranked based on their p-value.

Smoothing methods

Smoothing with GRiNCH via matrix completion GRiNCH smooths a noisy input Hi-
C matrix by using the matrix completion aspect of NMF. Specifically, the reconstructed
matrix X* = UV is the smoothed matrix. The effectiveness of GRINCH matrix comple-
tion as a smoothing method was compared to that of mean filter and Gaussian filter, two
methods used in image blurring [86] and Hi-C data pre-processing [30, 42, 43], as well
as HiCNN [32], a method based on convolutional neural network to impute interaction

counts.

Mean filter

Mean filtering is used in HiCRep [30] as a preprocessing step to measure reproducibility
of Hi-C datasets. To create a smoothed matrix X* from a given input matrix X with a
mean filter, each element in xf} is estimated from the mean of its neighboring elements
within radius 7: xf] = m Zi;'hr Z]bir/— . %*ap. Three different values for the radius r
were considered: r € {3,6,11}.

Gaussian filter

A Gaussian filter has been used as a preprocessing step to identify chromatin loops and
differential interactions from Hi-C Data [42, 43]. It uses a weighted mean of the neigh-
borhood of a particular contact count entry, x;;, where the weight is determined by the
distance of the neighbor from the given position:

. 1 itn jtn 2t (-b?
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Three different values of (o) were considered, o € {1,2,3} and n was setto 4 * o.

HIiCNN

Unlike mean filter, Gaussian filter, and GRINCH, HiCNN [32] uses supervised learning
to perform smoothing. HICNN uses a 54-layer convolutional neural network trained to
predict high-resolution Hi-C interaction matrices from downsampled lower-resolution
matrices. We downloaded three pre-trained models (from dna.cs.miami.edu/HiCNN
along with source code) which were trained on GM 12878 Hi-C data downsampled to 1/8,
1/16, and 1/25 depth of the original data, respectively. We used these pre-trained models
in the smoothing analysis. These models were trained on interactions <2Mb apart and
only make predictions for interaction distances <2Mb. To accommodate this limitation,
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AUPR on significant interaction recovery was measured separately for interactions <2Mb
apart (see the “Assessment of benefits from smoothing” section below). Measuring TAD
recovery after smoothing was not affected since the directionality index method uses a
2-Mb-sized window of interactions (see the “Directionality index” section above).

Assessment of benefits from smoothing

Recovery of TADs from smoothed downsampled data

To assess whether smoothing helps preserve or recover structure in low-depth data,
we first smoothed downsampled low-depth datasets (see the “Robustness to low-depth
data” section) using methods described above (see the “Smoothing methods” section).
The Directionality index (DI) TAD-finding method was applied to the high and low-
depth datasets. Then the similarity of the TADs from the original high depth data and
the TADs from the smoothed data were measured (see the “TAD similarity and stability
metrics” section”). Higher similarity metric values imply better recovery of structure from
smoothing.

Recovery of significant interactions

Fit-Hi-C [44] was used to call significant interactions in the original and the smoothed
Hi-C datasets, using a g-value<0.05. Interactions from the original high-depth Hi-C
dataset were used as the set of “true” significant interactions. From the downsampled then
smoothed matrices, each smoothed interaction count was assigned a “prediction score”
of 1 — g, where ¢ is its Fit-Hi-C g-value. Precision and recall curves were then computed
using the “true” interactions and the “prediction scores” The recovery of true significant
interactions was measured with the area under the precision-recall curve (AUPR).

Robustness to different restriction enzymes

In the smoothing analysis of data from Hi-C protocols using different restriction enzymes
(HindIII, Dpnll, Mbol), the overlap of significant interactions was measured with Jaccard
index, which is the ratio of the size of the intersection (i.e., significant interactions called
in both datasets compared) to the size of the union (i.e., significant interactions called in
either one of the datasets).
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