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Abstract

High-throughput single-cell measurements of DNA methylomes can quantify
methylation heterogeneity and uncover its role in gene regulation. However, technical
limitations and sparse coverage can preclude this task. ScMET is a hierarchical Bayesian
model which overcomes sparsity, sharing information across cells and genomic
features to robustly quantify genuine biological heterogeneity. scMET can identify
highly variable features that drive epigenetic heterogeneity, and perform differential
methylation and variability analyses. We illustrate how scMET facilitates the
characterization of epigenetically distinct cell populations and how it enables the
formulation of novel hypotheses on the epigenetic regulation of gene expression.
SCMET is available at https://github.com/andreaskapou/scMET.
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Background

DNA methylation (DNAm) at cytosine residues plays an important role in the regula-
tion of gene expression [1]. It is also critical for a broad range of biological processes,
including X-chromosome inactivation, genomic imprinting, and cancer [2—4]. The gold
standard approach to profile DNAm at single-base resolution is to treat DNA with
sodium bisulphite, which efficiently converts unmethylated cytosines to uracils, while
leaving methylated cytosines unmodified [5]. Although bulk bisulphite sequencing (BS-
seq) experiments have paved the way for mapping the methylome landscape across
different tissues, they fall short of explaining the inter-cellular methylation heterogeneity
and quantifying its dynamics in a variety of biological contexts [6].

More recently, advances in sequencing technologies have enabled the development
of protocols that profile DNAm with single-cell resolution (e.g., scBS-seq, [7, 8]) and
multiplexing protocols offer scalability to thousands of cells in a single experiment
[9, 10]. In contrast to gene expression signatures from scRNA-seq experiments, which
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are influenced by the environment, DNA methylation profiles are highly distinct between
cell types and stable across individuals and over the life span [11, 12]. Moreover, while
scRNA-seq assays might fail to capture information about genes with moderate expres-
sion levels, cell-level measurements of DNAm offer a more complete coverage across
genomic regions [9]. However, due to the small amounts of initial genomic DNA and
the destructive nature of bisulphite on nucleic acids, the output data are often noisy and
extremely sparse; that is, a large proportion of CpG dinucleotides is not observed (rang-
ing from 80 to 95%). While tailored computational imputation methods such as Melissa
[13] and DeepCpG [14] might ameliorate the sparsity problem, disentangling genuine
epigenetic variability from technical biases remains a formidable problem.

Here, we present scMET, a Bayesian framework that addresses the statistical chal-
lenges associated with sparse scBS-seq data and provides novel functionality that is
tailored to single-cell-level datasets. To overcome sparsity, sScMET aggregates the input
data within regions (hereafter also referred to as genomic features): either by combin-
ing CpG information in a sliding window approach or by using pre-annotated contexts,
such as promoter regions or enhancers [7, 15]. To dissect genuine epigenetic variability
from the many confounding technical biases, scMET adopts a hierarchical model speci-
fication which shares information across cells and genomic features, while incorporating
feature-level characteristics (e.g., CpG density). Critically, scMET introduces residual
overdispersion estimates as a measure of DNAm variability that is not confounded by
mean methylation. These estimates can be used to perform differential DNAm variabil-
ity testing among groups of cells, embracing the cellular resolution of the data to provide
novel insights which are not possible using traditional differential mean tests on bulk data
[16]. scMET can also identify highly variable features (HVFs) which, among others, can
be used as input for unsupervised clustering analyses.

scMET scales readily to thousands of cells and features, making it a powerful tool for
large-scale single-cell epigenetic studies. Our results both on simulated and real datasets
demonstrate that it can accurately and robustly quantify DNAm heterogeneity. Results
on two recent large-scale datasets show that scMET detects biologically relevant highly
variable features which result in improved clustering performance. In addition, we show
that scMET can facilitate the interrogation of single-cell multi-omics assays, yielding
novel biological hypotheses on the role of epigenetic variability in gene regulation in early
development.

Results
Quantifying cell-to-cell DNAm heterogeneity with scMET
Standard statistical models for count data, such as the Poisson and binomial distri-
butions, do not always capture the properties of data generated by high-throughout
sequencing assays (e.g., RNA sequencing, bisulphite sequencing). In such cases, the data
typically exhibit higher variance than what is predicted by these models — this is often
referred to as overdispersion [17, 18]. This overdispersion may relate to technical varia-
tion (e.g., differences in sequencing depth) or to biological variation between the units of
interest (e.g., cells or subjects) that is linked to genetic, environmental, or other factors.
Disentangling these sources of variation is a major challenge in computational biology.
To disentangle technical from biological variability and overcome data sparsity, scMET
couples a hierarchical beta-binomial (BB) model with a generalized linear model (GLM)



Kapourani et al. Genome Biology (2021) 22:114 Page 3 of 21

framework (Fig. 1a, b). For each cell i and feature j, the input for scMET is the number
of CpG sites that are observed to be methylated (Y;;) and the total number of sites for
which methylation status was recorded (7;), see Additional file 1: Figure S1. The BB model
uses feature-specific mean parameters ji; to quantify overall DNAm across all cells and
biological overdispersion parameters y; as a proxy for cell-to-cell DNAm heterogeneity.
The latter capture the amount of variability that is not explained by binomial sampling
noise, which would only account for technical variation (see Additional file 1: Section
S2.1). Hence, y; is akin to the overdispersion term used in negative binomial models for
RNA-seq data (e.g., [19]). Although BB models have been developed for bulk DNAm data
(e.g., [20, 21]), they typically use data from individual CpG sites as input, a strategy prone
to fail for the highly sparse scBS-seq data.

The GLM framework is incorporated at two levels. Firstly, to introduce feature-specific
covariates x; (e.g., CpG density) that may explain differences in mean methylation u;
across features. Secondly, similar to [22], we use a non-linear regression framework to
capture the mean-overdispersion trend that is typically observed in high-throughput

sequencing data, such as scBS-seq (Fig. 1c). Critically, this trend is used to derive residual
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Fig. 1 Graphical outline for scMET. a Overview of the scMET probabilistic graphical model. The random
variables and data that form the model, along with the distributional assumptions, are shown. Input values
are denoted by gray circles. Model parameters are denoted by white circles. b scMET uses single-cell DNAm
data as input. The data could consist of measurements obtained from different groups of cells, such as
experimental conditions or cell types (represented by green and orange colors in the diagram). For each
region of interest (e.g., promoters), the input data is recorded in terms of the number of CpG sites for which a
valid measurement was recorded and, among those, the number of methylated CpG sites. Note that many
CpG sites will not be covered by a read (denoted by red color), leading to sparse information per genomic
region. € By combining a hierarchical beta-binomial specification with a generalized linear model framework,
scMET captures the mean-overdispersion relationship (left) that is typically observed in bisulphite
sequencing readouts and derives residual overdispersion estimates that are not confounded by mean
methylation (right). d sScMET can be used to identify HVFs that drive epigenetic heterogeneity within a cell
population. For example, these could be used as the input of dimensionality reduction techniques or
clustering analyses. @ sSCMET uses a probabilistic decision rule to perform differential methylation analysis: to
identify features that show differences in mean methylation (left) and/or methylation variability (right)
between pre-specified groups of cells
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overdispersion parameters €; — a measure of cell-to-cell variability that is not confounded
by mean methylation. Feature-specific parameters are subsequently used for (i) feature
selection, to identify highly variable features (HVFs) that drive cell-to-cell epigenetic het-
erogeneity (Fig. 1d), and (ii) differential methylation testing, to highlight features that
show differences in DNAm mean or variability between specified groups of cells (Fig. 1e).

By using a Bayesian formulation, scMET infers the posterior distribution for all model
parameters (Methods). Moreover, a variational Bayes scheme [23] permits scalable anal-
ysis to thousands of cells and features (Additional file 1: Figure S2), while having
comparable posterior inference performance when compared to a Markov Chain Monte
Carlo implementation (Additional file 1: Figure S3 and S4). As in [24], the output gener-
ated by scMET is used to implement a probabilistic decision rule to enable HVF selection
and differential methylation testing. The decision rule is calibrated to control the expected
false discovery rate (EFDR, [25]). A more detailed description of the model specification
and its implementation is provided in the “Methods” section. scMET is implemented as
an R package and is available at https://github.com/andreaskapou/scMET.

scMET can be combined with different choices for the input set of features. As a default,
we recommend these to be defined by existing pre-annotated contexts (e.g., enhancers),
as these can facilitate downstream interpretation. However, scMET can also be used for
de novo annotation of regulatory regions by using sliding windows as input features (see
the “Methods” section).

Benchmarking scMET on synthetic data

First, we benchmark the performance of scMET using synthetic data. To mimic the
properties observed in real scBS-seq data, we simulated features with rich and poor
CpG density (see the “Methods” section for details about the simulation settings). We
compared mean and overdispersion estimates obtained by scMET with respect to BB
maximum likelihood estimates (BB MLE), which were obtained separately for each fea-
ture. As expected, mean parameters ; are easier to infer and estimates were comparable
across both methods (Additional file 1: Figure S5). However, scMET outperformed BB
MLE when inferring overdispersion parameters y;, particularly for small numbers of cells
(Additional file 1: Figure S6).

To assess whether the shrinkage introduced by scMET improves overdispersion esti-
mates in real data, we performed down-sampling experiments based on a subset of the
dataset introduced by [9]. For this analysis, we focused on 424 inhibitory neurons (a
more detailed description is provided in the “Methods” section). We compared estimates
obtained using the full and down-sampled datasets (Additional file 1: Figure S7). We
observed scMET posterior estimates to be more stable than BB MLE as the sample size
decreased, suggesting that scMET leads to more robust inference. This is particularly
important for rare cell populations or during early development, where large numbers of
cells are difficult to obtain. In combination with the simulation study described above, this
showcases the benefits of using a Bayesian hierarchical framework to share information
across cells and genomic features.

When comparing scMET to existing DNA methylation analysis tools (primarily devel-
oped for bulk assays), it is important to emphasize fundamental differences with respect
to the functionality provided by scMET. These are summarized in Additional file 1: Table
S1 and in the “Methods” section. In particular, most approaches focus on differences in
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mean methylation. Among others, these are often based on Fisher’s exact test or on BB
models (e.g., DSS; [20]). As seen in Additional file 1: Figure S5, both scMET and BB MLE
estimates for mean methylation parameters are comparable. As it can be expected, our
comparison with respect to DSS also led to similar results (Additional file 1: Figure S8).
When comparing with respect to Fisher’s exact test, we did not observe substantial dif-
ferences in performance either: scMET was better in terms of the F1-measure and type
I error control, but led to more conservative results (Additional file 1: Figure S9 and S10
and Additional file 1: Section S2.4). Therefore, we do not aim to claim overall superiority
of scMET for differential mean methylation testing. If a user is only interested in differen-
tial mean methylation, existing approaches such as DSS could be used. Instead, the main
advantage of scMET is the ability to robustly perform differential variability (DV) testing
and HVF selection (benchmarks for our HVF approach are shown in the next section).

In terms of DV testing, our simulations showed that for small effect sizes we would
need more than 200 cells to achieve 50 to 80% power, whereas for features with larger
effect sizes we would need around 50 cells per group to achieve 80% power (Additional
file 1: Figure S11 and Section S2.4). To assess coverage requirements, we grouped features
according to the average coverage CpGs across all cells (Additional file 1: Figure S12). For
each feature, we computed the posterior standard deviation for the residual overdisper-
sion parameter ¢;. Large values (e.g., above 0.5) indicate higher estimation uncertainty
and may affect the robustness of downstream analyses. Based on this analysis, we suggest
to exclude regions that have less than 3 CpGs covered (on average across all cells) for rela-
tively large sample sizes (>100 cells), and a higher threshold of 5 CpGs for small datasets
(<50 cells).

scMET improves feature selection for unsupervised analysis of single-cell methylomes from the
mouse frontal cortex

To demonstrate the performance of scMET in real data, we considered a dataset where
DNA methylation was profiled in 3069 cells isolated from the frontal cortex of young
adult mice [9]. To date, this is one of the largest and most heterogeneous publicly available
scBS-seq datasets. The main source of heterogeneity in this dataset is due to two broad
classes of neurons: excitatory (I = 2645) and inhibitory (I = 424). Within each class, a
hierarchy of sub-populations can be identified according to the cortical depth (Fig. 2a),
where excitatory neurons progress from deep layers (mDL-1, mDL-2, mDL-3, mL6-1,
mL6-2) to middle (mL5-1, mL5-2, mL4) and superficial layers (mL2/3). These groups
were validated in the original study and thus can be used as a benchmark for clustering
analyses.

We applied scMET to genomic features from three different putative regulatory ele-
ments: gene promoters within 2 kb around transcription start site (J = 12,774), distal
H3K27ac peaks (J = 17,284), and H3K4mel peaks (J = 30,374). As expected, scMET
captured the mean-overdispersion relationship within each genomic context, and esti-
mates for residual overdispersion parameters €; were not confounded by mean DNAm
(Additional file 1: Figure S13).

Here, we illustrate scMET as a feature selection tool, using residual overdispersion esti-
mates to identify HVFs that can be used as input for unsupervised analyses, such as
clustering. For each genomic context, we selected HVFs (Additional file 1: Figure S14a)
and performed a clustering analysis with varying numbers of HVFs (ranked by
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Fig. 2 Feature selection using scMET characterises cellular heterogeneity on the mouse frontal cortex. a
UMAP [26] representation of neuron sub-populations present in the mouse frontal cortex dataset by
combining the top 4000 HVFs identified by sScMET across distal H3K27ac and H3K4me1 genomic contexts.
Cells are colored according to the original cell sub-population assignments obtained by Luo et al. b
Clustering performance in terms of adjusted Rand index (ARI), for varying number of HVFs. HVF selection was
based on scMET's residual overdispersion parameters ¢; (yellow), binomial variance (gray), Gaussian variance
(cyan), normalized dispersion (NormDisp, red), and random selection (blue). A finite grid of HVFs was used for
ARl evaluation and non-parametric regression was used to obtain a smoothed interpolation across all values
(Methods). € Identifying HVFs for the distal H3K27ac genomic context. Red points correspond to features
being called as HVF (EFDR = 10% and percentile threshold 8¢ = 90%). To ease interpretation, each element is
linked to its nearest gene. Labels highlight known neuron marker genes that were used in the [9] study to
define the different cell populations. d Example distal H3K27ac HVFs whose methylation patterns distinguish
the two broad neuronal populations. Panel titles correspond to the nearest genes

decreasing values of their associated tail posterior probabilities) as input. More
concretely, we performed dimensionality reduction followed by k-means clustering
(Methods) and used the adjusted Rand index (ARIL [27]) to quantify agreement with
respect to the sub-populations validated by Luo et al. As a comparison, we also eval-
uated four alternative HVF selection strategies based on a random choice (Random),
normalized dispersion values (NormDisp, [28, 29]), Gaussian, and binomial models
(Methods). As expected, the clustering performance improved steadily with increasing
number of HVFs for all methods. However, scMET consistently led to better cluster-
ing performance (Fig. 2b and Additional file 1: Figure S14b, as well as Additional file 1:
Figure S15 and S16 for visual inspection in a low-dimensional space). We could already
separate inhibitory from excitatory neurons using only the top 100 HVFs obtained by
scMET, and generally resulted in more distinct cell sub-populations. In all cases, pro-
moters were less able to disentangle the neuronal sub-populations. This is consistent
with the lower overdispersion levels observed in this genomic context (Additional file 1:
Figure S14c).

To gain a better understanding about the HVF selection implemented by each method,
an additional comparison is provided in Additional file 1: Figure S17a. Similar to
scMET, the NormDisp approach selects HVFs that are not confounded by the mean-
overdispersion relationship. However, NormDisp HVFs exhibit poorer clustering perfor-
mance. This potentially occurs due to the normalized dispersion point estimates being
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more unstable. For instance, when analyzing the discrepancies among the top 200 HVFs
selected by NormDisp and scMET, we observe that the top three HVFs called by Nor-
mDisp (but not called by scMET) appear to be driven by outliers (Additional file 1:
Figure S17b). In contrast, the top HVFs called by scMET (but not called by NormDisp)
show a bimodal distribution and are able to better recapitulate the underlying population
structure (Additional file 1: Figure S17c).

To facilitate interpretation for the HVFs highlighted by scMET, we linked genomic fea-
tures to genes by overlapping the genomic coordinates allowing for a maximum distance
of 20 kb from the transcription start site in the case of distal elements. We explored
whether features identified as HVF (red points in Fig. 2c and Additional file 1: Figure S18a)
were enriched for neuronal markers identified in the [9] study (Additional file 2: Table S1).
This enrichment was observed for distal H3K27ac and H3K4mel marks, but not for
promoters (Additional file 1: Figure S18b). As representative examples, we display three
distal H3K27ac elements among the HVFs that are located proximal to known gene
markers of each neuron class: Gad1 for inhibitory and Neurod6 and Sv2b for excitatory
(Fig. 2d).

Finally, we also explored the use of 20-kb sliding windows as input features for scMET
(Additional file 1: Section S2.5). After quality control, this led to ] = 82,308 features.
HVFs selected among these windows led to similar results as when using pre-annotated
H3K27ac and H3K4mel features as input (Additional file 1: Figure S19a and S19e). This
suggests that the selected windows can distinguish most of the different cellular sub-
populations. However, the slightly lower ARI values suggest that pre-annotated features
can better recapitulate the underlying population structure. Among the windows with
the largest residual overdispersion, we identified putative regulatory elements that dis-
criminate cell types and that are located near neuronal marker genes identified by [9]
(Additional file 1: Figure S19b-S19d). As an example, chr1:56940001-56960001 is located
within the intronic region of Sath2, a marker of excitatory neurons. As expected, this
region is unmethylated in most excitatory neurons and highly methylated in inhibitory
neurons. In contrast, chr1:68780001-68800001 is located within the intronic region of
Erbb4, a marker of inhibitory neurons. This region is highly methylated in all excitatory
neurons and only partially methylated in inhibitory neurons. These results suggests that
scMET can provide a meaningful characterization for the role of previously un-annotated
genomic regions.

SscMET enables differential methylation testing between cellular sub-populations

To showcase scMET as a differential methylation tool, we applied it on the same mouse
frontal cortex dataset [9], after separating the cells in excitatory and inhibitory groups.
Initially, we applied scMET to characterize differential methylation (DM), i.e., changes in
mean methylation. Across all genomic contexts, we observed a substantially larger frac-
tion of features being hyper-methylated in inhibitory compared to excitatory neurons
(Fig. 3a and Additional file 1: Figure S20a). Within distal H3K27ac peaks, for instance,
scMET identified 5242 features to have higher methylation levels in inhibitory neu-
rons, compared to only 935 features showing higher methylation in the excitatory group
(Fig. 3a, b). After mapping features to their nearest gene, we observed that DM hits were
enriched for known marker genes that differentiate inhibitory and excitatory neurons
(Additional file 1: Figure S20b).
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Fig. 3 Summary of changes in methylation patterns (mean and variability) for inhibitory and excitatory
neurons. a ldentifying differentially methylated (DM) features for the distal H3K27ac genomic context. Green
and pink points correspond to features showing higher mean methylation in inhibitory (Inh+) and excitatory
(Exc+) neurons, respectively. Labels highlight neuron marker genes that were used in [9] to define the
different cell populations. Blue vertical dashed lines correspond to log-odds ratio threshold ¥y = £ 10g(2).
Yellow horizontal dashed line is located at posterior evidence probability cut-offs defined by EFDR = 5%. b
Representative heatmap of methylation rates (Yj;/nj) across cells (columns) and features (rows) for the distal
H3K27ac genomic context. Cells are grouped in excitatory and inhibitory classes. A set of randomly selected
features is displayed. These are grouped according to the DM analysis output as: Exc+, Inh+, and no mean
methylation difference. The color code represents features with low (0, green) and high (1, yellow) mean
methylation level. Features with no CpG coverage are denoted with white color. ¢ Identifying differentially
variable (DV) features for the distal H3K27ac genomic context. Green and pink points correspond to features
showing higher methylation variability in inhibitory and excitatory neurons, respectively. Blue dashed lines
correspond to log-odds ratio threshold ¥ = £ log(1.5). Yellow dashed line is located at posterior evidence
probability cut-offs defined by EFDR = 5%. For each feature, posterior estimates for the change in residual
overdispersion parameter €; between excitatory and inhibitory neurons is plotted against the posterior tail
probability of calling a feature as DV (left). For each feature, posterior estimates for mean methylation
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between excitatory and inhibitory neurons (right). d Example features that are called as being more variable
in excitatory neurons. Left subplots show broad differences in methylation patterns. Right subplots show
methylation patterns separately within each broad neuronal class. Each data point represents the
methylation rate for a cell

Besides DM testing, the primary focus of the scMET differential test is to identify
changes in cell-to-cell methylation variability. In principle, differential variability (DV)
testing could be based on feature-specific overdispersion parameters y;, but these results
would be confounded by the mean-overdispersion trend (Fig. 1c). Hence, meaningful DV
analysis based on y; would need to be restricted to non-DM features. Instead, we propose
to perform DV analysis based on residual overdispersion parameters ¢;. For the mouse
frontal cortex dataset, we identified a large number of DV features across genomic con-
texts, except from promoter regions which showed tighter methylation patterns across
inhibitory and excitatory neurons (Fig. 3c and Additional file 1: Figure S21a). Critically,
the procedure for calling DV features was not confounded by mean methylation levels
(Fig. 3c and Additional file 1: Figure S21b).
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As representative examples, we show two distal H3K27ac peaks that are located
proximal to neuronal markers and exhibit higher variability in excitatory neurons
(Fig. 3d). Both features show substantial variation across the different sub-types of excita-
tory neurons: the first is mostly unmethylated in the mL6 cortical layer, and the second is
mostly unmethylated in the superficial cortical layer. These patterns are consistent with
previously reported spatial expression for Tle4 (mostly expressed in the deep cortical
layer, see [30, 31]) and Cux1 (which shows expression specificity for the superficial layer,
see [30, 32]). It should be noted that these features would be excluded from DV analysis
based on y;, since they are also DM between the two broad classes (Fig. 3a). In summary,
these findings demonstrate the ability of scMET to identify potential markers that drive
between and within cell population heterogeneity.

Exploring the relationship between transcriptional and DNAm variability using single-cell
multi-omics data

As a second use case, we considered a single-cell multi-omics dataset where scNMT-
seq [33] was employed to profile RNA expression, DNAm, and nucleosome occupancy
at single-cell resolution, spanning multiple time points from the exit from pluripotency
to primary germ layer specification [34]. The multi-modal nature of this dataset pro-
vides a unique opportunity to link cell-to-cell variation between DNAm and transcription
across individual cells. Here, we used scMET to quantify DNAm variability at pro-
moter elements, which we subsequently contrasted to RNA expression heterogeneity for
the corresponding genes. For this analysis, we exclusively used promoter elements as,
unlike distal regulatory elements, they can be unambiguously matched to their respective
genes.

For each gene, we quantified transcriptional heterogeneity using the residual overdis-
persion estimates generated by BASICS (Additional file 1: Figure S22a, [22]). Promoter
DNAm variability was calculated using the residual overdispersion estimates inferred
using scMET (Additional file 1: Figure S22b). More details about these analyses and the
associated data pre-processing steps are described in the “Methods” section.

When comparing residual overdispersion estimates for RNA expression and promoter
DNAm, there was no clear genome-wide association (Fig. 4a). However, when restrict-
ing to genes that display high levels of transcriptional variability, two main groups can be
identified. The first category corresponds to genes with low levels of promoter DNAm
residual overdispersion, and it includes differentiation and germ layer markers such as
Mespl, Lefty2, and Id3 (mesoderm) and Cldn6, Cerl, and Krt8 (endoderm). The second
category is characterized by genes with high promoter DNAm residual overdispersion
and includes known pluripotency markers such as DppaSa, Zfp42, Sppl, and Peg3.
Representative examples for these genes are displayed in Fig. 4b.

These results suggest the presence of two modes of regulation. On the one hand, down-
regulation of pluripotency genes is associated with high promoter DNAm heterogeneity,
linked to a pronounced increase in promoter DNA methylation throughout the embry-
onic stages. On the other hand, upregulation of differentiation genes is not linked to
high levels of promoter DNAm variability. This suggests that other genomic contexts
or molecular layers might be responsible for their activation [34]. Finally, we also find
genes with low RNA expression variability that display high levels of promoter DNAm
heterogeneity (Additional file 1: Figure S22c), suggesting that the coupling between
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Fig. 4 scMET applied to the multi-omics scNMT-seq gastrulation dataset reveals a complex linkage between
promoter DNAm and RNA expression during embryonic development. a Scatter plot displays posterior
median estimates for residual DNAm overdispersion parameters ¢; in gene promoters (x-axis) versus RNA
residual overdispersion of the corresponding genes (y-axis). Among the genes with high levels of RNA
heterogeneity, green and pink points correspond to promoters showing high and low levels of DNAm
variability, respectively. b Representative examples of DNAm and RNA expression patterns across
developmental stages for genes with high transcriptional heterogeneity and low (left, pink) or high (right,
green) DNAm heterogeneity. The y-axis shows BASICS log-normalized gene expression (in a log(x + 1) scale)
(top) and promoter DNAm rate (bottom). Cells are stratified by embryonic stage (x-axis)

promoter DNAm and transcriptional activity is more complex than previously acknowl-

edged during embryonic development stages [35].

Discussion

Single-cell DNAm assays can currently profile hundreds to thousands of DNA methy-
lomes, with increasingly complex experimental designs. The high resolution of these
measurements enables us to measure cell-to-cell epigenetic variability, as well as uncover
the regulatory features that modulate it [36]. However, the noise and biases intrinsic
to such technologies create a need for computational frameworks that can system-
atically interrogate the data generated, dissecting genuine variability and quantifying
uncertainties.

In this study, we introduced scMET, a statistical framework for modeling DNA methy-
lation heterogeneity from scBS-seq data. Using a hierarchical Bayesian framework to
borrow information across cells and features, scMET robustly quantifies genuine cell-to-
cell variability. Our results demonstrated the ability of scMET in highlighting genomic
features that drive cell-to-cell heterogeneity across neuronal sub-populations in a large
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dataset of single-cell methylomes from the mouse frontal cortex. Furthermore, scMET
can be used as a quantitative tool to interrogate changes in DNAm patterns between pre-
specified cell populations. Unlike common approaches that only detect changes in mean
methylation levels [20, 37], scMET can also identify features with differences in DNAm
variability between populations. Importantly, the differential variability estimates are
quantified through residual overdispersion parameters, thus accounting for the known
confounding relationship between mean and overdispersion in scBS-seq datasets.

Recently, complementary approaches have been proposed to analyze single-cell DNAm
data. These include Melissa [13] and Epiclomal [38], which are probabilistic clustering
and imputation methods based on a hierarchical mixture model. In addition, MAPLE
[39] uses a supervised learning approach to detect correlations between RNA expression
and DNAm, which enables cell type assignments by transferring labels from scRNA-seq
to single-cell DNAm datasets. In all cases, scMET could be incorporated in the analysis
pipeline, by selecting a relevant set of input features defined by identifying regions with
high DNAm variability which can better characterize the underlying population structure.

scMET uses a GLM framework to explicitly model known biases in the data in the
form of additional covariates, such as CpG content. The flexibility of the GLM approach
enables it to easily incorporate additional features, such as DNA motifs, which could be
important to elucidate the role of sequence or chromatin state in modulating DNA methy-
lation. Additionally, the framework could readily be extended to model joint variability
in multiple molecular layers (such as transcriptome and methylome), opening a path to
new methodologies in integrative, single-cell multi-omics analyses. Given the increas-
ing prominence of such studies, we expect scMET to become an important tool in the
extraction of biological signals from DNAm datasets of increasing complexity.

Conclusions

We presented scMET — a Bayesian hierarchical approach to robustly quantify epigenetic
heterogeneity using high-throughput single-cell DNAm datasets. We extensively evalu-
ated the performance of scMET using synthetic data and recent large-scale assays in the
context of the mouse brain cortex and during early development. In particular, we have
shown how feature selection by scMET can be incorporated in single-cell DNAm analysis
pipelines, improving the characterization of epigenetically distinct cell types. More-
over, we introduced a novel differential methylation framework which, unlike existing
approaches, fully exploits the cellular resolution of the data to identify changes in epige-
netic variability. In combination, these findings demonstrate how the integrative approach
implemented in scMET can overcome data sparsity and improve the quantification of
genuine epigenetic cell-to-cell heterogeneity.

Methods

The scMET model

Let Yj; represent the number of methylated CpGs out of the #n;; CpGs for which DNAm
was measured for genomic feature j € {1,...,/} incelli € {1,...,I} (see Additional

file 1: Figure S1). These genomic features could be defined by pre-annotated regions
(e.g., enhancers) or other regions of interest. To capture data overdispersion, scMET
assumes a beta-binomial (BB) hierarchical formulation (see also Additional file 1: Section
S2.1):
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Yij | 6 ~ Binomial(n, 0;), 0ij | wj, yj ~ Beta(u, ¥)). (1)

In Eq. (1), the beta distribution is parameterized such that E[6;] = 1; and Var[6;] =
ij/L,- (1 — (1 =) —y) A=y, with ; € (0,1) and y; € (0,1). If ; = 0, the model
in Eq. (1) reduces to a binomial model with parameters 7;; and ;. After integrating out
the random effects 6, it can be seen that y; corresponds to the mean methylation across
all cells for feature j and that y; controls the overdispersion that is not captured by binomial
sampling. In fact, the BB variance can be written as:

Var[ Yy | wj vl = myui( — ) + myjpi(1 — pp)(n — Dy; (2)

technical variation  additional (biological) variation

Parameters p; and y; can be inferred via maximum likelihood estimation. However,
due to the high sparsity and noise present in single-cell DNAm data, these estimates
can be unstable, especially for overdispersion parameters y; (Additional file 1: Figure S6
and S7). To overcome this, we use a Bayesian framework with a hierarchical prior speci-
fication for ; and y;, sharing information across sets of similar types of genomic features
(e.g., enhancers). Our approach is flexible and can incorporate feature-specific covari-
ates x; that explain differences in mean methylation across features. For instance, features
with high CpG density tend to have lower methylation levels. These covariates are intro-
duced within a generalized linear model (GLM) framework through the prior on the mean
methylation parameters Wit

14 | Wys S, X5 ~ Logit (fu (xj; wy),s.),  where f, (xj;wy,) = w;';xj. (3)

In Eq. (3), Logit\ denotes a logit-normal distribution, w,, is a vector of regression
coefficients, and s, is the standard deviation for logit(x;). Throughout our analyses, we
assume X; = (1, C;), where C; denotes the CpG density for feature j. However, scMET is
flexible and users can introduce other feature-specific covariates.

Our prior specification is also designed to capture the mean-overdispersion relationship
that is typically observed in the data generated by high-throughput sequencing assays,
such as scBS-seq (Fig. 1c). Here, we follow the approach in [22], introducing a non-linear
regression model through an informative prior for y;:

L

¥ | 1> Wy, Sy ~ LogitN'(fy, (s wy ), sy),  where f, (s wy,) = wy1 + Z w81 ().
=2

(4)
Here, f, (1; W) can be interpreted as the overdispersion (logit scale) that is predicted
by mean methylation levels u; (fitted black line in Fig. 1c), g;(1;) represent radial basis
function kernels (defined as in [40]), and w1, ..., w, 1 are regression coefficients. Unless
otherwise stated, we use L = 4 throughout our analyses. The remaining elements of the
prior are described in Additional file 1: Section 2.2.
The prior distribution in Eq. (4) can be rewritten as a non-linear regression model

logit(yy) =fy (s wy) + €, €~ N(0,s,), (5)

where ¢; corresponds to a feature-specific residual overdispersion parameter that captures
deviations from the overall trend. Hence, a feature that exhibits positive ¢; values has more
variation than expected for features with similar mean methylation. Accordingly, negative
€ values indicate less variation than expected for features with similar mean methylation.
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Implementation

The posterior distribution for the model parameters in scMET is not amenable to analytic
solutions. Hence, we resort to variational Bayes (VB, [23]) and Markov Chain Monte Carlo
(MCMC, [41]) implementations using the Stan probabilistic programming language [42].
scMET is publicly available as an R package at https://github.com/andreaskapou/scMET
and will be shortly submitted to Bioconductor.

Identifying highly variable features

Residual overdispersion parameters €; can be used to label highly variable features (HVFs)
within a population of cells. Our decision rule is based on tail posterior probabilities [24]
associated to whether ¢; exceed a pre-specified threshold €:

Jrf (€0) = P(€j > €¢ | data), (6)

As a default choice, we define €y based on the distribution of posterior estimates for resid-
ual overdispersion parameters ¢; across all features. In particular, we define € to match
the 6g-th percentile of the distribution. Unless otherwise stated, we set as default g = 0.9.
The probabilities in Eq. (6) can be estimated by counting the proportion of posterior
draws (obtained by VB or MCMC) for which the chosen criteria are met [43]. scMET
labels as HVFs those for which their associated tail posterior probabilities are above a
given posterior evidence threshold oy (0.6 < ay < 1), where «yy is calibrated via the
expected false discovery rate (EFDR; [25]), see also Additional file 1: Section S2.3.

Differential testing

scMET provides a similar probabilistic rule to label differentially methylated (DM) and
differentially variable (DV) features across experimental conditions or cell types (Fig le).
Here, we define DM features as those for which mean methylation varies across the
groups of cells under study. More concretely, let ,uf and ,uf be the mean methylation
parameters associated with feature j in groups A and B. We quantify differences in mean
methylation as the log-odds ratio (LOR):

LOR(1!, 1) = logit(1") — logit (7). 7
Similar to the HVF analysis, our decision rule for DM testing is defined as:
M _ A B
Tiag (Wm) = P(ILOR(iS, i)| > Y | data) > o, (8)

where apr (0.6 < apr < 1) is a posterior evidence threshold chosen to match a desired
EFDR level and v, is a LOR threshold which can be interpreted as a minimum effect size
to be detected by the test. As default, we use ¥3r = log(2), i.e., a two-fold change in odds
ratio.

Beyond highlighting DM features, scMET embraces the cellular resolution of scBS-seq
data to perform differential variability (DV) analyses, identifying changes in cell-to-cell
DNAm variability across groups. Although overdispersion parameters y; could be used as
the input for the DV test, the results would be confounded by the mean-overdispersion
relationship that is typically observed within each genomic context (Fig. 1c). Instead,
we propose to perform DV analysis based on ¢; — a measure of cell-to-cell DNAm
variability that is not confounded by differences in mean methylation. Let yjA and ij
denote the overdispersion parameters linked to feature j in groups A and B. To label DV
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features based on residual overdispersion, we make use of Eq. (5), and decompose the
LOR between yjA and ij parameters as:

LOR(, vP) = fi s wi) — fExwh) + et — P 9)
——
mean contribution residual change

In Eq. (9), the first term captures the changes in overdispersion that are explained by
mean methylation and the second term captures residual overdispersion changes after
accounting for the mean methylation. This residual change is used to identify features
with statistically significant differences in residual overdispersion. For a given posterior
evidence threshold ar (0.6 < o < 1) and tolerance threshold vy, the following rule is
used to identify DV features:

n}iB (Yg) = P(|EIA - e}B| > Y | data) > ar. (10)

As default, we set Y = log(1.5), i.e., 50% change in overdispersion LOR between the
groups. As above, the posterior evidence threshold «f is calibrated via the EFDR, see
Additional file 1: Section 2.3.

Alternative methods

When comparing scMET to existing DNAm analysis tools (primarily developed for bulk
assays), it is important to emphasize fundamental differences with respect to the func-
tionality provided by scMET. These are summarised in Table S1 and briefly described
below.

Parameter estimation

The BB MLE method corresponds to estimating the parameters of the beta-binomial
model in Eq. (1) independently per feature using maximum likelihood. The VGAM package
was used for parameter estimation [44].

Differential mean methylation analyses

When comparing methylation profiles between experimental conditions or cell types,
bulk DNA methylation analysis tools primarily focus on differences in mean methyla-
tion. Existing methods are often based on some version of a ¢-test (e.g., DMRcate [45],
BSmooth [37]); a Fisher test on the methylation counts (e.g., MethylKit [46], RnBeads
[47]); negative binomial models (often adapted from the bulk RNA sequencing literature,
e.g., edgeR [48]); or on beta-binomial models (e.g., DSS [20], RADMeth [21]).

For differential mean methylation testing on the synthetic datasets, we compared
scMET with Fisher’s exact test. Features with log-odds ratio > log(1.5) between the two
groups and FDR <10% (Benjamini-Hochberg procedure) were called as differentially
methylated.

Differential methylation variability analyses

In the context of microarray DNAm, DiffVar [49] was proposed to perform DNAm vari-
ability analyses, with an empirical Bayes framework to stabilize the t-statistics when
contrasting the variance of the continuous methylation rates. This approach can also
be applied to bulk bisulphite data, as methylation rates can be confidently estimated
when having a large number of observations. However, this is not appropriate for sparse
measurements (i.e., in single-cell data), as there is high uncertainty in their estimation.
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Instead, scMET directly models methylation read-counts, using a hierarchical framework
to address data sparsity and to propagate statistical uncertainty. It is also important to note
that single-cell bisulphite data displays a strong dependency between mean and variabil-
ity estimates (see, e.g., Additional file 1: Figure S13 and S23). Hence, direct downstream
analyses of methylation variability would be confounded by mean methylation. Instead,
scMET explicitly derives a residual measure of variability (residual overdispersion) that is
not confounded by mean methylation and that can be directly employed in downstream
tasks such as HVF selection and differential variability.

HVF selection

Feature selection has traditionally been done either using the binomial variance or the
Gaussian variance as variability estimates [33, 50]. The binomial model is where features
are ranked according to binomial variance given by 1/1; 6;;(1 — 6;), where 6;; = Yj;/n;;
is the methylation rate for feature j in cell i. The Gaussian model on methylation rates
0 ~ N (1j, 0j) is where features are ranked according to oj. The normalized dispersion
(NormDisp) method is widely applied for scRNA-seq data [28, 29]. Briefly, we calcu-
lated the mean and a dispersion measure (variance/mean) for each gene across all single
cells and placed genes into 20 bins based on their mean expression. Normalized disper-
sion is calculated as the absolute difference between dispersion and median dispersion
of the expression mean, normalized by median absolute deviation within each bin [29].
Additionally, we also include a random selection approach in which HVFs are selected
at random among all input features. Finally, we note that, to our knowledge, none of the
beta-binomial or negative binomial methods discussed above implements a strategy to
perform HVF selection.

Scalable strategy for genome-wide sliding windows

By pooling information across cells and features, scMET leads to more robust parameter
estimates than simpler methods which analyze each feature independently. We addressed
the increased computational complexity by adopting a variational Bayes algorithm which
scales linearly with the number of features, enabling the analysis of large-scale data sets
(Additional file 1: Figure S2). However, additional challenges arise due to the increased
dimensionality introduced by using a sliding window approach on a genome-wide scale.
For example, for the mouse genome, using sliding windows of 20 kb with a step size of
20 kb yields approximately 130,000 features. This may preclude the use of scMET within a
practical timeline for large-scale applications. In the spirit of divide-and-conquer schemes
[51], we bypass this problem via a parallelization strategy in which we apply scMET sep-
arately to each chromosome. Feature-specific estimates obtained for each chromosome
can be combined post hoc when performing HVF selection and differential analyses.

We suggest careful consideration when selecting the input feature set while using the
sliding window approach. First, it is critical to apply a quality control step to remove win-
dows with very low coverage (number of CpGs whose methylation status was observed),
for which inference is less reliable. Second, the choice of window size can restrict the
type of regions to be included in the analysis. For example, regulatory elements such as
enhancers tend to be relatively small, spanning from a hundred to a few thousand base
pairs [52]. Such regions would be excluded when using large window sizes. In contrast,
small windows may fail to have sufficient coverage. Data-driven approaches could be used



Kapourani et al. Genome Biology (2021) 22:114 Page 16 of 21

to identify an optimal window size. For example, [53] identified that 2-kb windows are
sufficient to capture regions with high CpG-to-CpG concordance. An alternative solution
would be to iteratively refine the window size while performing downstream analyses.
This was implemented in metilene [54] in the context of differential mean methylation
testing for bulk DNAm sequencing data. Implementation of such iterative strategy for
differential variability testing and HVF selection while taking into account the sparsity of
single-cell DNAm data is a very interesting direction for future research.

Simulation study

We simulated J = 300 features for varying number of cells ranging from / = 20 up to [ =
1000. To mimic the properties observed in real scBS-seq data, we assume that for each
feature we have coverage for a subset of cells given by I; ~ Binomial(/, p;), where p; ~
Uniform(0.4, 0.8) to generate diverse /; across features. We also simulate three alternative
regions that have rich (N = 50), moderate (N = 15), and poor (N = 8) CpG density. That is,
the number of CpGs (n;) is simulated from Binomial(N, g;), where g; ~ Uniform(0.4, 0.8)
to generate a broad range of CpG coverage across features. Next, for each feature, we
generate mean methylation parameters ; ~ Logit\/ (wai, 1), where w, = (0.5, -1.5)
and x; = (1, C)) are feature-specific covariates, where C; denotes the CpG density. The
negative weight on w, is used to simulate the known negative association between mean
methylation and CpG density. Next, we simulated feature-specific overdispersion param-
eters y; ~ Logit/\ (w;,rg/(uj), 0.25) to mimic the mean-overdispersion relationship. We
set w, = (—1.2,—.3,1.1, —.9) and g;(u;) is a vector of basis functions with methylation
level p;. Finally, we simulated the number of methylated CpGs from BB distribution, using
the VGAM package, that is, Yj; ~ BB(ny, ), ¥j).

For differential testing analysis, we used the above approach to generate cells from the
first group (group A). For DM analysis, 15% of features were randomly selected and their
corresponding p; were randomly increased or decreased by three different LOR thresh-
olds: 2, 3, and 5, to generate cells from the second group (group B). Similarly, for DV
analysis, 15% of features were randomly selected from the first group and their corre-
sponding y; were randomly increased or decreased by three different LOR thresholds: 2,
3, and 5, to generate cells from the second group.

Mouse frontal cortex dataset
Data processing
The dataset is available from the Gene Expression Omnibus repository under accession
number GSE97179. Details on quality control and data pre-processing can be found in
[9]. Additional file 3: Table S2 contains metadata for the 3069 cells, such as cell type
annotations and cortical layer information. We aggregated closely related cellular sub-
populations with less than 25 cells, following the hierarchy established in [9]. DNA
methylation was quantified using mCG dinucleotides over three genomic contexts: (1)
gene promoters (+2-kb windows around the transcription start sites of genes extracted
from ENSEMBL version 87, [55]), (2) Distal H3K27ac ChIP-seq peaks, and (3) H3K4mel
ChIP-seq peaks. The latter was based on two ChIP-seq datasets that were profiled in adult
(8 weeks) mouse cortex as part of the ENCODE project (see Additional file 4: Table S3).
For each genomic feature j € {1,...,/} and cell i € {1,...,I}, the following censor-
ing procedure was applied: we recorded Yj; as a missing value if methylation coverage
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was available in less than 3 CpGs (i.e., n; < 3). The purpose of this censoring step was
to exclude observations with very low coverage for which DNAm quantification is less
reliable. Subsequently, we removed features that did not have CpG coverage in at least
15 cells. In addition, we excluded features that had mean methylation across cells lower
than 0.1 or higher than 0.9; the rationale being that fully (un)methylated features do
not drive methylation heterogeneity and will not provide information for identifying cell
sub-populations.

Down-sampling experiment

Using the characterized sub-populations from [9], we performed down-sampling experi-
ments on 424 inhibitory neurons. Both scMET and BB MLE methods were run once on
the full dataset (424 cells) to generate pseudo-ground truth parameter estimates. Subse-
quently, 20, 50, 100, and 200 cells were randomly down-sampled from the full population
prior to parameter estimation. This procedure was repeated 5 times for each sample size.
The same censoring step as described above was applied. Moreover, due to smaller sample
sizes, we filtered genomic features that did not have CpG coverage in at least 5 cells.

HVF analysis

HVF analysis was applied on 12,774 gene promoters, 17,284 distal H3K27ac peaks, and
30,374 H3K4mel peaks. To model the mean-overdispersion relationship, we used L = 4
radial basis function kernels and kept default hyper-parameter values (Additional file 1:
Section S2.2). The total number of iterations was set to 50,000 and convergence was
attained when the evidence lower bound difference between two consecutive iterations

was less than 1e—04.

Differential analysis

For differential analysis between excitatory and inhibitory neurons, we only included fea-
tures with CpG coverage in at least 15 cells, in both sub-populations. This resulted in
12,611 gene promoters, 13,075 distal H3K27ac peaks, and 20,212 H3K4mel peaks. To
model the mean-overdispersion relationship, we used L = 4 radial basis function kernels
and kept default hyper-parameter values (Additional file 1: Section S2.2). The total num-
ber of iterations was set to 50,000 and convergence was attained when the evidence lower

bound difference between two consecutive iterations was less than 1 x 10™%.

Dimensionality reduction

Dimensionality reduction was applied using a Bayesian Factor Analysis algorithm, as
implemented in the MOFA2 package [56]. The motivation for this method, as opposed to
the conventional Principal Component Analysis, is to handle the large presence of missing
values without the need for imputation. A second (non-linear) dimensionality reduction
step was applied using UMAP (as implemented in the umap package) to project the data
into a two-dimensional space (Additional file 1: Figure S15 and S16).

Clustering

A finite grid of HVFs (from 50 to 1000 with step size of 50) was selected by each of the
competing methods. Subsequently, clustering analysis was performed using the k-means
algorithm on the latent space defined by the MOFA factors (fixed to 15). The number of
clusters was set to the number of cell types as characterized by [9]. We assessed clustering
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performance using the ARI and cluster purity. A non-parametric regression (imple-
mented by the 1oess function) was used to obtain a smoothed interpolation across all
HVF values.

scNMT-seq gastrulation dataset

Data processing

The parsed scNMT-seq gastrulation dataset was downloaded from https://ftp://ftp.ebi.ac.
uk/pub/databases/scnmt_gastrulation. Raw files are available from the Gene Expression
Omnibus repository under accession number GSE121708. Details on the quality control
and data processing can be found in [34]. We selected all cells from E4.5 to E7.5 days
after excluding the extra-embryonic visceral endoderm cells, as they display distinct DNA
methylation profiles. Additional file 5: Table S4 contains sample metadata for the 848
cells retained for analysis. DNA methylation was quantified over gene promoters (+2kb
windows around the transcription start sites of genes extracted from ENSEMBL version
87, [55]).

Calculation of DNA methylation and RNA expression heterogeneity

For the DNAm data, we applied the same censoring procedure and feature exclusion
criteria as described in the pre-processing of the [9] dataset. This resulted in 13,785
gene promoters for downstream analysis. Residual overdispersion estimates were calcu-
lated by scMET with default parameter values using the same number of iterations and
convergence criteria described above.

For the RNA expression data, we removed lowly expressed genes (no counts in less than
10 cells and average count across expressed cells less than 5). This resulted in 14,076 genes
for downstream analysis. Residual overdispersion estimates were obtained using BASIiCS
[22]. The algorithm was run using 20,000 iterations, applying a burn in of 10,000 and thin-
ning of 10. An empirical Bayes approach was used to derive the prior hyper-parameters
associated to gene-specific mean expression parameters within BASiCS. In the compar-
ison displayed in Fig. 4, we focused on the 10,192 genes contained in the intersection of
the lists obtained above.
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