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Background
Tumors are complex multifaceted ecosystems composed of malignant cells sur-

rounded by a heterogeneous mixture of cell types. During oncogenesis, different

populations of cancer cells interact with the microenvironment, contributing to

evasion of the immune system and metastatic progression. One of the major goals

for translational cancer research is to develop new technologies capable of unravel-

ing this complexity across heterogeneous microenvironments. Bulk genomic and

transcriptomic studies have uncovered major molecular insights and have helped

in the design of patient-specific targeted therapeutics. Quantification of gene ex-

pression from bulk-sequencing approaches, however, only represents the average

expression profiles of the constituent cells and is influenced by the particular tran-

scriptional profiles, as well as the abundance of a multitude of different cell types

and states within each sample. This becomes particularly relevant when consider-

ing the detection limits that might preclude the identification of low-level sub-

clones. The development of technologies based on sequencing individual cells over

the past decade has been astonishing. Notably, spatial molecular analysis of RNA

and protein now place cellular biology at the center of cancer biology and may be

used to dissect interactions across tumor microenvironments.

Morphologic examination
Spatial mapping of tumor, immune and stromal cells within their microenviron-

ment has long been documented by histopathologic observations. However, speci-

mens may contain hundreds or thousands of cells that can display extensive

intratumoral morphological heterogeneity. For example, in many malignant tumors,

it is common to find well-differentiated regions adjacent to poorly or moderately

differentiated regions, or more than one morphological pattern that, if not taken

into account, can lead to an inaccurate or even incorrect diagnosis [1]. Although

metastasis remains the primary cause of mortality, decisions made during a pa-

tient’s treatment are often based on the histopathologic or molecular analyses of
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biopsy specimens available at the site or time of initial diagnosis. Studies on the di-

vergent evolution of metastatic tumors, however, suggest that the biopsy of a pri-

mary tumor may not necessarily be reflective of secondary deposits, particularly

following the selective pressures of therapies [2]. Microenvironmental factors such

as inflammation, angiogenesis and hypoxia can also induce changes in gene and

protein expression and downstream responses to anticancer therapeutics. In

addition, core biopsies often only reflect a snapshot of the whole tumor and are

therefore unlikely to be fully informative of the complete clonal composition of

tumors.

In recent years, remarkable progress has been made in the objective assessment

of the cellular context of an entire slide captured on digitalized histological sec-

tions. Modern digital image acquisition and quantification algorithms, which inte-

grate biophysical parameters to capture spatial variation in tumor architecture,

enable semi-automated computational identification and classification of various

cell types and regions (Fig. 1A). Deep learning approaches in particular can identify

recurring patterns in information-rich histopathologic images that can then be used

to infer molecular features and predict clinical outcomes [6].

It is important however to recognize that unlike in vivo molecular imaging

approaches, such as positron emission tomography (PET) and magnetic resonance

imaging (MRI), histological slides represent a two-dimensional picture of a three-

dimensional tumor captured at a point in time and are usually limited to just 5–10-μm

sample tissue sections. In addition, it is well recognized that image analyses are very

sensitive to sample quality as well as the undesirable effects resulting from specimen

processing that could adversely affect their interpretation. Therefore, it is imperative

that methods are developed to accommodate the significant variation seen in

histological specimens.

The single-cell revolution
It comes as no surprise that single-cell genomic, transcriptomic and epigenomic se-

quencing approaches have advanced rapidly over the past decade. The first and most

widely available technology at the forefront of single-cell interrogation in a high-

throughput manner is single-cell RNA sequencing (scRNA-seq). These methods meas-

ure the transcriptional output of cells directly from tumor samples and have now be-

come the dominant technology for the identification of novel cell types and the study

of stochastic gene expression.

The first step of all scRNA-seq workflows is the isolation of viable single cells

from complex multicellular solid tissues (Fig. 1 (B)). Defining the taxonomy of sin-

gle cells has historically been achieved using fluorescence-activated cell sorting

(FACS) or flow cytometry approaches, whereby cells are tagged with a specific anti-

body recognizing distinct cellular populations. Although these widely used ap-

proaches provide high cellular resolution, they only allow a limited number of

molecular markers to be assayed per cell. More recently, laser-capture microdissec-

tion using a laser to microscopically isolate single cells based on cellular morph-

ology within a spatially preserved fixed or frozen tissue section has been used [7]

(Fig. 1 (B)). Promising advances in the use of microfluidic technologies have also

entered mainstream use [8]. In microfluidics, small volumes of fluids are
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sequentially manipulated into micron-diameter channels to isolate single cells for

culture and/or sequencing, allowing target cells to then be separated based on their

physical characteristics (e.g., diameter, surface antigen) (Fig. 1 (B)). In addition to

their high-throughput scale, microfluidic devices and droplet-based microfluidics

also improve the sensitivity of single-cell analyses by confining and concentrating

the reaction volume. Approaches such as Drop-seq are unparalleled in the large

numbers of cells that can be profiled (> 10,000). When combined with oligo-tagged

antibodies in cell hashing methods, it is possible to trace each individual cell back

Fig. 1 Profiling the cartography of the cancer ecosystem. (A) Hematoxylin and eosin (H&E) and chromogen-
based immunohistochemical stained images of a primary cutaneous melanoma, showing the result of a
machine learning algorithm capable of detecting image features that distinguish tumor from stromal and
necrotic regions, and quantify the number of cancer cells expressing key biomarkers, as well as counts of
tumor-infiltrating immune cells. (B) Single-cell isolation approaches include high-throughput microfluidic
technologies and laser capture microdissection (LCM), adapted from [3]. (C) Technologies are now able to
dissect single tumor cells at previously unattainable resolutions exemplified by approaches to analyze the
genome, transcriptome and epigenome, adapted from [4]. (D) Gene expression patterns can also be
spatially resolved across microenvironmental conditions. Schematic workflow of spatial transcriptomic
analyses using fluorescence and Visium spatial technologies. Schematic of the RNAscope assay. After the
tissue is permabilized to allow probe access, target RNA-specific oligonucleotide probes (Z) are hybridized
to the RNA target template. Once adjacent target (Z) probe-pairs hybridize to the RNA template, the
preamplifier binds to the Z probe, followed by the binding multiple amplification molecules. Each
probe is conjugated to a different fluorophore which are detected using a fluorescent microscope.
Workflow adapted from [5]. Shown H&E of a primary acral melanoma and the associated 4-plex
RNAscope smFISH image, staining for 4 positive control genes. In the 10X Visium platform, tissue
samples are sectioned and aligned onto the capture areas of the gene expression slides. Once the
tissue is permeabilized, mRNA are hybridized to the capture probes and converted into a spatially
barcoded cDNA library by reverse transcription. Sequencing the library then allows the cDNA
barcodes to associate to a slide coordinate within the original tissue, mapping the gene expression
profile to its spatial localization. Original image adapted with permission from 10x Genomics graphic.
Shown H&E of a T3 primary lung adenocarcinoma and the associated spatially resolved gene
expression plot, showing 6 mRNA clusters
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to its original sample [9], thereby identifying genetically identical samples subjected

to diverse perturbations in a range of experimental models, e.g., using scRNA-Seq

to assess the sensitivity of primary tumor cells to drug treatments across different

experimental conditions.

However, despite a dramatic increase in the number of studies, single-cell ana-

lysis remains a new field and substantial limitations and technical challenges still

exist. Single-cell transcriptomic studies in cancer are currently often complicated

by elaborate study designs including samples collected at different time points or

from patients with different outcomes (e.g., responders and non-responders). Al-

though this might reveal important transcriptional pathways in particular disease

states, the clustering of cells by sample or batch (rather than cell type or state)

may limit the identification of shared cell types required for rational downstream

biological interpretation. In addition, disparate studies of smaller cell pools could

lead to false-negative findings of relevance to only a subset of cells and amplify

confounding factors relating to a specific study/sequencing modality. Further,

scRNA-seq provides only a partial sampling of the transcriptome, with a bias to-

wards more highly expressed genes. Low coverage can result in extreme data spars-

ity and it can be difficult for example to distinguish rare cell types from technical

artifacts using traditional clustering algorithms; this may be particularly pertinent

to the higher throughput scRNA-seq technologies.

Bulk tissues consist of millions of cells, but contemporary studies often only se-

quence thousands to tens of thousands of single cells because of technological limi-

tations and high equipment and sequencing costs. Tissue specimens may be

contaminated with blood or other tissues. As such, not all subsets identified in

single-cell data may represent the distribution of cells in the entire tissue and it

therefore may not be suited for the profiling of sub-optimally preserved or handled

clinical specimens. A further limitation in the application of scRNA-seq to solid

tumor samples is the requirement for complex dissociation protocols to obtain

viable, individualized fresh cells.

At the DNA level, single-cell genomic sequencing (scDNA-seq) technologies have

been used to reconstruct cell lineages, track subclones (subpopulations of cells with

distinct genotypes), and infer evolutionary trajectories. However, allelic dropouts

(i.e., preferential amplification and sequencing of only one allele of a particular

gene) and non-uniform genome coverage may hinder the accurate detection of sin-

gle nucleotide variants (SNVs). This may not apply to transcriptome sequencing

approaches, whereby lower sequencing depth can still provide robust information

about cell identity. It is also clear that metastatic propensity may not be exclusively

encoded within nucleotide sequences, and recent progress in methods to probe the

epigenetic regulation of gene expression at single-cell level (including chromatin

accessibility via ATAC-seq [10], DNA methylation [11] and others) has been made

(Fig. 1 (C)). The considerable technical challenges associated with either amplifying

bisulfite-treated single-cell DNA (scBS-seq) or using single-cell chromatin immune-

precipitation approaches to sequence chromatin binding proteins (ChIP-seq) have

thus far slowed epigenomic profiling from occupying center stage in cancer studies.

Of note, there have been marked advances in “multiomic” approaches at the

single-cell level, which allows for various combinations of RNA-seq, ATAC-seq,
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Hi-C, and methylation-sequencing [12–15] which should enable a better integration

of epigenetics, transcriptomics and genetics over the next few years.

Despite these challenges, if these protocols are optimized for all applications and

become more cost effective and broadly implemented, it is easy to anticipate a sig-

nificant increase in the application of single-cell technologies within clinical re-

search. For example, strategies for genome sequencing single nuclei obtained from

formalin-fixed paraffin-embedded (FFPE) material [16] (how the majority of cancer

tissue is processed and stored) will prove particularly relevant to cancer trials. We

anticipate that while single-cell datasets may not supplant bulk genomic and tran-

scriptomic tumor profiling (from large consortia such as The Cancer Genome

Atlas/The International Cancer Genome Consortium), they will undoubtedly be in-

creasingly integrated with existing and new profiling methods as well as experi-

mental approaches to further dissect intra-tumoral heterogeneity.

Multicellular spatial modeling of the tumor microenvironment
It is increasingly clear that understanding genetic or epigenetic alterations within

tumor cells only represents part of the picture and tumor progression depends on

the spatial interactions between tumors and the multicellular tumor microenviron-

ment (TME). For example, it is likely that the transcriptional state of a cancer cell

is strongly influenced by its immediate neighbors via physical contact, secreted fac-

tors, or metabolite exchange. This implies that to better understand various cancer

cell states, we must have a better understanding of the “architecture” of the

tumor/TME pairing. Notably, most of the aforementioned multidimensional single-

cell techniques first rely on tumor dissociation to obtain cellular suspensions. Such

approaches may therefore alter the expression of specific cell surface markers and

do not conserve information on the topological organization of cells within particu-

lar tissues [17]. Coupling scRNA technologies with optical imaging methods may

provide higher spatiotemporal resolution.

There have been major advances in techniques to analyze gene expression in in-

tact tissues that preserve the architecture. Single-molecule fluorescent in situ

hybridization (smFISH) employs multiple single-stranded, fluorescently labeled,

short DNA probes that hybridize to target cellular mRNAs in fixed cells, allowing

for both quantification and localization of RNAs in individual cells. Over the past

few years massively paralleled approaches to smFISH have been developed includ-

ing sequential barcoded fluorescence in situ hybridization (seqFISH) and multi-

plexed error-robust fluorescence in situ hybridization (merFISH). In these

approaches, multiple cycles of hybridization are used to detect and image hundreds

to thousands of different mRNA species simultaneously and at high spatial reso-

lution (sub-diffraction limit) [18]. An alternative to the extraction of single cells

from tissues is the capture of transcripts directly on intact tissue sections [19]. The

commercial RNAscope technology uses a novel probe design strategy and a series

of hybridization and amplification steps to reduce the background noise and

achieve single molecule visualization in individual cells (Fig. 1 (D)). In the 10X Vis-

ium spatial gene expression assay, a tissue section is placed on a microscopic glass

slide containing thousands of capture spots that each contain spatially barcoded

capture oligonucleotides; these imprint the spatial localization of the mRNA. The
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mRNAs are then converted to spatially barcoded cDNAs which are then extracted

for sequencing. Superimposing the barcoded reads back onto the tissue image pro-

vides a spatially resolved transcriptome (Fig. 1 (D)) [5].

However, one limitation with array-based methods is that the resolution is lim-

ited to the size of each spot on the array (currently ~ 55 μM), such that each spot

can contain more than one cell. Therefore, the observed expression profile at one

spot could arise from a mixture of transcripts originating from different cell

types. This can be improved by combining it with single-cell and computational

techniques such as multimodal intersection analysis (MIA), which maps the

spatial enrichment of specific cellular subpopulations and functional states within

a heterogenous sample [20]. Similar more recent computational approaches mark-

edly increase the resolution of each spot without the need for additional single-

cell sequencing [21, 22]. Perhaps one of the most exciting avenues in this field is

the advent of in situ sequencing rather than array-based approaches. One elegant

example of this is expansion sequencing (ExSeq). This approach combines simul-

taneous tissue expansion microscopy with direct in situ genome sequencing and

is able to achieve untargeted sequencing of cells within intact biological samples

including the mouse brain and metastatic breast cancer samples [23]. The high

resolution of this technique also allows for subcellular localization of transcripts

such as to the dendrites of individual neurons and we anticipate this technology

extending to a range of cell types and intact tissues. Finally, although more nas-

cent, attention is now also being paid to spatially resolved chromatin profiling

with methods such as sciMAP-ATAC and these approaches are likely grow over

the next few years [24]. It is important to point out that all of these methods re-

main technically demanding, requiring advanced equipment and image analyses

workflows, as well as a large data storage capacity. They also share some limita-

tions with scRNA-seq, including a high dropout rate and limited cellular

resolution.

Modern technological advances have made use of mass-tag labeled antibodies,

which have greatly expanded the number of markers that can be applied to tissue

slides. These ion-based mass cytometry platforms first stain the cells with anti-

bodies conjugated to heavy metal isotopes, which can then be detected by time-

of-flight secondary ion mass spectrometry (SIMS) and quantified by multiplexed

ion beam imaging (MIBI) [25]. This approach enables multiplexed antibody label-

ing (potentially up to 100 markers per cell) and quantification of protein abun-

dance at high subcellular resolution. These capabilities mean MIBI is uniquely

suited to profile the spatial composition of immune cell subsets within the com-

plex TME, e.g., a study in triple-negative breast cancer (from archival FFPE tissue

sections) reported differential enrichment of immunoregulatory proteins across

specific immune cell subtypes and patients, and showed that a compartmentalized

histology, in which the immune cells were spatially segregated from the tumor

cells, conferred a survival advantage over samples were tumor and immune cells

were mixed [26].

Heterogeneity in the spatial distribution of metabolites within the tumor micro-

environment (including endogenous, immunosuppressive, and drug metabolites)

also plays a crucial role in influencing gene expression and determining the cellular
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response to therapies [27]. Metabolic profiling of native tissues in a spatially re-

solved manner is more challenging than spatial RNA profiling, as amplification of

the metabolite signal is limited and labeling toolkits are lacking. In addition, the

detection of metabolites and their chemical structures at subcellular resolution is

too complex to be deconvolve from a spatial resolution of 5–20 μm provided by

conventional mass spectrometry imaging. However, advanced instrumentation ap-

proaches such as the atmospheric pressure matrix-assisted laser desorption/

ionization (MALDI) which enables imaging of metabolites, lipids, and peptides in

single cells at 1.4 μm resolution [28], and the NanoSIMS which allows for the

spatial mapping of metabolites, lipids, and carbohydrates at 50–100 nm resolution

[29], may overcome some of these limitations.

Moving forwards, it will be important to integrate comprehensive clinical and ex-

perimental data from specific cell populations with data from these multidimen-

sional datasets. This integrated multi-omics approach would provide important

insights into the complexity of the cancer ecosystem and interactions of the differ-

ent components of the tumor microenvironment. One of the most pressing chal-

lenges in this field is both the analysis and visualization of these highly complex,

multidimensional datasets. This problem becomes especially acute when single-cell

spatially resolved methods become mainstream, since they will then have to take

into account tissue architecture in 3D [30]. It is likely that understanding these

data will require the application of machine learning-based methods, which can

augment what histology and molecular profiling individually can reveal [31]. To

translate these findings to the clinic will ultimately necessitate effective collabor-

ation across multi-disciplinary research teams composed of molecular biologists,

computational biologists, data visualization teams and clinicians.

It is our belief that the continued open exchange and sharing of data, expertise and

technology (as demonstrated by recent large consortia [32, 33]) will prove critical to

drive innovation. Studies conducted on an international scale, ensuring adequate repre-

sentation of all major world populations, with open-source exchange and

standardization of performance metrics, will accrue the most durable benefit.
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