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“In formal logic, a contradiction is the signal of defeat, but in the evolution of real
knowledge, it marks the first step in progress toward a victory.” Alfred North
Whitehead

From the outside, science seems to be the epitome of order, with its careful logical
process, white lab coats, the methodical analyses of data, and, at its core, the formal test-
ing of hypotheses. While that image may capture the “day science” aspect of science, it ig-
nores the creative “night science” part, which generates the hypotheses in the first place.
When we are in night science mode, we recognize facts that do not sit quite right against
our clear and precise mental representation of the state of knowledge. While such contra-
dictions arise from the data generated by day science, it is night science that revels in
them, as these are the first, faint glimpses of new concepts. Depending on our state of
mind, contradictions might appear as nuisances; embracing them helps us to counteract
our natural human tendency for confirmation bias, a well-documented phenomenon in
psychology. To explore the interaction of confirmation bias with a contradiction present
in a dataset, we devised a simple experiment: individuals with different expectations ex-
amined the same data plot, which showed a superposition of two conflicting trends. We
found that participants who expected a positive correlation between the two variables in
the plot were more than twice as likely to report detecting one than those expecting a
negative correlation. We posit that night science’s exploratory mode counteracts such
cognitive biases, opening the door to new insights and predictions that can profoundly
alter the course of a project. Thus, while science’s practitioners may be biased, the cyclical
process of day science and night science allows us to spiral ever closer to the truth.

Data is not transparent

Science prides itself on being above the “idols of the tribe and the cave” [1], unper-
turbed by assumptions and unproven theories. Data is objective, after all, and scientists
commit to “letting the data do the talking.” But data, of course, cannot speak for itself.
It must be interpreted against an extensive conceptual, theoretical, and methodological
background—and this background is unlikely to be bias-free. Thus, to venture that a
dataset makes a particular statement hides the degree to which potential biases may
have influenced our conclusions.
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To study how our biases influence data interpretation, we performed an experiment
with university students of computer science [2]. We showed them the plot in Fig. 1a,
claiming that the data was collected to study the relationship between the personal
wealth of individuals (x-axis) and their life satisfaction (“happiness,” y-axis). The data
points indicating individuals were colored according to age groups. We then asked each
participant: “Does the data suggest that wealth leads to happiness?”

The plot shows an overall negative correlation between wealth and happiness (Fig. 1b),
while within each age group, a positive correlation is evident (Fig. 1c). This is an example
of Simpson’s paradox [3, 4], where the correlation between two variables changes sign
after controlling for another variable. The most parsimonious explanation of the pattern
in the plot is that, all else being equal, more money makes you happier (thus the positive
within-age group correlation). Across age groups, this effect is drowned out by a second,
stronger effect from an underlying negative relationship between age and happiness. [We
note that since this data was artificially created, no conclusions on real-life connections
should be drawn.] In sum, while a first glimpse may indicate that wealthier individuals are
less happy, the data indeed suggests that wealth leads to happiness. About a third of our
participants acknowledged this by answering “yes” (49/171).

Regardless of what conclusion a particular participant made, we would like to assume
that it arose from an analysis of the data plot, rather than resulting from preconceived
notions. To test if this was indeed the case, we had inquired into the participants’ biases
before showing them the data plot, asking the following question: “Imagine collecting
data to study the relationship between the personal wealth of individuals and their life
satisfaction (“happiness”). What overall general correlation do you expect?” Seventy
percent of the students (119/171) expected a positive correlation, while the remaining
students expected a negative one. Strikingly, the two groups saw the same data differ-
ently: those with an expectation of a positive correlation were more than twice as likely to
conclude a positive correlation than those expecting a negative correlation (Table 1;
42/119 vs. 7/52, odds ratio 3.48, P = 0.0024 from one-sided Fisher’s exact test) [2].
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Fig. 1 "Does the data suggest that wealth leads to happiness?” a Plot shown to participants on the alleged
relationship between personal wealth and life satisfaction (“happiness”), where each point of the artificially
created dataset represents one individual, colored by age group (1 oldest, 4 youngest). b, ¢ Same as a,
highlighting the overall negative correlation (b) and the positive correlations within age groups (c)
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Table 1 The contingency table for students in the two groups (expecting either a positive or a

negative correlation between wealth and happiness) and what they observed [2]

Observed
Negative correlation | Positive correlation Row sums
©
% Negative correlation 45 7 52 (30%)
& || positive correlation 77 42 119 (70%)
x
- Column sums 122 (71%) 49 (29%) N=171

Thus, the results suggest that when the participants looked at the plot, they came
with a bias that framed their perception. This may reflect a general phenomenon in sci-
ence. One famous episode stars Arthur Stanley Eddington, who in 1919 set out to test
a prediction of Einstein’s theory of relativity. The data Eddington published could have
been interpreted as either supporting Einstein’s or Newton’s theory of gravity (or,
maybe most appropriately, as inconclusive). Yet in his paper, Eddington—who expected
Einstein’s theory to prevail—framed the data as clearly supporting Einstein [5].

The extent to which the same data can lead to different conclusions has been the sub-
ject of recent studies that provide different scientific experts with a dataset together with a
set of hypotheses to test. In one study, 70 independent teams were asked to analyze func-
tional magnetic resonance images and to test 9 specific hypotheses [6]. Strikingly, no two
teams chose identical work flows to analyze the dataset, and sets of teams reported
contradictory, statistically significant effects based on the same dataset. In another study,
73 teams used the same data to test a single hypothesis; the “tremendous variation” in
conclusions led the researchers to conclude a “vast universe of research design variability
normally hidden from view” [7]. These and other studies [8—13] demonstrate that data is
not transparent and that converting data into information through statistical analysis has
a substantial subjective component. Our own experiment shows that even when studying
the same plot, preconceived biases can result in different interpretations.

Scientists are biased—especially you
Psychologists refer to “confirmation bias” as the propensity of viewing new evidence as
supporting one's beliefs. Writing in the fifth century BC, the historian Thucydides put
it this way: “It is a habit of mankind to entrust to careless hope what they long for, and
to use sovereign reason to thrust aside what they do not fancy” [14]. In more recent
times, experiments have shown that people demand a much higher standard of evi-
dence for ideas they find disagreeable compared to those they hold themselves [15, 16].
As different individuals have different beliefs and experiences, each member of a com-
munity may end up perceiving reality differently, each through the prism of their own
biased views. Confirmation bias may explain why harmful medieval medical practices
were perpetuated over centuries, as only those patients that recovered (possibly despite
rather than because of the treatment) were remembered [17]. The same phenomenon
may underlie today’s widespread acceptance of “alternative” medicine [18—20].

While modern science appears to demand an objectivity that stands above such
biases, confirmation bias is also well documented here. It shows itself, for example, in
the peer review process of scientific papers. Studies whose findings are incompatible
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with a reviewer’s own assumptions are reviewed much more harshly than those that
support the reviewer’s beliefs [21-23]. Confirmation bias leads scientists to dismiss or
misinterpret publications that contradict their own preconceptions, up to the point
where contradicting papers are cited as if they in fact supported a favored notion [24].
Beyond publications, does the execution of the scientific method itself also fall prey
to confirmation bias? In theory, it should not, as emphasized by Karl Popper’s descrip-
tion of the scientific process [25]. For any given new idea, scientists should attempt
with all of their experimental powers to falsify it, to prove it to be wrong. But, as
philosopher Michael Strevens has argued, humans are not disciplined enough to strictly
follow this method in their daily work [5]. Indeed, as much as we hold the philosophy
of falsification in high regard, it simply is not very practical. First of all, hardly anyone
actually excludes a beautiful and well evidenced hypothesis at the first sight of a falsify-
ing result. If, for example, an experiment contradicts the conservation of energy, we do
not simply throw out the first law of thermodynamics. Instead, we search for some flaw
in the experiment or its interpretation [26]. But more than that, as we describe next,
scientists—just like any other human beings—are hoping for and hence looking for evi-
dence that confirms, not refutes, their favorite notions. If we make a prediction and the
prediction seems to be borne out by the data on the surface, we tend to not dig deeper.

Do not stop just because you like the result
Many scientists and the public at large are concerned about a “reproducibility crisis” in
science: the observation that many published results cannot be replicated [27]. While it
may be tempting to lay the fault at the door of a select group of misbehaving individ-
uals, the wide scope of the observed non-reproducibility suggests that it may be a per-
nicious aspect of the scientific process itself [27].

As a point of reference, it is useful to recognize one scientific framework that escaped
the reproducibility crisis: clinical trials. The acknowledgement and correction of potential
biases is built into the rigid process of clinical trials, where study designs are pre-
registered and detailed protocols have to be followed to the letter. Confounding variables
are clearly identified a priori, the data is blinded to exclude potential biases of the practi-
tioners, and significance is tested only when the pre-specified dataset has been collected.
Clinical trials are carefully designed to be exclusively in the mode of hypothesis-testing; if
executed with a large enough sample size, they ought to be immune not only to confirm-
ation bias, but also to other sources of systematic irreproducibility.

In sharp contrast to the purely hypothesis-testing mode of a clinical trial, basic research
projects typically do not fully know what to expect from the data before analyzing it—after
all, “If we knew what we were doing, it wouldn't be research, would it?” High-throughput
datasets are especially likely to contain information unanticipated in their generation, obser-
vations one could not have predicted a priori; for this reason, we may often be better poised
for a discovery if we conversed with a dataset without having formulated a concrete hypoth-
esis [28]. The natural place for almost every dataset is right in the middle of the data-
hypothesis conversation [29, 30], where it is used both in a hypothesis-testing way and in
explorations that look for unexpected patterns [31], the seeds of future hypotheses.

Arguably, the central part of the scientific method is to challenge a hypothesis by
contrasting its predictions with data. But when we do that, we are typically anxious for
the falsification to fail: unless we are testing someone else’s competing hypothesis, we



Yanai and Lercher Genome Biology (2021) 22:153 Page 5 of 7

hope—and frequently expect—that our predictions will be borne out. If the results do
not initially comply, we will think about problems with the experiment or with auxiliary
assumptions (such as how we expect a genetic manipulation to perturb a cellular sys-
tem). Sometimes, we will identify multiple such problems, and the results may converge
to what we predicted them to be. There is, in principle, nothing wrong with this general
approach: the scientific process is very much trial and error, and we cannot expect that
an initial experiment and our first analysis were without fault. Obviously, we have to be
careful not to selectively exclude contradictory data by making sure that similar errors
have not equally affected other data points. There is a more subtle point here, though,
a more discrete way in which confirmation bias may creep into our science. Our hu-
man instincts will lead to a sense of fulfillment once the expected pattern finally
emerges. While this may mark the perfect time for a well-earned coffee break, it is not
the time when we should stop analyzing the data. Instead, we should continue to think
about possible biases and errors in our experiment, its analysis, and its interpretation. If
we do not, we may be abandoning our efforts toward falsification too soon.

One extreme example, where confirmation bias is elevated to a guiding principle, is
p-hacking [32]: one modifies the specifics of the analysis until the expected result
emerges, subsequently reporting only the final configuration. It is important to realize,
though, that in this case, it is the biased reporting that contributes to the reproducibil-
ity crisis, not the exploratory analysis itself [33]. Just the opposite: an exploration of
how our results vary with changes in the specifics of the analysis, if communicated
openly, provides important information on the robustness of our interpretation.

An elegant way to counter the drag toward self-fulfilling hypotheses is to test not
one, but multiple alternative hypotheses, a core element of a method John Platt called
“strong inference” [34]. Platt argued that the fastest scientific progress results from for-
mulating a set of opposing hypotheses and then devising a test that can distinguish be-
tween them. While this is indeed a powerful approach, we often do not know initially
what may be the best set of competing hypotheses. Forcing ourselves to look beyond
one favored hypothesis in order to come up with such competing hypotheses is a ser-
ious—and non-fun—night science task, requiring hard and deliberate work.

Embrace the contradiction
Looking back at the wealth-happiness experiment described above, the main aspect was
also that the participants were faced with a contradiction. The data could be inter-
preted in two ways: a positive correlation if one looks at the data in one way (within
age groups) or a negative correlation if one looks at it another (overall). Presumably,
given enough staring at the data, each participant would have reached the same conclu-
sion that it is the positive correlation that best summarizes the underlying relationship.
As we argued above, the problem is that contradictions often go unexplored, perhaps
because they are confusing or inconsistent with prior notions, or simply because ac-
knowledging them suggests tedious additional work. And yet, a contradiction should be
reason for joy: it hints at an apparent discrepancy between the state of knowledge and
reality—we might have stumbled upon something new and interesting [35].

In research, we frequently find that to make sense of contradictory data, we must
identify a false, hidden assumption. As we highlighted in an earlier piece [36], Einstein’s
path toward the special theory of relativity began when he noticed a contradiction
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between Maxwell’s equations and the idea of traveling at the speed of light. It took him
years of hard work, though, to identify the false, hidden assumption: that time was ab-
solute and independent of our frame of reference.

As an example from our own work, in a recent project we compared developmental
gene expression across ten species, each from a different phylum (flies, fish, worms,
etc.) [37]. Having previously compared sets of species from the same phylum, we ex-
pected to again find a shared pattern of expression occurring toward the middle of the
development of all embryos (the “hourglass model”). This was an exciting prospect: it
would have confirmed a specific pattern of signaling and transcription factor expression
common to all animals. However, when comparing the gene expression across phyla,
what emerged was the exact opposite: the greatest correspondence between phyla oc-
curred in the early and late transcriptomes, bridged by a less conserved transitional
state (an “inverse hourglass”). Confused by this contradictory signal, we retreated into
more night science to attempt a resolution. We finally realized that when combining
the contradictory patterns within and across phyla, a molecular definition of animal
phyla emerged: early and late development are broadly conserved, while the transitional
state—conserved within, but highly variable between phyla—is phylum-specific, distin-
guishing one phylum from another. We had to learn to apply the two modes, the hour-
glass and the inverse hourglass, to different evolutionary timescales.

In the course of any project, there may be points where we stumble upon more or
less blatant contradictions. The way in which we choose to deal with them will define
the project’s fate. Embracing a contradiction requires us to be comfortable with uncer-
tainty and will inevitably prolong the project. But it will provide space for unweaving
the contradiction—arriving at the contradiction was not a signal of defeat, but rather
the first sign of progress, as indicated by the Whitehead quote above.

In the absence of a contradiction, a common night science approach is to actually seek
one out, playing devil's advocate. Adopting a contrary viewpoint “for the sake of argu-
ment” can help to counter confirmation bias [38]. More than once, in a discussion with a
student or collaborator, most of us have probably started a sentence with “Well, a re-
viewer might say....” If that does not help, a more severe approach would be to imagine
that at some point in the future, a competing lab would write a paper that criticizes the
current project. What would that “anti-paper” be about? By deliberately challenging our
assumptions and expectations, we may avoid cheating ourselves out of discoveries.
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