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Background

Haplotype (“haploid genotype”) phase is the combination of genotypes at sites of genetic
variation along a chromosome [1]. Haplotype information is required for perform-
ing diploid genome assembly [2, 3], interrogating differences in the DNA sequence or
epigenetic features between homologous chromosomes [4—6], and relating them to allele-
specific gene expression variation [7-9]. Haplotype information can also significantly
improve the precision of somatic mutation analysis in polyclonal populations [10, 11] or
single cells [12].

There are two strategies of haplotype inference [6, 13]. The first strategy (“statisti-
cal phasing”) [14-16] infers haplotype phase based on the recombination probabilities
between variant genotypes estimated from linkage disequilibrium in a population [17, 18].
Although statistical phasing can infer haplotype linkage between adjacent variant sites
at reasonably high accuracy (>99%), it cannot extend haplotype blocks beyond 10Mb
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due to accumulation of random switching errors, except with knowledge of the geno-
types of closely related individuals [19, 20]. Statistical phasing is also limited to common
polymorphisms and not applicable to de novo mutations.

The second strategy directly extracts haplotype linkage from the sequences of single
chromosomes or sub-haploid chromosomal fragments (“molecular linkage”) [6]. Direct
sequencing of single chromosomes can produce whole-chromosome haplotypes [21-25]
but is only applicable to dividing cells and requires laborious experimental procedures of
chromosome isolation or tagging. Long-read sequencing or long-range sequencing can
either reveal haplotype linkage directly from long contiguous reads, or indirectly from
short DNA fragments derived from long DNA molecules that are tagged with unique
molecular barcodes [26—34]. The typical size of DNA molecules in long-read or long-
range sequencing (10—100kb) is sufficient to link variants in regions of normal variant
density (~1 per kb), but inadequate in regions of low variant density (<1 per 10 kb)
and unable to bridge large gaps (>100kb) with no identifiable variants, including all
centromeres.

Intra-chromosomal (cis) linkage information is also contained in Hi-C fragments gen-
erated by proximity-based chromatin ligation [35]. As chromosomes are spatially isolated
in separate territories in the cell nucleus, Hi-C contacts are predominantly formed within
a single chromosome and can reveal cis linkage across the entire chromosome [36] with-
out single-chromosome isolation. However, long-range Hi-C contacts are very sparse and
only a small fraction of them overlap with sites of genetic variation except for genomes
with very high variant density (~1 per 150 bp) [36]. The sparsity of haplotype linkage from
Hi-C data limits its power to generate contiguous haplotypes [37] or accurately phase de
novo mutations .

Here we describe a computational strategy to accurately determine complete whole-
chromosome haplotypes using a combination of long-range sequencing and Hi-C
sequencing (Fig. 1). In contrast to previous methods that perform joint haplotype infer-
ence using linkage information from different technologies [37-39], we first determine
high-confidence local haplotype blocks using linkage information from long-range/long-
read sequencing and then merge these blocks into a single haplotype using Hi-C contacts.
We formulate both local haplotype inference and haplotype block concatenation as a
minimization problem that can be efficiently solved by steepest descent methods. Apply-
ing our approach to two diploid human samples with reference haplotype data, we
demonstrate that the computational inference reproduces the haplotypes of parental
chromosomes with high accuracy (>99%) and completeness (>98%). We further describe
applications of haplotype-specific sequence coverage and Hi-C contact to resolving chro-
mosomal alterations in aneuploid cancer genomes. We demonstrate the feasibility to
generate haplotype-resolved karyotypes of aneuploid cancer genomes using bulk long-
range and Hi-C sequencing by constructing a digital karyotype of the K-562 genome using
published data.

Results

Data sources

We performed computational haplotype inference and benchmarking on two diploid
genomes (data sources listed in Table 1). For the NA12878 genome, we used pub-
lished linked-reads and Hi-C data for haplotype inference; for the retinal pigment
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Fig. 1 A hierarchical strategy for determining whole-chromosome haplotypes. The haplotype phase of
parental chromosomes (open and filled rectangles) are represented by the positions of alternate genotypes
at heterozygous sites. Megabase-scale haplotype blocks are determined using linkage information (~10kb
range) from linked-reads or long-read sequencing and then concatenated using Hi-C contacts, first within
each chromosome arm and then between the p- and g-arms

epithelium-1 (RPE-1) genome, we used newly generated linked-reads data and published
Hi-C data for haplotype inference. For benchmarking of the NA12878 haplotype solution,
we used two public reference haplotype datasets. The first was released by the Genome-
In-A-Bottle (GIAB) consortium; the second was generated from diploid de novo assembly
of the NA12878 genome using PacBio High-Fidelity reads [40] in combination with short
reads of the parental genomes. For benchmarking of the RPE-1 haplotype solution, we
used the RPE-1 haplotypes determined directly from single-cell sequencing data of mono-
somic RPE-1 cells as reference. We further evaluated haplotype inference using low-pass
(11x) PacBio circular-consensus sequencing (CCS) data of RPE-1 cells. For applications
to aneuploid genomes, we used bulk whole-genome sequencing data of aneuploid RPE-1
cells from Ref. [41] and published cytogenetic [42, 43] and sequencing data of K-562 cells
(data sources listed in Additional file 1:Table S1). See “Generation of sequencing data”
and “Sequence data processing” subsections in the “Methods” section for more details of
data generation and processing.

Density and accuracy of molecular haplotype linkage
We first assessed the density and accuracy of molecular haplotype linkage from
linked-reads and Hi-C sequencing to design the best strategy to integrate linkage evidence
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Sample Data type Data source Read count Mean Contacts Application
depth (>1Mb)
RPE-1 Bulk WGS [24] 228,708,769  13x Variant calling
RPE-1 Linked reads New 941,518,426b 60x¢ Variant calling
&local phasing
RPE-1 CCSlongreads  New 4,607,0479 1% Local phasing
RPE-1 Hi-C [44] 281,285,484¢ 48,124,211  Long-range phasing
RPE-1 Single cell with ~ New hi-conf variants and
monosomies reference haplotypes
NA12878 Linked readsv.l 10X Genomics’ 4221793959  35x¢ Local phasing
NA12878 Linked readsv.2 10X Genomics" 4238542431 35x°© Local phasing
NA12878 Hi-C [35] 486,848,169 91,428,507 Long-range phasing
NA12878 Phased VCF GIABK hi-conf variants and
reference haplotypes
NA12878 Phased VCF Diploid assembly’ hi-conf variants and

reference haplotypes

3SRR1778442: median insert 243; 208,151,992 fragments aligned in pair; 2 x 101bp reads; duplication rate 0.024.

®Mean molecular length 24.8kb; median insert 551; 913,660,083 aligned in pair; 2 x 150bp reads; duplication rate 0.255.
Cexcluding the GEMcode sequence and duplicated fragments

dMean read length 7.1kb; 4,606,654 aligned.

€SRS1045722: median insert 364; 279,027,892 aligned in pair; 2 x 150bp reads; duplication rate 0.067.

fhttps/support.1 Oxgenomics.com/genome-exome/datasets/2.1.0/NA12878_WGS_210

9Mean molecular length 68.7kb; median insert 349; 407,015,530 aligned in pair; 2 x 150bp reads; duplication rate 0.062.
Phttps://support.1 Oxgenomics.com/genome-exome/datasets/2.2.1/NA12878_WGS_v2

"Mean molecular length 85.6kb; median insert 370; 418,283,435 aligned in pair; 2 x 150bp reads; duplication rate 0.079.
JSRR1658572: median insert 377; 484,211,662 aligned in pair; 2 x 101bp reads; duplication rate 0.028.
“https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/NA12878_HG001/latest/GRCh38/
'httpy/ftp.dfciharvard.edu/pub/hli/hifiasm/NA12878-r253/. Phased variants were determined using dipcall (https/github.
com/Ih3/dipcall) on the sequences of parental chromosomes generated by diploid de novo assembly of the NA12878 genome
using PacBio High-Fidelity long reads together with short reads of the parental genomes using hifiasm [40].

from both data types. The basic unit of linkage evidence (“molecular link”) is a DNA
molecule, which can be a single sequencing read (long-read or Hi-C sequencing) or con-
sist of multiple sequencing reads tagged with the same molecular barcode (“synthetic long
read”). Molecular haplotype linkage is represented using variant genotypes in each DNA
molecule (“Haplotype inference from linkage evidence” section). We extracted molecu-
lar linkage from the RPE-1 and NA12878 sequencing data (Additional file 1:Extracting
variant linkage information from long-range sequencing) and calculated three metrics of
haplotype linkage between variant sites at different genomic distance: (1) percentage of
variants with molecular linkage; (2) average number of links between linked variants; and
(3) percentage of links consistent with cis linkage according to the reference haplotype
data. These results are shown in Fig. 2.

In both linked-reads and Hi-C sequencing data, the signal of molecular haplotype link-
age is strongest between variants in close proximity but shows different decays against
the genomic distance between variants. In the linked-reads data, the range of haplotype
linkage is capped by the size of input DNA molecules. The maximum range of haplo-
type linkage is ~100 kb in the RPE-1 data (Fig. 2a, c) and ~300 kb in the NA12878 data
(Fig. 2b, d). Both the density (Fig. 2a-d) and the accuracy (Fig. 2e, f) of haplotype linkage
decays rapidly as the distance between variants exceeds the molecular size. The distance-
independent linkage signal above the molecular size showing 50% cis and trans linkage
(Fig. 2e, f) is consistent with random tagging of DNA fragments from both parental chro-
mosomes. This residual signal most likely results from unrelated DNA molecules being
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Fig. 2 Statistical metrics of molecular haplotype linkage between variants at different genomic distance
extracted from linked-reads and Hi-C sequencing data of RPE-1 (a,c.e) and NA12878 (b,d f) cells. a, b Fraction
of linked variants. ¢, d Average number of links between linked variants. e, f Fraction of links consistent with
cis linkage. The residual linkage in the linked-reads data ~50% accuracy (e and f) reflects tagging of unrelated
DNA fragments from both parental homologs by the same molecular barcodes by chance

tagged by the same molecular barcode and should be excluded from haplotype inference.
The limited range of molecular linkage from linked-reads data (~100kb) suggests that
this datatype is suitable for local haplotype phasing but cannot extend haplotype blocks
across regions with low variant density (<1 per 100kb).

The density of haplotype linkage from Hi-C data shows a power-law decay against
genomic distance (Fig. 2a, b) that is similar to the frequency of intrachromosomal contacts
[45, 46], suggesting that most Hi-C links result from intramolecular contacts (random
intermolecular contacts will generate a distance-independent signal and cause deviation
from the power-law decay). This is verified by the result that more than 90% of all Hi-C
links are consistent with cis linkage (Fig. 2e, f). Although Hi-C linkage can extend to the
entire chromosome, it is very sparse: In both Hi-C data (RPE-1 and NA12878), the proba-
bility that two variant sites separated by 100 kb are linked by Hi-C reads is less than 1073

Page 5 of 31
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(Fig. 2a, b) and almost all linkage consists of only one link (Fig. 2¢c, d). The sparsity of Hi-C
linkage limits the accuracy and completeness of haplotype inference [37].

One strategy to take advantage of long-range Hi-C linkage without significantly increas-
ing the depth of sequencing is to aggregate Hi-C links between variants in local haplotype
blocks to generate a stronger linkage signal. To demonstrate this quantitatively, we calcu-
lated the average number of Hi-C links between 0.5-, 1-, and 2-Mb segments at different
genomic distance in the RPE-1 data (Fig. 3a). This calculation shows that the signal of
haplotype linkage between megabase-scale segments can extend well above 10 Mb and is
sufficient to link haplotype blocks across large gaps or regions of low variant density. As
it is convenient to generate megabase-scale haplotype blocks either by statistical phasing
or using long-range sequencing, the addition of Hi-C data with standard coverage (>50
million long-range contacts) is sufficient to merge these blocks into a single haplotype
for each chromosome (Fig. 3b). We have designed a general computational framework of
haplotype inference based on molecular linkage evidence that is applicable to both local
haplotype inference and haplotype block concatenation. This framework is presented in
“Haplotype inference from linkage evidence” section with its implementation described
in Additional file 1: Software implementation of the haplotype inference algorithm.

Computational inference of parental haplotypes in diploid genomes

We applied our haplotype inference method to generate the complete haplotype phase of
bi-allelic single-nucleotide variants (SN'Vs) in two diploid genomes (RPE-1 and NA12878)
and benchmarked the computational inference against reference haplotype data. We
detected heterozygous variants from the linked-reads data (“Variant calling and filter-
ing” section) and extracted variant linkage in both linked-reads and Hi-C sequencing data
(Additional file 1:Extracting variant linkage information from long-range sequencing).
We excluded variants in centromeric or acrocentric regions due to the low variant detec-
tion accuracy in these regions caused by mis-alignment of short reads. We further omitted
complex alterations, such as insertion, deletion, or structural variants, due to their lower
detection and genotyping accuracy than SNVs from short reads.
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Fig. 3 Linking haplotype blocks with Hi-C reads. a Average number of Hi-C links between two segments of
0.5Mb, 1Mb, and 2Mb at different genomic distance calculated using the RPE-1 Hi-C data. b A schematic
illustration of haplotype block concatenation using Hi-C reads. The shown example assumes that at least two
links are required to join two blocks. (i) Local haplotype blocks (open rectangles) and Hi-C links (curves); (ii)
and (i) merging of adjacent haplotype blocks based on Hi-C linkage; and (iv) joint inference of the haplotype
phase of all blocks using all Hi-C links
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We first performed local haplotype inference based on linkage evidence from the
linked-reads data as described in Additional file 1:Solving haplotype phase by mini-
mization. Only linkage between SNVs within 100kb was included in the calculation.
The haplotype solution converged within 10 rounds of iterations for all chromosomes,
with Chr.2 taking the longest time (1,000 seconds) to complete (Additional file 2).
Our haplotype inference algorithm generated two scores measuring phasing accuracy at
each variant site: The spin-flipping penalty (Eq. (15)) measures the probability of local
(“short-switching”) phasing errors; the block-switching penalty (Eq. (16)) measures the
probability of long-range switching errors. The distributions of these scores are shown in
Additional file 1:Fig. S1.

To demonstrate the utility of block-switching penalty scores for controlling long-range
switching errors, we generated haplotype blocks using different block-switching penalty
cutoffs (AE = 5-10000) and assessed intra-block phasing accuracy using the refer-
ence haplotype. For each block, we first calculated the percentage of phased genotypes
that agree with the reference haplotype f and then estimated intra-block accuracy as
max(f, 1 — f). This definition corresponds to the fraction of genotypes consistent with
the major haplotype assignment (min, 50%; max, 100%) and is very sensitive to long-
range switching errors that cause a large fraction of genotypes to be assigned to the minor
haplotype. The results for Chr.5 are shown in Fig. 4.

As expected, choosing lower block-switching cutoffs produces longer haplotype blocks
with more intra-block switching errors than choosing higher cutoffs. Most low-accuracy
blocks (colored in red) contain only one or a few switching errors at sites with low
block-switching penalty scores: these blocks are broken to two or more high-confidence
blocks at a higher block-switching cutoff (red arrows). Because intra-block switching
errors will significantly compromise or destroy the signal of Hi-C linkage between blocks
(“Phased Hi-C linkage between haplotype blocks” section), we elect to produce short
haplotype blocks with high accuracy by choosing conservative block-switching cutoffs
determined based on the location of the minimum in the block-switching penalty dis-
tribution (Additional file 1:Fig. S1B,E): AE = 1000 for the RPE-1 data and AE = 5000
for the NA12878 data. The resulting haplotype blocks are shorter than reported in Ref.
[34] but have no apparent intra-block switching (<99% accuracy) (Fig. 4c). More discus-
sion on the choice of block-switching penalty is given in “Assessing phasing accuracy and
determining high-confidence haplotype blocks” section.

We note that sites prone to switching errors (having low block-switching penalty scores)
are enriched in low-variant density regions (Additional file 1:Figs. S1C and S1F). Two
large low-variant density regions on Chr.5 of the RPE-1 genome are highlighted in Fig. 4b
(black arrows). The first one in 5q13.2 is also seen in the NA12878 genome. This region,
known as the spinal muscular atrophy (SMA) region, contains large segmental duplica-
tions (~200 kb) with high sequence similarity (>98%) [47] that cannot be resolved by
short sequencing reads. Even though this region is not marked as having low variant-
density based on unfiltered variants (blue tracks), the reference haplotype data show few
phased variants in this region (purple tracks), suggesting a high fraction of false vari-
ants in the unfiltered callset. The exclusion of false or low-confidence variants from the
haplotype solution (green tracks) confirms that our haplotype inference algorithm can
effectively purge these variants based on the specificity of haplotype linkage. By contrast,
the second low-variant density region in the RPE-1 genome near 5p21.1 contains few
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Fig. 4 a, b Haplotype blocks on Chr.5 derived from the NA12878 (a) and RPE-1 (b) linked-reads data. Each row
of haplotype blocks is determined using a different switching-penalty cutoff from AE = 5 to AE = 10,000.
Only blocks with 50 or more phased variants are shown. The accuracy of each block is estimated by the
percentage of genotypes that are consistent with the majority haplotype of each block determined using the
reference haplotype. Blocks with >98% accuracy are colored in gray; those with <98% accuracy are colored
in red with brightness scaled by the accuracy (minimum 50%). Three examples of low-accuracy blocks each
containing a single intra-block switching error are highlighted with red arrows in the NA12878 genome;
these blocks are broken into two high-accuracy blocks at a higher cutoff. Shown below the haplotype blocks
are three tracks of regional variant density measured by the number of total detected variants (blue), phased
variants in the final haplotype solution (green), and phased variants in the reference data (purple) in 200 kb
bins. (We have chosen the Genome-In-A-Bottle data as the NA12878 reference haplotype.) Bins with more
than 20 variants (variant density more than 1 per 10 kb) are omitted. Black arrows highlight large regions with
low variant density, including the spinal muscular atrophy (SMA) region on 5q13.2 consisting of large
(~200kb) segmental duplications with high sequence similarity (>98%) [47] that cannot be resolved by short
reads. The other region in the RPE-1 genome reflects loss-of-heterozygosity. €. Average intra-block accuracy
(weighted by the number of variants in each block) and the N50 length of all haplotype blocks in each
sample generated using different switching-penalty cutoffs. The NA12878 dataset produces longer
haplotype blocks due to having longer input molecules (Table 1)

variants in the unfiltered callset and reflects true loss-of-heterozygosity. (See Additional
file 1:Fig. S2 for a genome-wide map of low-variant density regions in the haplotype solu-
tion and in two independent reference datasets of the NA12878 genome. See Additional
file 1:Fig. S3 and S4 for genome-wide maps of low-variant density regions in the NA12878
and RPE-1 genomes and local haplotype blocks generated from the linked-reads data
using different switching penalty cutoffs.)

We merged high-confidence haplotype blocks using Hi-C links in two steps (Addi-
tional file 1:Concatenating haplotype blocks using Hi-C links). First, haplotype blocks
within each chromosome arm were concatenated using Hi-C links between variants
separated by <10Mb. Second, p- and g-arm haplotypes were joined using all Hi-
C links between the arms. The consistency of haplotype solution in each step can
be verified by comparing the number of cis and trans Hi-C links (Additional file
1:Fig. S5). We refer to the concatenated haplotype blocks as the “scaffold” haplotype
solution.
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Finally, we calculated the linkage between individual variant genotypes and phased vari-
ant genotypes in the scaffold haplotype solution using the number of unique molecules
supporting each type of linkage (Additional file 1:Calculation of haplotype linkage
between individual genotypes and the scaffold haplotype solution)

#(reference-haplotype A), #(alternate-haplotype B),
#(reference-haplotype B), #(alternate-haplotype A).

We determined the final haplotype phase at each variant site based on the combined
linkage evidence defined as

nea = #(reference-haplotype A) + #(alternate-haplotype B); )
nB = #(reference-haplotype B) + #(alternate-haplotype A)

and selected true heterozygous variants with haplotype linkage satisfying the follow-
ing criteria. First, true heterozygosity requires that there is haplotype linkage to both
genotypes (R and A) and both parental haplotypes (A and B). This was implemented as

(Ia) #(reference-haplotype A) + #(reference-haplotype B) > 0
(Ib) #(alternate-haplotype A) + #(alternate-haplotype B) > 0
(Ic) #(reference-haplotype A) + #(alternate-haplotype A) > 0
(Id) #(reference-haplotype B) + #(alternate-haplotype B) > 0

Second, segregation of haplotype linkage between opposite genotypes (reference
and alternate) and parental haplotypes (A and B) implies that max(nea,nm) >
min(n;a, 8) &~ 0. This was implemented as the following:

(I)  min(nca, ) < max[2,0.1 x (nea + neB)] .

(I) and (II) represent the “linkage filter” to exclude false variants in the final haplotype

solution.

Benchmark of the haplotype solution
We evaluated the accuracy and completeness of the computationally inferred haplotypes
using the reference haplotype data determined directly from the sequence of parental
chromosomes (Table 1). For the NA12878 genome, the reference haplotypes were deter-
mined using the parental genomes either by alignment-based analysis (the GIAB release)
or by diploid de novo assembly of the NA12878 genome. Variants in both reference data
have high specificity. The GIAB reference only includes high-confidence regions and
leaves out several large regions including the p-arms of Chrs.16 and 18 (Additional file
1:Fig. S2). We used the haplotype derived from diploid de novo assembly to evaluate hap-
lotype inference in these regions. For the RPE-1 genome, we determined the reference
haplotypes from the sequencing data of monosomic RPE-1 cells (“Sequencing data of
monosomic RPE-1 cells” section). As the RPE-1 variants were detected only from short-
reads data, we filtered false variants based on the average variant allele fraction in the
single-cell data.

We first benchmarked the scaffold haplotype solution constructed from large haplotype
blocks (Additional file 1:Table S2 for NA12878 and Table S3 for RPE-1). We evaluated
both the completeness of haplotype inference (percentage of variants in the reference
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data that are also phased in the computational solution) and the global accuracy of the
haplotype solution (percentage of phased genotypes in agreement with the reference).
The metric of global phasing accuracy is consistent with the metric of intra-block phasing
accuracy defined above for local haplotype inference (Fig. 4).

For the NA12878 sample, the scaffold haplotype solution contains 1,746,304 out of
1,867,590 (93.5%) phased variants in the GIAB reference haplotype data and 2,037,593
out of 2,312,059 (88.1%) phased variants in the diploid-assembly reference and shows
99.6% agreement with both datasets. (Chromosome 19 has the lowest accuracy of 98.5%.)
For the RPE-1 sample, the scaffold haplotype solution contains 2,071,147 out of 2,320,153
(89.3%) of all phased variants in the reference haplotype data and shows 98.3% agreement.
(Chromosome 9 has the lowest percentage of agreement of 96.1%.) No chromosome in
either sample shows <95% accuracy, suggesting that the combination of single-variant
phasing errors and variants in switched blocks is less than 5%.

We then benchmarked the final haplotype solution determined using the linkage
between variant genotypes and the scaffold haplotype solution (Eq. (1)). For the NA12878
sample, the final haplotype solution shows 99.7% accuracy and 97-98.0% completeness
when compared to both reference data (Table 2; see Additional file 3 for detailed met-
rics for each chromosome). (Phased variants from de novo assembly but not detected
in the linked-reads data were not included in the benchmark as these variants are not
detectable by short reads.) The linkage filter removes 167,385 variants but does not affect
phasing accuracy as most of the false variants are not present in the reference data. We
further performed indel variant phasing on Chr.21 based on their molecular linkage to
the scaffold haplotype phase of SNV genotypes (Additional file 1:Phasing of indel variants
using haplotype linkage). The haplotype phase of indel variants shows similar accuracy
when compared to the reference data, but the original callset (7663) contains significantly
more variants than its intersection with either reference dataset (~4000). The linkage fil-
ter removes a large number of variants in the unfiltered callset (most are likely false calls)
and preserves 80—90% of phased variants in the reference data. This result demonstrates
the utility of haplotype linkage for improving the specificity of variant detection that is
independent of alignment accuracy.

For the RPE-1 sample, the final haplotype solution shows 98% agreement with the refer-
ence data before variant filtration (Table 3). After excluding false variants based on either
the variant allele fraction in the single-cell data (from >100 samples) or the specificity
of haplotype linkage from linked reads, we see >99% agreement between the haplotype
solution and the reference haplotype. The independent linkage filter and allele fraction
filter show good consistency: 2,054,859 variants pass both filters and represent 95% of
variants passing each individual filter. Among variants passing both filters, the percentage
of agreement between the haplotype solution and the reference haplotype is 99.6% and
comparable to the NA12878 haplotype solution. These results validate the completeness
(>98%) and accuracy (>99%) of computational haplotype inference.

To further test the reliability of our haplotype inference method against false vari-
ants in the input data, we performed haplotype inference on the RPE-1 data with all
detected variants, including those in centromeric regions or on the short arm of Chr.21.
The benchmark is summarized in Additional file 1:Table S4 with detailed metrics for
each chromosome provided in Additional file 4. With the haplotype-linkage filter, the
final haplotype solution shows similar overall accuracy (99.1%) but adds ~40,000 phased
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Table 2 Comparison between the final haplotype solution and the reference haplotype of NA12878

AII SNV sites Phased from  Reference = Comparable  Agreed Accuracy  Fraction of
bulk data haplotype  sites completion

2,652,381 2,319,027° 1,861,941P 1,824,401 1,818,042 0.997 0.980
2,151,642¢ 1,815,197 1,809,886  0.997 0.975
2,319,027° 2,183,1234 2,122,256 2,114,548 0.996 0.969
2,151,642¢ 2,096,982 2,091,821 0.998 0.958

Indel variants

on Chr.21

9,285 7663¢€ 3618 3553 3535 0.995 0.982
4702¢ 3183 3177 0.998 0.880
7663¢ 45819 4478 4426 0.988 0.978
4702¢ 3835 3827 0.998 0.837

@All phased variants without any filtering

bVariants detected in the linked-reads data that are also contained in the GIAB release. Total number of phased SNVs in the GIAB
release, 1,867,590

CFiltered by haplotype linkage: >1 link connecting ref, alt, HapA, and HapB, and minor linkage <2 or minor linkage/total linkage
<0.1

dPhased variants determined from phased de novo assembly of parental chromosomes that are also detected in the linked-reads
data. Total number of phased variants from diploid de novo assembly, 2,312,059

€Variants phased by molecular linkage to phased SNVs in the scaffold haplotype solution

fintersection with phased indel variants in the GIAB data with exactly matching variant genotypes. Total number of phased indels
in the GIAB release, 4090

9Intersection with phased indels derived from de novo assembly of parental chromosomes with exactly matching variant
genotypes. Total number of phased indels from diploid assembly, 7128

variants in centromeric regions with ~90% agreement with the reference data. With vari-
ants in centromeric or acrocentric regions excluded, the highest absolute error rate is 2.5%
(Chr.17). Together, these results demonstrate the robustness of our haplotype inference
method that contrasts with previous methods (“Whole-chromosome haplotype inference
by HapCUT?2” section).

Haplotype inference with down-sampled data

To determine the minimum sequencing depth of each data type (linked reads and Hi-C)
that is required to achieve whole-chromosome haplotype inference, we performed haplo-
type inference on randomly down-sampled variant-overlapping reads in the RPE-1 data.
For both data types, we generated 66%, 50%, and 33% down-sampled reads from the origi-
nal data; the benchmark metrics of the scaffold haplotype solution with each combination
of linked-reads and Hi-C data are summarized in Additional file 1:Table S5 with addi-
tional metrics provided in Additional file 4. We confirmed that with >50% linked-reads
and >50% Hi-C data, our method can reliably generate whole-chromosome haplotypes
with >99% accuracy and >97% completeness relative to the original haplotype solution.
The completeness of the haplotype solution is primarily determined by the depth of

Table 3 Comparison between the final haplotype solution and the reference haplotype of RPE-1

Filter Total variant  Phased from  Phased from  Agreed Discordant  Fraction of
sites bulk data monosomies discordance

None 2475311 2,242,237 2,320,153 2,101,195 40,006 0.019

Allele fraction® 2,172,689 2,087,188 2,109,589 2,018906 12,903 0.006

Linkageb 2,156,423 2,156,346 2,071,674 2,054,006 17616 0.009

Combined® 2,054,859 2,054,832 2,001,674 1,993,552 8,098 0.004

@From single-cell data: minor allele fraction > 0.3 in disomic regions and in the [0.18,0.48] range in the trisomic region of Chr.10q
5> 1 link connecting ref, alt, HapA, and HapB & minor linkage < 2 or minor linkage/total linkage <0.1
“With both the allele fraction (a) and the linkage (b) filter
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linked-reads data and drops to 95% with 33% linked reads. The depth of Hi-C sequenc-
ing controls long-range switching errors. For Chr.X that has the lowest average variant
density, using 33% Hi-C reads results in large switching blocks (>10% of the entire chro-
mosome) that can only be rescued with the original linked-reads data. Except for Chr.X,
there is no significant long-range switching (resulting in overall accuracy <90%) even with
33% linked reads and 33% Hi-C reads.

We further performed haplotype inference on 11x PacBio Circular-Consensus
Sequencing data of RPE-1 cells in combination with the same Hi-C data and benchmarked
the results against the reference haplotype. The results are summarized in Additional file
4. When the complete variant callset was used as input, we needed to choose a conser-
vative switching cutoff (AE = 250) to avoid switching errors due to false variants; this
resulted in 1,922,469 phased variants (in contrast to 2,156,423 from 60x linked-reads)
with 97.5% average accuracy. Chromosome X has the highest error rate ~10% that is
likely due to the combination of low variant density, low sequencing coverage, and the
shorter range of molecular linkage of PacBio reads in comparison to linked reads. When
we used high-quality variants (determined by the linkage filter from linked reads) as input,
we could lower the switching cutoff to AE = 5 and still preserve intra-block accuracy;
the final haplotype solution contained 2,015,625 phased variants (93% of all high-quality
variants) with 97.7% average accuracy.

We note that all the results generated from down-sampled data were derived using
variants detected from the original linked-reads data. Therefore, these results only
demonstrate the robustness of our haplotype inference algorithm but not the sufficiency
to generate complete whole-chromosome haplotypes solely from the down-sampled data.

Resolving chromosome-specific alterations using haplotype copy number

To demonstrate this application, we used the parental RPE-1 haplotypes to calculate
haplotype-specific DNA copy number of aneuploid RPE-1 cells generated in a recent
study [41]. In this study, the authors performed bulk whole-genome sequencing on the
progeny populations of single RPE-1 cells that underwent telomere crisis. We down-
loaded and processed the sequencing data using the same workflow as described in
“Sequence data processing” section and calculated haplotype-specific coverage in 250-kb
bins as

(i) j (i)
Cyp =D? Ry . (2)

For each bin (i = 1,2,---), D% is the normalized mean sequence coverage (DO = 1)
and RX’)B is the mean haplotype fraction (A or B) across all variants. For a mostly diploid
genome, the median value of C4 5 of all homologous chromosomes corresponds to the
average coverage of a single homologous chromosome. We therefore normalized C4 5 by
its median to calculate haplotype-specific DNA copy number.

Figure 5 shows three examples of chromosomes with complex alterations, each taken
from a different sample that underwent telomere crisis. The DNA copy number of
both haplotypes is shown using red and blue dots; chromosomal rearrangements related
to copy-number alterations are shown as black arcs (intrachromosomal events) and
magenta vertical lines (breakpoints of interchromosomal translocations). The first exam-
ple (Fig. 5a) shows a chromothripsis event affecting the 8q arm of the red homolog.
Based on the non-integer copy-number states of the red haplotype and the near diploid
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Fig. 5 Haplotype-resolved DNA copy number and rearrangement analysis of post-crisis RPE-1 cells from Ref.
[41]. Schematic diagrams of alterations to each homolog and their clonal fractions are shown below the
copy-number plots. Non-telomeric chromosomal fragments involved in complex rearrangements are
outlined. a Haplotype-specific DNA copy number and rearrangement (black arcs) of Chr.8 in the X-33 sample.
Both rearrangements and copy-number alterations are restricted to the red homolog; the non-integer
copy-number states indicate that the altered Chr.8 is present in a subclonal population (~45%). b
Haplotype-specific DNA copy number and rearrangement of Chr.4 (black arcs: intrachromosomal; magenta
vertical lines: interchromosomal to Chr.13) in the X-25 sample. Rearrangements and copy-number alterations
affect both homologs: Segmental changes of both homologs (blue: gain, red: loss) appear to be subclonal
(~90%). € Haplotype-specific copy number of Chr.6 in the X-36 sample. The blue homolog shows
non-constant copy number (1-1.3) near the g-terminus that contrasts with constant copy number of the red
homolog (~1) or the rest of the blue homolog (~0.7). We interpret this pattern as reflecting extensive
copy-number heterogeneity in the population

karyotype of this sample [41], we infer that the altered Chr.8q is present in a sub-
clonal population (~45%). The second example (Fig. 5b) shows alterations to both Chr.4
homologs on the p-arm: Both the gain of the blue haplotype and the loss of the red hap-
lotype are subclonal (~90%); the broken ends on both homologs are linked to Chr.13
(magenta lines), suggesting a complex event involving these three chromosomes. The
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last example (Fig. 5¢) shows non-constant copy number of the blue haplotype at the g-
terminus that contrasts with the constant copy number of the red haplotype or the rest of
the blue haplotype. We interpret this copy number pattern as reflecting the retention of
varying terminal segments in different cells in the population [48].

The haplotype copy-number analysis demonstrates that the progeny populations of
single cells passing through telomere crisis can be highly heterogeneous and such hetero-
geneity can be identified directly from bulk DNA sequencing. The feature of non-constant
haplotype copy number is of particular interest and may be used as a signature to infer
ongoing genome instability in a cell population.

Walking derivate chromosomes using haplotype-specific Hi-C contacts

Hi-C sequencing has previously been used to detect long-range chromosomal rearrange-
ments [35, 49, 50]. The formation of new junctions between distal loci (separated by
>1Mb genomic distance or located on different chromosomes) creates new cis contacts
with a significantly higher density than trans contacts in a normal genome. With parental
haplotype information, we can further phase rearrangement junctions and infer the orga-
nization of syntenic blocks in rearranged chromosomes from haplotype-specific Hi-C
contacts and DNA copy number.

As each rearrangement breakpoint is originally generated on one parental chromo-
some, the newly formed cis contacts near the rearrangement junction should be phased
to one haplotype on both sides of the junction. For interchromosomal rearrangements, cis
contacts between the partner chromosomes should be observed in one out of four possi-
ble haplotype combinations (AA, AB, BA, or BB); for intrachromosomal rearrangements,
newly formed cis contacts should be observed in one out of three possible combina-
tions (AA, AB, or BB). Combining haplotype-specific connectivity from Hi-C contacts
with haplotype DNA copy number from linked-reads data enables us to determine the
structure of derivative chromosomes and generate phased karyotypes (Fig. 6).

We first illustrate this application using a simple example in the RPE-1 genome (Fig. 6a).
RPE-1 cells contain a duplicated segment from Chr.10q (62 Mb-qter). The DNA sequence
near the breakpoint on Chr.10q shows repeat sequence whose origin cannot be deter-
mined even with the PacBio data; cytogenetic analysis indicates that this segment is
translocated to the g-terminus of Chr.X. In the phased Hi-C contact map, this transloca-
tion is easily recognized from the enrichment of contacts near the q-terminus of Chr.X
and the breakpoint on Chr.10q (~62 Mb) that is restricted to one haplotype combination
(arbitrarily denoted as A for both chromosomes). Importantly, the enrichment of Hi-C
contacts extends throughout Chr.X to the p-terminus, indicating that the 10q segment
joins a complete X chromosome and confirming the result from cytogenetic analysis.

We further demonstrate this strategy by generating a “digital karyotype” of the K-562
genome using published sequencing data (Additional file 1:Table S1). The K-562 genome
is highly aneuploid [50] and contains multiple structurally abnormal (marker) chromo-
somes [42, 43] (Fig. 6b) and large regions of loss-of-heterozygosity (LOH). We first
determined the parental haplotypes in heterozygous regions from linked-reads and Hi-
C data and then calculated haplotype-specific DNA copy number using phased coverage
in the linked-reads data. We next determined the linkage between rearranged chromo-
somal segments using both phased molecular linkage from the linked-reads data and
long-range haplotype-specific Hi-C contacts near copy-number breakpoints. The digital
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Fig. 6 Haplotype-resolved synteny of rearranged chromosomes and aneuploid genomes. a Walking the
translocated X chromosome in the RPE-1 genome using phased Hi-C links (dots) between different homologs
of Chr.10 and Chr.X. A significant increase of Hi-C links is seen in only one haplotype combination reflecting
cis links generated by the translocation between Chr.10 and Chr.X. The enrichment of Hi-C links throughout
the entire X chromosome suggests the 10g segment is attached to an intact X chromosome with structure
shown below the Hi-C contact map. Arrows denote the orientation of the two segments from the p-terminus
to the g-terminus. b The cytogenetic K-562 karyotype reported in Ref. [42] (reprinted with permission from
the publisher) with outlined structurally altered (marker) chromosomes resolved by sequencing data (shown
in €). ¢ The digital K-562 karyotype with haplotype assignment to both normal (left) and structurally altered
(right) chromosomes determined from linked-reads and Hi-C sequencing data. The digital karyotype mostly
agrees with the cytogenetic karyotype and the differences may be attributed to additional alterations during
cell culture. Among all marker chromosomes listed in b, we are able to determine the syntenic structure of
the following: mar5/6, mar6/6, mar3/10, mar12/21, mar9/17, mar1/18, mar1/6/20, and mar1/21, and resolve
most rearrangement junctions at the base-pair level. Arrows represent the orientations of rearranged
segments relative to the standard p-g arm orientation. Multiple junctions contained local fold-back
rearrangements (inverted colored arrows in t(1A;18A), t(3A;18B), t(6A;1A;20A)) that are consistent with local
DNA copy number gains; these events cannot be resolved by cytogenetic analyses. The mar18 described in
Ref. [42] is probably related/similar to t(3A;18B). The BCR-ABL amplification is contained in a homogeneously
staining region (hsr) in the marker chromosome t(22A;9-13-22hsr). We infer the structure of the amplicon
from DNA copy number and rearrangements but cannot validate the inferred structure due to technical
limitations. We are further able to partially resolve the structure of the altered Chr.7 and Chr.9 and completely
resolve the structure of three additional marker chromosomes described in Ref. [43] but not in Ref. [42]:
t(2A;22A), t(3A;10A;17A), t(9A;13A). Details of the analysis are presented in Additional file 5 and explained in
Additional file 1:Determination of the K-562 karyotype by haplotype-specific genomic analysis

karyotype was constructed by a joint analysis of haplotype-specific DNA copy num-
ber, rearrangements, and Hi-C contacts and is schematically shown in Fig. 6¢c. Details
of this analysis are presented in Additional file 1:Determination of the K-562 karyotype
by haplotype-specific genomic analysis accompanying results presented in Additional file
5. The digital karyotype shows excellent agreement with results by cytogenetic analyses
reported in Ref. [42] (Fig. 6b) and [43]. In addition to resolving the synteny of rearranged
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chromosomal segments, the digital karyotype resolves the parental origin of each segment
and the rearrangement junctions with base-pair resolution in 9 marker chromosomes
reported in Ref. [42] (outlined in Fig. 6b and schematically shown in Fig. 6¢) and 3 addi-
tional marker chromosomes reported in [43]. We also partially resolved the structure of
the complex amplicon containing the BCR-ABL fusion in t(22A;9-13-22hsr) combining
sequencing and cytogenetic data.

Discussion

Here we describe a computational method that can accurately determine complete chro-
mosomal haplotypes using a combination of linked-reads sequencing (30-60x mean
depth) and Hi-C sequencing data (>50 million long-range contacts). The computation-
ally inferred haplotypes show high accuracy (>99%) and completeness (>98%) when
compared to reference haplotype data directly obtained from parental chromosomes.

Our method offers several advantages over previous methods. First, both linked-reads
and Hi-C sequencing data can be generated on standard sequencing platforms and the
construction of sequencing libraries does not involve special experimental techniques
required for single-chromosome isolation [21-23], single-cell sequencing [24], or similar
techniques such as “Strand-Seq” [25, 51]. Second, the computational algorithm implic-
itly excludes inconsistent linkage evidence from false variants based on the specificity of
haplotype linkage. This contrasts with previous methods [37] that require high-quality
variants as input (“Whole-chromosome haplotype inference by HapCUT2” section). Our
method further enables a variant-filtering strategy based on haplotype linkage that can be
used to exclude false variants due to alignment errors and validate complex variants such
as insertions, deletions, or large structural variants.

Our formalism of haplotype inference as a minimization problem also has several
unique features. The symmetric representation of binary genotypes and haplotypes
simplifies the inference of complementary parental haplotypes into one minimization
problem based on linkage evidence from both parental chromosomes. The haplotype
inference algorithm is not affected by allelic imbalance, including loss-of-heterozygosity,
and is directly applicable to aneuploid tumor genomes (demonstrated in the K-562 exam-
ple). We demonstrate that a simple iteration strategy can efficiently solve the parental
haplotypes of diploid genomes but it is straightforward to incorporate more sophisticated
minimization algorithms (e.g., Monte-Carlo methods) when necessary (Additional file
1:Haplotype inference and energy minimization of the 1D spin model).

A key feature of our method in contrast to others [37, 39] is that it is designed to
completely eliminate large block-switching errors using Hi-C contacts. Even with low-
coverage linked-reads or PacBio data (10-20x ), the scaffold haplotype solution generated
by concatenation of local haplotype blocks using Hi-C links shows consistent global
phasing accuracy (>95%) relative to a single parental haplotype. One useful extension
of our method is to perform joint haplotype inference using population genotypes and
Hi-C data. Population-based statistical phasing [16] can produce long haplotype blocks
(>1Mb) that contain random but rare switching errors. It should be possible to correct
these errors using Hi-C data and determine the complete haplotype phase of common
variants on individual chromosomes [39], which can then be used to generate phased
Hi-C contact maps.
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A major limitation of alignment-based analysis (especially of short reads) is that it can-
not resolve repetitive sequences or sequences that are highly divergent from the reference.
Inaccurate alignment of sequencing reads derived from repetitive or highly divergent
sequences can lead to both false-positive and false-negative variant detection. Although
our method can filter false-positive variants based on haplotype linkage, it cannot rescue
missed variants due to incorrect alignment. Resolving haplotype linkage in these regions
requires different strategies such as long-read sequencing or de novo assembly.

Knowledge of chromosomal haplotypes can be used to directly relate variations in
the DNA sequence, histone marks, chromatin structure, and gene expression on each
chromosome. This is especially useful for the analysis of cancer genomes where homol-
ogous chromosomes often acquire independent alterations that can cause differential
changes in chromatin organization or gene expression [52]. We demonstrate the feasibil-
ity to determine the synteny of derivative chromosomes in aneuploid genomes directly
from sequencing data by constructing a digital karyotype of the K-562 genome using
linked-reads and Hi-C sequencing data. We expect this strategy to be generally applica-
ble to complex cancer genomes and useful for investigating the connection between 2D
chromosomal structural alterations and 3D chromatin reorganization.

Conclusions

We describe a computational strategy to determine complete parental haplotypes of
diploid genomes and haplotype-resolved karyotypes of aneuploid genomes using a
combination of bulk long-range sequencing and Hi-C sequencing.

Methods

Generation of sequencing data

Bulk linked-reads sequencing data of RPE-1 cells

The RPE-1 linked-reads data were generated at the Yale Center for Genome Analy-
sis. High-molecular weight DNA from RPE-1 cells was extracted using the RevoluGen
PuriSpin Fire Monkey kit following the protocol provided by the vendor with the fol-
lowing modifications: Cells were lysed at 56°C for 2 h, followed by addition of ~100 ng
RNase A and additional incubation for 15 min at 56°C. A single linked-reads library was
constructed using the Chromium Genome Library Kit v2 from 10X Genomics following
the standard protocol. The library was then sequenced on the Illumina NovaSeq plat-
form to generate 941,518,426 read pairs with 60x mean depth of coverage. See Table 1
for additional metrics of the sequencing data.

PacBio Circular Consensus Sequencing data of RPE-1 cells

PacBio Circular Consensus Sequencing data of a progeny population derived from a single
cell were generated at the Broad Institute. A total of 4,607,047 High-Fidelity (Hi-Fi) reads
were generated after circular consensus correction with N50 read length 7.3kb. The mean
sequence coverage is ~ 11x. The sequencing data will be released at the NCBI Short
Read Archive as SRR13579109.

Sequencing data of monosomic RPE-1 cells
Monosomic RPE-1 cells were generated using three different strategies: (1) Nocoda-
zole block and release [24]; (2) Induction of dicentric chromosome bridges [48]; and
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(3) Treatment with Paclitaxel, a spindle toxin that induces tetraploidization by prevent-
ing microtubulin disassembly. All three strategies significantly increase the frequency of
chromosome missegregation and the generation of monosomic daughter cells. Mono-
somic cells were first selected based on the arm-level DNA copy number estimated from
low-pass ( 0.1x) whole-genome sequencing and then sequenced to 5-30x on either the
Nlumina HiSeq 2500 or the Illumina NovaSeq platforms at the Broad Institute of MIT and
Harvard. We then identified and validated completely monosomic chromosomes based
on the “normalized heterozygosity” [24] in the deep sequencing data defined as

observed heterozygosity Phet

(observed allelic coverage)?  (pref + pait)2/4

The observed heterozygosity phet is defined as the fraction of parental heterozygous sites
that show heterozygous coverage in a single-cell genome; the observed allelic coverage
is defined as the median of the fraction of heterozygous sites showing reference cover-
age prer and the fraction of heterozygous sites showing alternate coverage pqyt, which is
roughly equal to the average coverage of each parental chromosome in disomic regions
in a single cell genome [24]. Heterozygous variants in the parental genome were detected
using the bulk sequencing data as described below in the “Variant calling and filtering”
section. To eliminate false heterozygosity due to sequencing or amplification errors in
the single-cell data, we considered a variant site to show reference or alternate coverage
only when the number of sequencing reads showing either genotype exceeds a thresh-
old set as d* = max(2,1 + 0.1 x mean sequencing depth of chromosome): d* = 2 if the
mean sequencing depth is < 10x (most samples) and d* = 4 if the mean sequencing
depth is 30x. The minimum threshold of 2 reads was used to eliminate random sequenc-
ing errors; the threshold of 0.1 x mean sequencing depth served to exclude low frequency
(<10%) amplification errors. Complete monosomies were selected based on the criteria
that the normalized heterozygosity is less than 0.1x the median from all diploid cells
(= 1). For the current study, we selected 39 cells with one or multiple monosomic chro-
mosomes (32 from nocodazole release, 5 from bridge induction, and 2 from Paclitaxel
treatment), containing 98 monosomic chromosomes in total. The sample names, mean
sequencing depths, and the normalized heterozygosity of monosomic chromosomes are
listed in Additional file 6.

Sequence data processing

All the sequencing data listed in Table 1 and S1 were re-processed starting from
unmapped sequencing reads. For the linked-reads data, we used the LongRanger software
from 10X Genomics to extract the molecular barcode of each sequencing fragment that
was preserved in the “BX” tag in the BAM record. The molecular barcode information
was only used as molecular linkage evidence but not for sequence alignment. Alignment
and post-alignment processing of all sequencing data except the K-562 linked-reads data
were completed using the same pipeline as described below. For the K-562 linked-reads

data, we used the output from LongRanger for downstream analysis.

Sequence data alignment
We aligned all sequencing data (both linked reads and Hi-C) using a standard short-
read aligner (https://github.com/lh3/bwa) with default parameters (“bwa mem”). Using a
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barcode-agnostic aligner ensures better specificity of linkage information (and therefore
better phasing accuracy) than using a barcode-aware aligner such as Lariat (https://
github.com/10XGenomics/lariat) in the LongRanger pipeline. The rationale is explained
below in Additional file 1:Linkage evidence from molecular identifier and sequence
alignment of linked reads.

The PacBio CCS data of RPE-1 cells were aligned usingminimap2 (https://github.com/
1h3/minimap2) with the following command: minimap2 -ax map-pb.

Post-alignment processing

When choosing the primary alignment positions of sequencing reads with multiple
alignment positions (supplementary or secondary alignments), we gave preference to
alignment positions consistent with the proper-pair configuration, i.e., placing the two
mates at the forward-reverse orientation with inferred insert size within the 0.1% and
99.9% percentile of the insert size histogram. The insert size histogram was generated for
each sequencing library from 2,000,000 uniquely (both mates having mapping quality 60)
and properly (two mates are placed at the forward-reverse orientation with <2000 bp sep-
aration) aligned read pairs based on the alignment positions of pairmates. We used the
MarkDuplicates program in Picard (https://broadinstitute.github.io/picard/) to infer
sequencing reads corresponding to PCR duplicates based on the primary alignment posi-
tions and adjusted the duplication tag of both primary and supplementary alignments
accordingly.

Variant calling and filtering
We ran the HaplotypeCaller program from GATK (v4.0.12.0-6-gfef36e3-
SNAPSHOT) in the discovery mode (“--genotyping-mode DISCOVERY”) to detect
genetic variants. We imposed the following read filters in addition to the standard
parameters and read filters used by HaplotypeCaller to exclude reads with improper,
inaccurate, or low-confidence mapping:
--read-filter PairedReadFilter \
--read-filter MateOnSameContigOrNoMappedMateReadFilter \
--read-filter FragmentLengthReadFilter --max-fragment-length
1000 \

--read-filter MateDifferentStrandReadFilter \

--read-filter MappingQualityReadFilter --minimum-mapping-quality
30 \

--read-filter OverclippedReadFilter --filter-too-short 25 \

--read-filter GoodCigarReadFilter --read-filter
AmbiguousBaseReadFilter
For the RPE-1 genome, variant discovery was performed jointly on the new linked-reads
data (60x) and the previously published standard whole-genome data (13x) [53]. For
the NA12878 genome, variant discovery was performed on both linked-reads data (35x
each) [54].

We selected bi-allelic single-nucleotide variant sites (one reference plus one alternate)
as the input for haplotype inference, excluding sites in pericentric, acrocentric, and
centromeric regions based on the standard chromosome banding annotation (“acen,’
“gvar, “stalk”) provided by the UCSC genome browser. No other filter (e.g., variant
quality score recalibration) was applied.
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Haplotype inference from linkage evidence
We first introduce a binary numerical representation of genotypes at heterozygous vari-
ants as +1 for the reference base and —1 for the alternate base. A haplotype block

consisting of N variant sites is represented as a vector
52(51752"";5[\[)’ s; = *1.

Similarly, a molecular link with genotype information at multiple variant sites is repre-
sented as

6 = (01,02,-++), o;==1

Using the binary genotype representation, we can simplify four types of linkage between

genotypes (either o; or s;)

reference-reference linkage: s; = 1,s; = 1;
alternate-alternate linkage: s; = —1,5; = —1;
reference-alternate linkage: s; = 1,s; = —1;

alternate-reference linkage: s; = —1,s; = 1.

into two types of haplotype linkage

reference-reference/alternate-alternate linkage: s; - s; = 1,

reference-alternate/alternate-reference linkage: s; - s; = —1.

Moreover, a molecular link (o, 0;) between sites i and j is consistent with haplotype
linkage (s;, s;) if and only if

0i0jsisj = 1.
If the error probability of a molecular link is given by €;;, then
ploigjsisi = 1) = 1 — ¢, p(ojojsisi = —1) = €.

Assuming a uniform prior probability p(s;s; = 1) = p(s;s; = —1) = 1/2, we can re-write
the above equation as
p(oiajlsisi = 1) (1 - Qj)mof

ploiojlsisj = —1) €jj

Extending this to a collection of links {oi(k) Gj(k), 1<k< n], we have

p ({Gﬁk)c«(k)} Isisj = 1) 1—e®

p( { ) </<>} Isis; = —1) =11 (k)ll ’ ©)

(k) (k)
0;"0;

k l]

which leads to the following log-likelihood function

L( o(k) (k)} |s,s]) = 5;8; [lnp <{ o (k)} |sis;j = 1) - 1np< o (k)} Isisj = —1)]

_ Za(k) (k)s . ln< (/<>/€(k>> ) @)
If we assume a constant error rate for all links, ei(.k ) — €, Eq. (4) is simplified to

L (loi(k)oj(k)} |s,-s,~> ( > Zo(k) (k) (5)

X #(O'l'O','S,‘S]' = 1) —#(O‘L'O'jS,'S/' = —1) .

consistent links inconsistent links
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The haplotype linkage inferred from all molecular links is given by

1 X% ai(k)aj(k) > 0;
Sisj =
Y -1 Ji(k)aj(k) <0
We can generalize Eq. (4) to N variants as
1 K _(k K, (k
L ({a(k)} |S) = Z 8iSj Zoi( )aj( )In (1 — e; )/61'(;’ )> , (7)
1<ij<N k
and solve for the optimal haplotype solution § by maximizing Eq. (7). We further assume
a constant frequency of incorrect molecular linkage

k
e;j ) = €jj. (8)

With this approximation, we can then simplify Eq. (7) as

I ({G(k)} |s) — % Z 8i8j In (1 - 61']'/61‘]’) Zm‘(k)gj(k)
k

1<ij<N

1
= 3 Z 8iSj In (1 - 6,']‘/6,']‘) (Vl;— - Vl,;); 9

1<ij<N
where we have introduced

+ (k) (k) RR AA
1 :#(ai o; =1> =n; + n;t,

- (k) (k) RA AR
n; = # (oi o = —1) = n; —|—ni]-

(10)

as the number of links consistent with either type of haplotype linkage between site i and
j.

The rationale for the approximation in Eq. (8) is that we expect incorrect linkage due
to either random errors (generated in library construction or sequencing) or incorrect
sequence alignment to affect each molecule with the same probability. However, incorrect
alignment can be significantly enriched near variants detected in low-complexity regions.
We therefore estimate €;; from the observed linkage evidence as
min (n;“, n;)

- (11)
my +

eij = max | €p,

Here min(n;jr, ni;) / (1/1;«r + ni;) is the observed fraction of minor haplotype linkage between
two variant sites i and j; min(nlf}',nl.;) = 0 if there is no discordant haplotype linkage.
€o reflects random errors and can be estimated using the average fraction of observed
discordant linkage

min (n;“, n;)
T < )+ >

The formalism of haplotype inference defined in Egs. (7) and (9) has several advan-
tages. First, the binary representation of haplotype phase and molecular linkage preserves
the symmetry between parental haplotypes (S and —S) or molecular links derived
from parental chromosomes (o and —o). This is convenient for performing haplotype
inference in aneuploid genomes where one homolog may contribute dominant linkage
evidence (e.g., in hemizygous or trisomic regions).

Page 21 of 31
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Second, the formalism is directly applicable to haplotype block phasing. For example,
we can represent the parental haplotype using local blocks B; and their haplotype phase

b, ==+1as
B=5b:B1 +b,By +---b,B,,. (12)
By = —By is the complementary phase of B;. We can calculate inter-block molecular

linkage (similar to Eq. (10)) as

n, = n(Bs < By) + n(B; < By);

_ _ (13)
ng = n(Bs < By) + n(Bs < By)

and solve for the haplotype phase (b1,bs,---by) by maximizing the log-likelihood
function that is similar to Eq. (9).

Finally, maximizing Eq. (9) is equivalent to minimizing the energy of a 1D Ising (spin
glass) model

1
E©S) = > Myss; (14)
1<ij<N
with finite range interactions M;; = (n;; — ni;)ln(l — €jj/€ij), for which there are

many existing approaches. Here we solve this problem by introducing two types of

perturbations:

spin flip: (- - 81,85 i1, +) = (- 8i—1, =i, Si1, -+ )

block switch: (s1, -« i, 841, SN) = (81, * Siy —Si+1,*** — SN)-

The changes to E(S) due to these perturbations are given by

AE;=s; ) Mysj, (spin flip) (15)
j
and
AEgr = Y Y Mysisj. (block switch) (16)
i<k j>k

It can be shown that through iterations of spin flipping and block switching, one can
always find (one of) the optimal haplotype solution S that minimizes Eq. (14) if the
majority of molecular linkage is consistent with cis haplotype linkage (Additional file
1:Haplotype inference and energy minimization of the 1D spin model). For two haplotype
configurations S and S/, the energy difference is related to the likelihood ratio

p(@1s)

— _ N — ®Qy — *1g'y =
AE=ES)—ES)=L(0"|S) —L(o |S)_lnp(o(k)|s/),

and the probability of phasing errors is given by

1

= —. 17
11 eAE (17)

A low energy penalty score (AE = 0) implies low phasing confidence (§ ~ 0.5), and vice
versa (AE > 0 = § ~ 0). AE; or AE;);11 can therefore be used to estimate the probability
of local phasing errors (s; — —s;) and long-range switching errors (sj~; — —sj-).
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The spin-flipping energy penalty AE; can be rewritten as

AE; = s; ZMiij =5; Z(l’l; — I’ll-;)S/‘ In (1 — 6,‘}‘/6,‘}‘)
j#i j#i —

Xij
+_ - -
=si| Y xilmf —m)— D xijlnf —ny)
j#isi=1 jis=—1
+ - - +
=si| Do it D0 x| s | D0 wmy D0
j;ﬁi,sl‘:l j#-i,sl‘:—l j#i,s]':1 j;ﬁi,s,‘:—l
NR<S NA<S

(18)

The two terms ngr«s and na«s in Eq. (18) measure the total linkage between the geno-
types at site i (R for reference and A for alternate) and the haplotypes of parental
chromosomes (S and —S) and are related to Eq. (1). For true heterozygous variants, refer-
ence and alternate genotypes are phased to complementary haplotypes, i.e., R <> S (and
hence A <+ —S), or A < S (R <> —8). This implies that either nr.s > na<s ~ 0 or
Na<S > Nros = 0. As the genotypes of false variants are generally not phased to comple-
mentary haplotypes, false variants tend to have low phasing confidence (AE ~ 0) and can
be excluded from the haplotype solution based on this feature. Moreover, linkage evidence
from false variants is offset by the x;; factor due to the presence of significant discordant
linkage (e;; > €p). These features make our haplotype inference method robust against
the presence of ambiguous haplotype linkage due to false variants.

Phased Hi-C linkage between haplotype blocks
The signal of inter-block Hi-C linkage defined in Eq. (13) is calculated as follows: For two
haplotype blocks B, and B, the number of Hi-C links supporting cis-linkage is given by

1 =n(By < B) +n (B < B) =# [o(’”)(xm)o(’”)(ym)Bs(xm)Bt(ym) = 1] . (19)

where the count runs over all Hi-C links {o(m) lm=1,2,--- } with variant positions x,,

and ¥y, in haplotype blocks B and B;. Similarly, the signal of ¢trans-linkage is given by

ny =n(Bs < B;) +n(B; < B,) = # [a(m)(xm)a(m)(ym)Bs(xm)Bt(ym) = —1] .
(20)
The specificity of Hi-C linkage between haplotype blocks is very sensitive to long-range
switching errors within blocks. For example, consider two haplotype blocks with fractions

of haplotype A given by f; and f,. If we assume all Hi-C links to be intra-molecular, then
the fraction of apparent cis-linkage between these two blocks is approximately

p=h-fa+A-fi) Q-1
—_—— —————
AA B<B

and the fraction of apparent trans-linkage is

l—p=hA+f—-2Nf

When there is no switching error within either block, fi» = Oorl and p = Oor 1, the
Hi-C links have the most specific signal. The presence of long-range switching errors in
either block (0 < fi < 1 or 0 < f» < 1) reduces the specificity of Hi-C linkage; in
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particular, when fi & 0.5 or 2 ~ 0.5 (which can be caused by a single switching error),
pr1—p=r1/2

Software implementation

We have implemented a C++ package “mLinker” that performs multiple tasks related
to haplotype inference. For a detailed description of the software package, see Additional
file 1:Software implementation of the haplotype inference algorithm.

Assessing phasing accuracy and determining high-confidence haplotype blocks

The haplotype solution produced by our algorithm includes both phased genotypes at
variant sites and two penalty scores (Eqs. (15) and (16)) that measure the confidence
of haplotype inference (Eq. (17)) at each variant site. The spin-flipping energy score
(Eq. (15)) can be used to exclude single variants with low phasing confidence; the block-
switching energy score (Eq. (16)) can be used to identify sites with a high switching-error
probability as the boundaries of high-confidence haplotype blocks.

If the switching-penalty cutoff is too permissive, the presence of intra-block switching
will compromise the specificity of Hi-C linkage (see “Phased Hi-C linkage between haplo-
type blocks” section); if the switching-penalty cutoff is too stringent, the resulting phase
blocks are too short, which also leads to weaker Hi-C linkage. For the linked-reads data
(including down-sampled data), we observed a local minimum in the switching penalty
distribution that is ~ 0.1x median coverage (Additional file 1:Fig. S6A). This is a con-
servative cutoff that always ensures intra-block accuracy of local haplotype blocks but
also generates sufficient inter-block Hi-C linkage for haplotype concatenation. For the
PacBio data (~ 11x), we did not see a local minimum in the switching penalty distribu-
tion; this may be due to either the low sequencing depth or the shorter range of molecular
haplotype linkage of the PacBio data in comparison to the linked-reads data.

To further assess what is the optimal switching penalty cutoff for haplotype block con-
catenation, we calculated the percentage of variants in long phase blocks (>50 phased
variants) with >98% phasing accuracy, the percentage of variants in long phase blocks
(>50 phased variants) with less than 98% accuracy, and the percentage of variants in short
phase blocks (<50 variants). These results are summarized in Additional file 1:Fig.S6B
(linked reads) and S6C (PacBio). If we use the fraction of variants in high-accuracy (>98%)
long phase blocks (>50 phased variants) as a measure of local haplotype accuracy, then
the optimal cutoff is estimated to be 50-200 for the linked-reads data and 5-10 for the
PacBio data. These values should be taken as the minimum threshold for determining
local haplotype blocks. To ensure the best accuracy of the final haplotype solution, we
recommend choosing a more conservative cutoff to avoid any potential switching errors,
especially those in low variant-density regions, as long as the N50 phase block size is
above 100 kb (to generate sufficient Hi-C linkage). One can also validate the accuracy of
local haplotype blocks by the number of cis and trans inter-block Hi-C links (Additional
file 1:Fig. S5).

Whole-chromosome haplotype inference by HapCUT2

HapCUT2 was originally described in Ref. [37] and can perform haplotype inference on
long-read (PacBio), linked-reads, and Hi-C sequencing. The authors of HapCUT2 men-
tioned that using a combination of 40x coverage Hi-C data with 34 x linked-reads data,
they could assemble haplotypes with 98.9% of variants contained in the largest block for
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each chromosome, with an average switch error rate of 0.0008 and mismatch rate of 0.003,
but did not provide the absolute error rate or the completeness of the haplotype solution
of each chromosome.

Given the similar features and input data types of HapCUT2 and mLinker, we com-
pared their performance of whole-chromosome haplotype inference. For haplotype infer-
ence from linked-reads and Hi-C data, we ran HapCUT2 (v1.3.1) on both NA12878
and RPE-1 data as follows. Aligned linked-reads data were first converted to the fragment

file format with the following commands:

extractHAIRS --10X 1 --bam LinkedReads.bam --VCF
Input_Variants.vcf \

--out 10X unlinked fragment file

python3 LinkFragments.py --bam LinkedReads.bam --VCF
Input_Variants.vcf \

--fragments 10X unlinked fragment file --out
10X_linked_fragment_file

Aligned Hi-C reads were also converted to the fragment file format by the following

command:
extractHAIRS --HiC 1 --bam HiC Reads.bam --VCF Input Variants.vcf \
--out HiC fragment file

Finally, the linked-reads and Hi-C fragment files were merged and assembled into a single

haplotype for each chromosome with the following commands:

cat 10X linked fragment file HiC fragment file >

merged fragment file

HAPCUT2 --fragments merged fragment file --VCF Input Variants.vcf \
--output outputPrefix --hic 1

As HapCUT2 does not filter variants with ambiguous linkage, its accuracy depends on
the specificity of input variants [37]. We ran two instances for both NA12878 and RPE-
1 genomes, first using unfiltered heterozygous variants excluding those in centromeric
regions, and then using high-quality variants defined as those phased by mLinker and
passing the linkage filter (Tables 2 and 3). The specificity of unfiltered variants is around
90% when estimated by the fraction of unfiltered variants passing the linkage filter, or
by the fraction of unfiltered variants that are contained in the truth data. The haplotype
solutions from HapCUT2 were benchmarked using the same truth data (trio phase of
NA12878 and monosomy phase of RPE-1) as described in “Benchmark of the haplotype
solution” section on all phased variants. The results are summarized in Additional file 7.

When unfiltered variants were used as input, multiple chromosomes in the NA12878
solution and all chromosomes in the RPE-1 solution showed >2% error rate; two chro-
mosomes in the NA12878 solution (Chr.9 and Chr.12) and seven chromosomes in the
RPE-1 solution showed >10% error rate. Three examples of HapCUT2 solutions contain-
ing >10% error rate are shown in Additional file 1:Fig. S7. Some switching errors (e.g., the
blue blocks in the 9q arm of NA12878) occur near regions of low variant density (mea-
sured by the number of high-quality variants in the truth data in 0.5Mb bins, second track
in each panel); others (12q of NA12878 and 19q of RPE-1) are not related to low-variant
density. The first example (Chr.9 in NA12878) also shows haplotype switching between
p- and g-arms. When only high-quality variants were used, the accuracy of HapCUT2
solutions was comparable to mLinker (RPE-1: 0.9% for mLinker, 1.1% for HapCUT2;
NA12878: 0.3% for both). The higher overall accuracy of the NA12878 solution is due to
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better variant specificity of the truth data (i.e., false variants are filtered in the truth data
and therefore not included for comparison).

The above results indicate that the phasing accuracy of HapCUT2 (even considering
only high-quality variant sites) is severely impacted by the presence of false variants with
ambiguous linkage. In particular, the appearance of long-range switching errors (e.g.,
between p- and q-arms) indicates that local phasing errors can compromise the accuracy
of long-range Hi-C linkage. By contrast, variant filtration embedded in mLinker enables
reliable local haplotype inference and the two-tier strategy preserves the specificity of
long-range Hi-C linkage. These two features are essential for preserving long-range
phasing accuracy.

We further ran HapCUT2 (v1.0) for whole-chromosome haplotype inference using
11x RPE-1 PacBio CCS data and the same Hi-C data (v.1.3.1 was giving errors on
PacBio Hi-Fi data) . Aligned PacBio CCS reads were converted to the fragment file format

using the following command:
extractHAIRS --pacbio 1 --bam PacBio.bam --VCF Input Variants.vcf \
--new_format 1 --ref hg38 ref.fasta > PacBio fragment file

PacBio and Hi-C fragments were then merged and assembled into haplotype blocks with

the following commands:

cat PacBio_fragment file HiC_ fragment file >
merged_PacBio HiC fragment file

HAPCUT2 --fragments merged PacBio HiC_fragment file
--VCF Input Variants.vcf \

--output outputPrefix --hic 1

Due to the low depth of the long-read data (11x), we expected that ambiguous linkage
evidence from false variants would be more problematic for HapCUT2 and therefore only
ran HapCUT2 using high-quality variants. The solution from HapCUT2 showed similar
accuracy as mLinker but contained more phased variants. However, the Chr.1 solu-
tion showed switching at the centromere with p- and q-arm haplotypes (Additional file
1:Fig. S7). By contrast, the mLinker solution derived from high-quality variants showed
consistent accuracy across all chromosomes (maximum error rate 4.2% on Chr.X). Even
when all variants were used as input, mLinker produced haplotypes at a similar accuracy
(<4.4%) for all autosomes but not for Chr.X (~10%) that has lower variant density. This
example demonstrates the robustness of mLinker for long-range haplotype inference in
contrast to HapCUT2.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/513059-021-02330-1.

Additional file 1: Supplementary figures, tables, and discussion
This file contains the following figures:

e Figure S1: Distributions of the energy penalty scores in the haplotype solution of the RPE-1 and
NA12878linked-reads data

® Figure S2: Low variant density regions in the NA12878 genome

e Figure S3: Low variant density regions in the NA12878 genome and boundaries of haplotype blocks inferred
from the linked-reads data

e Figure S4: Low variant density regions in the RPE-1 genome and boundaries of haplotype blocks inferred from
the linked-reads data

e Figure S5: Concatenation of haplotype blocks using Hi-C links

e Figure S6: Block switching penalty cutoff and phasing accuracy

e Figure S7: Examples of switching errors in the HapCUT2 haplotype solutions

tables:
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Table S1: Data used for haplotype inference and karyotype reconstruction of the K-562 genome

Table S2: Comparison between the scaffold haplotype solution and the reference haplotypes of NA12878
Table S3: Comparison between the scaffold haplotype solution and reference haplotypes of RPE-1

Table S4: Benchmark of the RPE-1 haplotype solution including variants in centromeric regions

Table S5: Benchmarks of the scaffold haplotype solution from down-sampled linked-reads and Hi-C data

and sections of supplementary discussion:

® Linkage evidence from molecular identifier and sequence alignment of linked reads
® Haplotype inference and energy minimization of the 1D spin model in Eq. (14)

e Software implementation of the haplotype inference algorithm

e Comparison of phased variant genotypes with parent-specific k-mer’s

e Determination of the K-562 karyotype by haplotype-specific genomic analysis

Additional file 2: Convergence of the local haplotype solution for the RPE-1 linked-reads data (Data table)

This table reports the performance of mLinker solwve using haplotype linkage in the RPE-1 linked reads data. For
each round of minimization, the following numbers are reported: number of spin flips (column 1), number of block
switches (column 2), CPU clock time of spin flipping (column 3) and block switching (column 4), and the maximum
residual block-switching energy penalty (column 5). Details of the minimization procedure is provided in Additional
file 1:Solving haplotype phase by minimization; spin flipping and block switching are defined in Egs. (15) and (16).

Additional file 3: Additional benchmark metrics of the haplotype solution of the NA12878 genome (Data table)
This table summarizes additional benchmark metrics of the haplotype solution of the NA12878 genome in comparison
to the haplotype phase derived from parental genome sequencing. The parental haplotype data used for comparison
include the reference haplotype data released by the Genome-In-A-Bottle consortium (“trio phase”), and phased
haplotypes derived from de novo diploid assembly of the NA12878 genome (“dip assembly”) using PacBio CCS reads
of the NA12878 genome and short reads of the parental genomes. See Table 1 for more details about the reference
haplotype data. In the 1st Tab, each row summarizes the following metrics about the haplotype solution of each
chromosome (column 1): phased sites from de novo diploid assembly (column 2), phased sites in the GIAB release
(column 3), phased sites in the final unfiltered haplotype solution from mLinker (column 4), phased genotypes in
the mLinker solution that are in agreement with the GIAB data (column 5), mLinker phased genotypes in
discordance with the GIAB data (column 6), mLinker phased genotypes in agreement with the haplotype from
diploid assembly (column 7), mLinker phased genotypes in discordance with the haplotype from diploid assembly
(column 8), phased sites in the final filtered haplotype solution from mLinker (column 9), mLinker phased
genotypes in agreement with the GIAB data (column 10), mLinker phased genotypes in discordance with the GIAB
data (column 11), mLinker phased genotypes in agreement with the haplotype from diploid assembly (column 12),
mLinker phased genotypes in discordance with the haplotype from diploid assembly (column 13). The 2nd Tab
reports results of the comparison of mLinker-phased genotypes on each parental chromosome with
parent-specific sequences derived from the short-read sequencing data of parental genomes. For details about this
comparison, see Additional file 1:Comparison of phased variant genotypes with parent-specific k-mer’s.

Additional file 4: Additional benchmark metrics of the haplotype solution of the RPE-1 genome (Data table)

This table contains multiple tabs. Tab 1 reports results from the comparison of the mLinker haplotype solution of
the RPE-1 genome generated from 60x linked-reads and Hi-C sequencing data to the reference haplotype data
derived from sequencing of monosomic chromosomes. Tabs 2-5 report results from the comparison of the
mLinker haplotype resolution generated from downsampled linked-reads and Hi-C data. Tab 6 reports benchmark
metrics of the mLinker haplotype solution generated from 11x PacBio HiFi data and Hi-C data.

In Tab 1, the comparison is performed on both the scaffold haplotype solution and the final haplotype solution
filtered by haplotype linkage. In Tabs 2-5, the comparison is only performed on the scaffold haplotype solution. For
each mLinker solution in Tabs 1-5, we report results from the comparison of phased genotypes at all phased
variant sites ("No filter"), at phased sites not in centromeric/acrocentric regions (“Excluding centromere”), and at
phased sites also passing the allele fraction filter from single-cell data (“allele filter from single-cell data”). In Tab 6, we
report results from two separate calculations, the first using all variants as input, the second using only high-quality
variants (sites that pass the linkage filter in the mLinker final haplotype solution derived from linked-reads and Hi-C
data). The comparison in Tab 6 is only performed on high-quality variants.

Additional file 5: Haplotype-specific analysis of the K-562 genome (Figures)
Please refer to Additional file 1:Determination of the K-562 karyotype by haplotype-specific genomic analysis for a
detailed explanation.

Additional file 6: List of single monosomic RPE-1 cells (Data table)

Each row in this table corresponds to a monosomy (column 2) in a single cell sample (column 1). The following
metrics are reported for each monosomy: mean sequencing depth of the monosomic chromosome (column 3) and
across the genome (column 4), percentage of reference (column 5), alternate (column 6), and heterozygous coverage
(column 7), normalized heterozygosity (column 8), SRA BioProject ID (column 9), SRR accession number (column 10).
Details of data generation and analysis are provided in “Sequencing data of monosomic RPE-1 cells” section.

Additional file 7: Benchmark metrics of the haplotype solution from HapCUT2 (Data table)
Please refer to Whole-chromosome haplotype inference by HapCUT2 for a detailed explanation.

Additional file 8: Review history.
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