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Abstract

de Bruijn graphs play an essential role in bioinformatics, yet they lack a universal
scalable representation. Here, we introduce simplitigs as a compact, efficient, and
scalable representation, and ProphAsm, a fast algorithm for their computation. For
the example of assemblies of model organisms and two bacterial pan-genomes, we
compare simplitigs to unitigs, the best existing representation, and demonstrate that
simplitigs provide a substantial improvement in the cumulative sequence length and
their number. When combined with the commonly used Burrows-Wheeler Transform
index, simplitigs reduce memory, and index loading and query times, as
demonstrated with large-scale examples of GenBank bacterial pan-genomes.
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Background
DNA sequencing allowed previously unobservable phenomena to be studied on an un-

precedented scale. However, sequencing capacity has grown faster than computer per-

formance, memory, and available human resources, and huge amounts of sequence

data are now available. As a result, traditional sequence-based representations and se-

quence alignment-based techniques [1–3] have become less suitable for real-life sce-

narios due to the space and time complexities they impose and their inefficiency in

handling polymorphisms.

One elegant solution for genomic data representation is de Bruijn graphs. These

build on the concept of k-mers, which are substrings of a fixed length k of the genomic

strings to be represented, such as sequencing reads, genomes, and transcriptomes. For

a given k-mer set, the corresponding de Bruijn graph is a directed graph with the k-

mers being vertices and k − 1 long overlaps between pairs of these k-mers indicating

edges. If k is chosen appropriately, de Bruijn graphs capture substantial information

about the sequenced molecules as these correspond to some walks in the graph.

The use of de Bruijn graphs is ubiquitous in sequence analysis. Genome assembly

uses the property that sequenced molecules form paths [4–6], which is exploited in nu-

merous modern assemblers [7–12]. On the other hand, alignment-free sequence
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comparison follows the idea that similar sequences share common k-mers, and com-

paring de Bruijn graphs thus provides a good measure of sequence similarity [13, 14].

This involves applications of de Bruijn graphs to variant calling and genotyping [15–

19], transcript abundance estimation [20], and metagenomic classification [21–24]. In

the latter application, k-mer-based classifiers perform best among all classifiers in infer-

ring abundance profiles [25], which suggests that de Bruijn graphs truthfully approxi-

mate the graph structures of bacterial pan-genomes, even if constructed from noisy

assemblies from incomplete databases. Even if more advanced pan-genome graph

representations are available, such as variation graphs [26], de Bruijn graphs with large

k-mer lengths are still useful for indexing [27, 28].

The efficiency of many bioinformatics algorithms is directly tied to the efficiency of

computation and representation of the graph. de Bruijn graphs can be readily com-

puted through a scan of the datasets including the raw reads, genomes, or multiple

sequence files. In practice, such a scan often consists in k-mer counting as this allows

efficient denoising of the graph, for example, by removing low-frequency k-mers corre-

sponding to sequencing errors in the reads. Algorithms for k-mer counting have been

extensively studied and many well-engineered software solutions are available [29–37].

On the other hand, efficient representation of de Bruijn graphs remains an important

issue. The most commonly used are unitigs, which are strings resulting from compaction

of k-mers along maximal paths with non-branching nodes [38, 39]. Unitigs have many ad-

vantages, including that the representation is “textual,” in the form of a set of sequences

that contain each k-mer exactly once, while preserving graph topology. However, unitigs

impose large resource overhead for many types of de Bruijn graphs and do not scale well

when a lot of variation is included. Specifically, with a high proportion of branching

nodes, unitigs become fragmented, in extreme cases up to the level of individual k-mers.

Subsequently, unitig computation and storage may require inappropriately large resources

and become prohibitive in variation-heavy applications, including bacterial pan-genomics.

While preserving topology guarantees that unitigs represent fragments of the under-

lying genomic sequences, this property is not required in many bioinformatics applica-

tions. Examples are provided by de Bruijn graph storage and data structures for k-mer

membership queries [38, 40–43], where any set of strings containing the same k-mers

can be readily used instead. Therefore, the requirements on unitigs could be relaxed in

order to create a more lightweight representation carrying the same k-mer set but re-

quiring less resources to compute the representation, including CPU time and memory,

and having better scalability.

In this paper, we propose simplitigs as a compact, efficient, and scalable representation

of de Bruijn graphs. Simplitigs correspond to vertex-disjoint paths covering the graph but

relax the unitigs’ restriction of stopping at branching nodes. We present an algorithm for

rapid simplitig computation from a k-mer set and implement it in a tool called ProphAsm,

which proceeds by loading a k-mer set into memory and a greedy enumeration of max-

imal vertex-disjoint paths in the associated de Bruijn graph. We used ProphAsm to evalu-

ate the improvement of simplitigs over unitigs, in terms of two main characteristics: the

cumulative sequence length (CL) and the number of sequences (NS). We demonstrate

that greedily computed simplitigs are close to theoretical bounds in practical applications

and, compared to unitigs, provide a substantial improvement in memory requirements

and speed in applications such as k-mer matching.
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Results
The concept of simplitigs

We developed the concept of simplitigs to efficiently represent de Bruijn graphs of se-

quence data (Fig. 1). Simplitigs are a generalization of unitigs and correspond to spel-

lings of vertex-disjoint paths covering a given de Bruijn graph (Fig. 1a, the “Methods”

section). Consequently, maximal simplitigs are such simplitigs where no two simplitigs

can be merged by a (k − 1) long overlap (the “Methods” section). Note that unitigs and

k-mers are also simplitigs, but not maximal in general (Fig. 1b). The main conceptual

difference between maximal simplitigs and maximal unitigs is that simplitigs are not

limited by branching nodes, which allows for further compaction, with a benefit in-

creasing proportionally to the number of branching nodes in the graph.

To compare simplitig and unitig representations, we created a benchmarking proced-

ure based on the two characteristics: the number of sequences (NS) and their cumula-

tive length (CL) (the “Methods” section, example in Fig. 1a). While NS determines the

number of records to be kept in memory, CL largely determines the total memory

needed. NS and CL are readily bounded from below by one and the number of k-mers,

Fig. 1 Overview of the simplitig approach. a Textual representations of k-mer sets ordered by the degree of
compaction: individual k-mers, maximal unitigs, and maximal simplitigs. Every component of a simplitig subgraph
(black arrows) of the de Bruijn graph (all arrows) corresponds to a path, and its spelling constitutes a simplitig (the
“Methods” section). b Scheme of all possible simplitig representations according to the degree of compaction. While
unitigs (dark gray area) correspond to compaction along non-branching nodes in the associated de Bruijn graph,
simplitigs (gray area) can also contain branching nodes. Every step of compaction decreases the number of
sequences (NS) and their cumulative length (CL) by 1 and by k− 1, respectively. Maximal simplitigs may not be
determined uniquely; the simplitig representation can have multiple local optima, depending on which edges were
selected at the branching nodes. c The workflow of simplitigs. Simplitigs represent de Bruijn graphs and carry
implicitly the same information as unitigs. de Bruijn graphs are usually computed from either assemblies or
weighted de Bruijn graphs. Weighted de Bruijn graphs are typically obtained by k-mer counting and allow removing
noise, e.g., low-frequency k-mers, which frequently originate in sequencing errors
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respectively, and they are also tightly connected (Eq. 1 in the “Methods” section). As

every step of compaction decreases both NS and CL (Fig. 1b, the “Methods” section),

we can optimize them jointly. However, finding an optimal simplitig representation

translates to the vertex-disjoint path coverage problem. While NP-hard for general

graphs (by reduction from the well-known NP-hard problem of computing a Hamilton-

ian path), the problem may be tractable for observed de Bruijn graphs (the “Methods”

section).

Since practical applications do not require optimal simplitigs, we prioritized speed

and designed a greedy algorithm for their rapid computation (Algorithm 1, the

“Methods” section). In an iterative fashion, the algorithm selects an arbitrary k-mer as a

seed of a new simplitig and keeps extending it forwards and then backwards as long as

possible, while removing the already used k-mers from the set; the extension proceeds

by all four possible nucleotides and testing for the presence of the created k-mer. This

process is repeated until all k-mers are covered. Loading k-mers into memory and sim-

plitig computation are linear in the length of the input and the number of k-mers,

Fig. 2 Comparison of the simplitig and unitig representations for selected model organisms and a range of
k-mers. The number of sequences (NS, millions) and their cumulative length (CL, megabase pairs) for both
representations of six model organisms ordered by their genome size. a Streptococcus pneumoniae, 2.22
Mbp. b Escherichia coli, 4.64 Mbp. c Saccharomyces cerevisiae, 12.2 Mbp. d Caenorhabditis elegans, 100 Mbp.
e Bombyx mori, 482 Mbp. f Homo sapiens, 3.21 Gbp. The CL lower bound corresponds to the number of k-
mers. Full results are available in Additional file 1: Table S1–S6
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respectively, and the memory footprint is linear in the number of k-mers. We imple-

mented Algorithm 1 in a program called ProphAsm [44, 45].

Simplitigs of model organisms

We first evaluated simplitig and unitig representations on assemblies of six model or-

ganisms (Fig. 2). As different applications of de Bruijn graphs call for different k-mer
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lengths, we sought to characterize the NS and CL scaling for both representations with

k growing, as well as the effect of the species’ genome size. Therefore, selected model

organisms were evaluated in increasing order of the genome size and benchmarked for

both representations on a range of k-mer lengths corresponding to common

alignment-free-based applications [20, 21, 46].

We observe that simplitigs always provide a substantially better performance than

unitigs (Fig. 2). In particular, they quickly approach the theoretical lower bounds for

both characteristics tested. Every data set has a range of k-mer lengths where the differ-

ence between simplitigs and unitigs is very large, and after a certain threshold, the dif-

ference almost vanishes. While for short genomes, this threshold is located at smaller

k-mer lengths than those typically used in alignment-free applications (e.g., k ≈ 17 for E.

coli), for bigger genomes, this threshold has not been attained on the tested range and

seems to be substantially shifted towards large k-mers (e.g., B. mori).

Interestingly, maxima of the NS and CL values for both representations occur very close

to the value k = log4G, where G is the genome size (Fig. 2). This is readily explained by

edge saturation: for values of k up to log4G, an overwhelming fraction of all 4k k-mers be-

long to the genome, which makes the de Bruijn graph branch at nearly every node. As a

consequence, unitigs are then essentially reduced to individual k-mers and their number

grows exponentially whereas simplitigs stay compact on the whole range of k-mer lengths.

Starting from k = log4G, the graph starts to form longer non-branching paths, which drives

down the NS and CL of unitigs, and they approach those of simplitigs. However, the dif-

ference between simplitigs and unitigs in their count and length may stay considerable

even for larger values of k, especially in case of large eukaryotic genomes.

Performance assessment

As de Bruijn graph computation can present a bottleneck in bioinformatics pipelines, we

compared resources required for computing both representations: unitigs by BCALM and

simplitigs by ProphAsm (Fig. 3). We focused on CPU time and memory consumption of

both programs when run with 1 thread (the “Methods” section), and we also assessed the

effect of parallelization for BCALM by including additional BCALM runs with 4 threads.

On the first five genomes, ProphAsm computation of simplitigs outperformed BCALM

computation of unitigs across all k-mer lengths and in both CPU time and memory

(Fig. 3). For instance, for k = 31, ProphAsm was faster by a factor of 15–18, and its mem-

ory consumption smaller by a factor of 1.2–2.1. On the genome of H. sapiens, ProphAsm

was still 10 times faster than BCALM, but its memory footprint was larger by a factor of

1.8, indicative of BCALM’s better memory management for large de Bruijn graphs. Inter-

estingly, the memory consumption of BCALM largely improved when we increased the

number of threads to four, reflective of different k-mer partitioning strategies used with

different numbers of threads. We also observed that BCALM resources varied across ver-

sions; for instance, version 2.2.3, released after our experiments had been conducted, im-

proved CPU time by a factor 3.4–4.5 for k = 31; yet still performing several times slower

than ProphAsm (Additional file 2: Table S8). Overall, these results suggest that simplitigs

are substantially easier to compute than unitigs.

The resource usage of ProphAsm was also predictable and consistent across experi-

ments; ProphAsm always used 38–51 bytes of RAM per distinct k-mer, a limited CPU
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time, and no additional disk space. In contrast, BCALM resources for unitigs showed

irregular tradeoffs and were difficult to estimate prior to the execution. Therefore, fre-

quent trial-and-error adjustments of the memory and CPU allocations were necessary

to even finish some BCALM experiments (the “Methods” section). Furthermore, its

high disk space consumption required us to use a cluster partition of large capacity; for

instance, a single BCALM run could require as much as 116 GB of disk space (e.g., H.

sapiens, k = 17, and 4 threads). Overall, the experiments suggest that resources for com-

puting unitigs are determined by both the graph size and the complexity of its topology,

whereas resources for simplitigs only depend on the graph size; hence, they are more

predictable.

Simplitigs of bacterial pan-genomes

We then evaluated the impact of additional variation in a de Bruijn graph (Fig. 4). Such

variation may originate in polymorphisms, varying gene content in a population of ge-

nomes that are represented jointly, in haplotypes of viral quasispecies, or in sequencing

errors in case of graphs constructed directly from sequencing reads. In all these cases,
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many nodes of the de Bruijn graph become branching and new paths emerge. To

model gradually increasing variation, we used bacterial pan-genomes with different

levels of sampling. Given the high diversity and variability of bacteria, de Bruijn graphs

provide a convenient option for computational pan-genomes [47]. Such pan-genomes

can be constructed from draft assemblies or even directly from sequencing reads, and

thanks to bacterial genomes being short and haploid, the information captured by the

graphs is sufficient for many analyses.

We first constructed a pan-genome of N. gonorrhoeae and characterized unitigs and

simplitigs as a function of pan-genome size (Fig. 4a). We used 1102 draft assemblies of

clinical isolates from the Gonococcal Isolate Surveillance Project [48], from which we

built a series of de Bruijn graphs using an increasing number of genomes. Consistent

with previous experiments (Fig. 2a, b, k = 31), both representations perform comparably

well when only one bacterial genome is included (Fig. 4a). However, as the number of

genomes or k-mers grows, the NS and CL grow as well, but with an increasing gap be-

tween unitigs and simplitigs; importantly, the latter stay close to the theoretical lower

bounds. When the pan-genome size is measured via the number of genomes included,

the CL and NS resemble logarithmic functions for both unitigs and simplitigs (Fig. 4a,

left-hand column). However, when the number of k-mers included is used instead, the

NS and CL functions act as affine functions (Fig. 4a, right-hand column). This suggests

that a pan-genome k-mer count and a species-specific slope may be used as the predic-

tors of simplitig performance in future applications.

To analyze the relative benefit of simplitigs with growing de Bruijn graphs, we evalu-

ated the NS and CL reduction ratio of simplitigs over unitigs in different configurations

(Fig. 4b). We used the same N. gonorrhoeae dataset and considered also another dataset

of S. pneumoniae, consisting of 616 draft Illumina assemblies of isolates from a carriage

study of children in Massachusetts, USA [49, 50]. For both species and for k = 18, 31,

we constructed a series of de Bruijn graphs as previously, but this time, we visualized
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the NS and CL reduction ratios. In all cases, the NS reduction ratios eventually stabi-

lized at values close to 3, following an L shape (k = 18) or being almost constant (k =

31). The CL reduction ratio admitted approximately a logarithmic dependence on the

number of genomes and still resembled a linear dependence on the number of k-mers.

Overall, these experiments provided further evidence that the benefit of simplitigs over

unitigs grows with the increased proportion of branching nodes in a de Bruijn graph or

with increasing data in case of pan-genome reference structures.

Application of simplitigs for de Bruijn graph storage

As simplitigs showed a substantial reduction of CL and NS in genomes and pan-

genomes across k-mer lengths, we sought to evaluate their applicability for compression

(Fig. 5). In this scenario, the goal is to store a given de Bruijn graph within the smallest

possible space, measured via the number of bits per distinct k-mer (i.e., per node in the

graph). Therefore, we reused some of the representations computed in previous experi-

ments for model organisms and bacterial pan-genomes and assessed how these repre-

sentations can facilitate graph compression. In all cases, we considered two different k-

mer lengths k = 18, 31, for which we computed three text-based representations: simpli-

tigs, unitigs, and assemblies (concatenated in the case of pan-genomes); the obtained

sequences were exported to the FASTA format and cleaned to increase their compress-

ibility (the “Methods” section). We also included the BOSS representation [51], as com-

puted using Themisto [52, 53] (the “Methods” section); even though BOSS is a succinct

data structure rather than a representation in our sense, its performance can be com-

pared to simplitigs in specific applications. As all of the FASTA and BOSS files con-

tained redundancies, we further compressed them using xz [54], one of the most

efficient Unix compressors [55] (the “Methods” section). Finally, we evaluated the com-

pression rate of individual graphs in terms of bits per distinct k-mer before and after xz

compression, and visualized it on a logarithmic scale (Fig. 5).

We first analyzed the compression rate for the previously studied model organisms

(Fig. 5a). In this case, compressed assemblies outperformed the other three approaches,

providing near-optimal results. In the case of bacteria (S. pneumoniae in Fig. 5a), the

three text-based representations provided comparable results for both k-mer lengths

considered. However, with the genome size growing (see B. mori and H. sapiens in

Fig. 5a), unitigs became increasingly inefficient, especially for k = 18, and eventually per-

formed among the worst (consistent with NS and CL in Fig. 2). On the other hand,

simplitigs provided a performance comparable to assemblies, with the exception of long

genomes or small k-mer lengths, in which case assemblies performed better (up to a

factor of 2). Even though BOSS initially performed the worst among the four tech-

niques with short genomes, its compression capabilities improved with longer genomes,

where it quickly outperformed unitigs and approached simplitigs. Overall, the observed

results suggest that if a de Bruijn graph of a single organism is to be compressed, its as-

sembly after cleaning and compression is preferable; on the other hand, if no assembly

is available or the downstream applications could suffer from high-frequency k-mers,

simplitigs present the best solution.

We then performed a similar comparison using the two bacterial pan-genomes

(Fig. 5b). In this case, simplitigs always provided the best compression, close to the
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theoretical minimum of two bits per k-mer. We did not observe any significant differ-

ences between the two k-mer lengths, likely due to the underlying genomes being short

(consistent with Fig. 2). Unlike the single-genome experiments, collections of assem-

blies appeared to be unsuitable for de Bruijn graph compression despite that xz com-

pressed the concatenated assemblies by a factor of 100 and 305, respectively

(Additional file 4: Table S16). Furthermore, while BOSS provided comparable results

for simplitigs and unitigs in the uncompressed form, its xz compression was much less

efficient. Overall, the observed results indicate that for compressing de Bruijn graphs of

bacterial pan-genomes, simplitigs are always preferable.

Application of simplitigs for k-mer search

Finally, we sought to demonstrate the benefit of simplitigs in k-mer matching, which

requires the de Bruijn graph to act as a membership data structure. As both simplitigs

and unitigs are text-based representations, k-mer queries can be implemented using an

arbitrary full-text index [56], notably a Burrows-Wheeler Transform [57] (BWT) index
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[58] (sometimes referred to as an FM-index). Here, we used the index of BWA [59], as

one of the best-engineered solutions available, to analyze the impact of replacing uni-

tigs by simplitigs.

Single pan-genome

We evaluated the simplitig improvement on the same N. gonorrhoeae pan-genome

(Fig. 6). We considered four different k-mer lengths k = 19, 23, 27, 31, and for each of

them, we built the three previously studied pan-genome representations: merged draft

assemblies, and simplitigs and unitigs computed for the entire pan-genome. We then

used the three representations to construct BWT indexes using BWA [59] and evalu-

ated their performance for k-mer matching. As all three indexes carry the same k-mer

sets, they are equivalent in terms of outputs, but their performance varies due to the

different underlying sequences, summarized by NS and CL.

First, we analyzed the NS and CL characteristics of each of the three representations

(Fig. 6a). Both simplitigs and unitigs outperformed assemblies in terms of CL by two

orders of magnitude; however, while the NS of simplitigs stayed comparable to the NS

of assemblies, it increased twofold for unitigs. Compared to unitigs, simplitigs provided

an improvement by a factor of 3.1–3.2 and 1.5–1.6 for NS and CL, respectively (con-

sistent with Fig. 4). As the CL characteristic corresponds to the size of the composite

sequence in the index, we estimated that the simplitig indexes should consume 34–38%

less memory. However, the measured values showed a different picture—switching

from unitigs to simplitigs decreased memory consumption by 64–67% (Fig. 6b, top

part). This suggests that not only the total length, but also the number of sequences

largely determines the performance of a BWT index; therefore, the CL and NS charac-

teristics should always be studied jointly when text-based de Bruijn graph representa-

tions are being compared. We then evaluated time to match 10 million k-mers using

the BWA fastmap command [60] and found that matching with simplitigs was faster by

Fig. 6 k-mer queries for the N. gonorrhoeae pan-genome on top of the draft assemblies, unitigs, and
simplitigs. a Characteristics of the obtained unitigs and simplitigs: number of sequences (NS, thousands)
and their cumulative length (CL, megabase pairs). The dot-dash line depicts the CL lower bound
corresponding to the number of k-mers. b Memory footprint and time to match 10 million k-mers using
BWA. Full results including relative improvements are available in Additional file 5: Table S17–S18
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a factor of 1.38–1.45 (Fig. 6b, bottom part). The observed speedup likely arose from a

combination of factors, including the lower number of sequences (NS), the reduction

of high-frequency spurious k-mers on sequence borders in the composite sequence,

and also the lower memory footprint. Overall, the experiment showed that simplitigs

substantially improve the performance in k-mer matching compared to unitigs in terms

of both memory and speed.

Multiple pan-genomes

We also evaluated the performance of the simplitig representation for simultaneous

indexing of a large number of bacterial pan-genomes (Fig. 7). We downloaded all

complete bacterial genomes from GenBank that had not been excluded from RefSeq

(as of May 2020; 9869 records out of which 9032 had genomic sequences available; the

“Methods” section). We restricted ourselves to complete genomes as draft genomes in

GenBank are substantially impacted by false genetic variability [61–64]. By grouping in-

dividual genomes per species, we obtained 3179 bacterial pan-genomes which we call

the “All” dataset. After computing simplitigs and unitigs per species, we merged the ob-

tained representations and constructed indexes using BWA; all this was done for k =

19, 23, 27, 31 to evaluate the impact of the k-mer length. As none of the unitig indexes

could fit into the RAM of our desktop computer, we also created the “Solid” dataset by

omitting pan-genomes with less than 11 genomes; this resulted in 112 pan-genomes

with 3958 genomes. We provide all the constructed pan-genomes in the form of simpli-

tigs on Zenodo [65].

First, we analyzed the obtained simplitig and unitig representations of both datasets

(Fig. 7a). We observe that simplitigs provided a substantial improvement in both test

characteristics. In the Solid dataset, NS and CL were reduced by simplitigs by a factor

of 3.1–4.5 and 1.4–1.9, respectively, and in the All dataset, NS and CL were reduced by

a factor of 3.0–4.3 and 1.2–1.4, respectively, consistently with the scaling observed pre-

viously (Fig. 4, Fig. 6). While the improvement in NS was almost identical in both data-

sets (consistent with the top-right graph in Fig. 4b), the improvement in CL was clearly

better in the Solid dataset. Indeed, as the vast majority of pan-genomes in the All data-

set contained only one genome, the de Bruijn graphs had a comparatively low number

of branching nodes; therefore, the difference between simplitigs and unitigs was less

striking (consistent with the values for small pan-genome sizes in Fig. 4b). We also ob-

serve that, in contrast to unitigs, k-mer length had only little impact on the CL of sim-

plitigs within the tested range, which provides better guarantees on required

computational resources in future applications.

We then measured the performance of k-mer lookup (Fig. 7b). Both on a desktop

and on a cluster, we evaluated memory footprints, index loading time, and time to

match ten million random k-mers from the index using BWA (the “Methods” section).

We observed that simplitigs substantially improved the memory footprint and index

loading times. For k = 19, simplitigs largely improved the matching times, where the dif-

ference was caused by spurious k-mers on unitig borders; these were more common in

this experiment due to the short k-mer length and the high number of unitigs. For

higher k-mer lengths, simplitigs still provided a moderate improvement in the matching

rate. We note that the query time with BWT-based k-mer indexes is dominated by
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high-frequency k-mers; the observed performance differences are thus likely to be a

consequence of the spurious k-mers on sequence borders as seen previously. On the

desktop, the unitig All-index could not be evaluated as it did not fit into memory, and

the outlier for simplitigs with k = 19 may be the result of memory swapping.

Discussion
We introduced the concept of simplitigs, a light-weight alternative to unitigs, and dem-

onstrated that simplitigs constitute a compact, efficient, and scalable representation of

de Bruijn graphs for various types of genomic datasets. The two representations share

many similarities: they are text-based, and individual strings correspond to spellings of

vertex-disjoint paths. Both representations can be seen as irreversible transforms, taking

Fig. 7 k-mer queries for multiple pan-genomes indexed simultaneously. Bacterial pan-genomes were computed
from the complete GenBank assemblies per individual species. While the All dataset comprises all pan-genomes with
no restriction on their size, the Solid dataset comprises only those that contain at least 11 genomes. a Characteristics
of the obtained unitigs and simplitigs: number of sequences (NS, millions) and their cumulative length (CL, gigabase
pairs). The dot-dash line depicts the lower bound corresponding to the number of k-mers. b Memory footprint, time
of index loading, and time of matching 10 million k-mers using BWA. The bars correspond to the mean of three
measurements (black dots). Full results including relative improvements are available in Additional file 6: Table S19–S23
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a set of input strings and producing a new set of strings preserving the k-mer sets. In

both cases, the resulting files can easily be manipulated using common Unix tools,

indexed using full-text indexes, and further compressed using standard compression

techniques. The main difference is that simplitigs, unlike unitigs, do not explicitly carry

information about the topology of the de Bruijn graph. Furthermore, simplitigs are not

expected to have direct biological significance—adjacent segments of the same simplitig

may correspond to distant parts of the same nucleic acid or even to different ones.

Nevertheless, unitigs can always be recomputed from simplitigs, but this step is not re-

quired for many common applications. Moreover, a concept analogous to simplitigs,

called disjointigs, was recently introduced in the context of genome assembly using A-

Bruijn graphs [66, 67], suggesting that simplitigs may be useful beyond the context of

topology-oblivious applications.

We efficiently computed maximal simplitigs from k-mer sets using ProphAsm, a tool

implementing a greedy heuristic. ProphAsm is a spin-off of the ProPhyle software

(https://prophyle.github.io, [23, 68]) for metagenomic classification, allowing efficient

indexing of k-mers propagated to individual nodes of a phylogenetic tree. ProphAsm

presents a “naive” implementation of the greedy heuristic (Algorithm 1) that can be fur-

ther improved. For instance, a hash table with better memory management can reduce

the memory requirement by a factor of 2.5 [69] and additional memory reduction can

be achieved similarly to previous unitig implementations [39, 40, 70]. On the studied

data, ProphAsm outcompeted BCALM, the most advanced tool for unitigs, in all char-

acteristics measured, with the sole exception of memory in the case of H. sapiens. This

suggests, on the one hand, that simplitigs are generally easier to compute, and, on the

other hand, that tools driven by assembly-centric applications can become inefficient

when graphs contain too many branching nodes, for instance, due to a small k-mer

length. The achieved simplicity of simplitigs and ProphAsm makes them easily applic-

able to batch jobs deployed in parallel on a cluster thanks to the ease of resource pre-

dictability. However, once the number of k-mers in a dataset exceeds a critical

threshold corresponding to the maximum RAM available, more sophisticated computa-

tional approaches using k-mer partitioning will become necessary.

A challenging but also promising feature of simplitig representation is the ambiguity

of maximal simplitigs. This is in sharp contrast to maximal unitigs, which are uniquely

defined (up to the order, reverse complementing, and cycles). In practice, every algo-

rithm for simplitig computation has to decide which edge will be included at each

branching node. Here, we prioritized speed, the simplitigs were constructed progres-

sively, and lexicographically minimal edges were applied in the case of ambiguity.

Therefore, final maximal simplitigs were dependent only on the choice of seeding k-

mers, which are determined by the specific implementation of “std::unordered_set” in

the C++ standard library. Nevertheless, characteristics other than speed could readily

be prioritized. For example, a more sophisticated heuristic could drive CL and NS

closer to the optimum and thus improve compressibility. One could also aim at adding

biological significance to simplitigs; for instance, by preferring those paths that are bet-

ter supported by sequence data. Finally, future streaming algorithms for operations

such as merging or intersecting may require specific prescribed forms of simplitigs.

We note that the simplitig representation was independently and simultaneously

studied under the name “spectrum-preserving string sets” (SPSS) [71]. Both
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representations are conceptually equivalent, corresponding to spelling maximal vertex-

disjoint paths in the graph. Similar to ProphAsm, the associated UST software com-

puted simplitigs using a greedy approach on top of a de Bruijn graph. On the other

hand, ProphAsm and UST come with different complexities and bottlenecks: whereas

ProphAsm computes simplitigs directly from k-mer sets, the UST pipeline first com-

putes unitigs using BCALM. However, as we showed in the “Performance assessment”

section, BCALM performed substantially worse than ProphAsm on our data in all char-

acteristics considered (except memory for H. sapiens). Similar to our approach, [71]

compares representations using the cumulative length of the representation (therein

termed weight), but the number of sequences (NS) was not considered. On the other

hand, [71] established a tighter lower bound on CL compared to ours, taking into ac-

count the graph topology but requiring a computational overhead. Another major dif-

ference between our work and [71] is in the data used for evaluation: while we used k-

mer sets from genome assemblies, [71] considered raw reads with frequency-based k-

mer filtering; as these datasets are fundamentally different, the presented quantitative

measures are not directly comparable across the two papers.

Our work opens many questions and future directions. On the theoretical side, we

anticipate advances in the analysis of the minimum vertex-disjoint path cover problem,

a better connection to results from other disciplines such as network sciences, and im-

provements in the resulting heuristic that could also facilitate parallelization and

streaming. The nature of the algorithm implies that simplitigs can be computed online,

directly from a stream of data such as sequencing reads. Promising directions are re-

lated to different algorithmic techniques, such as sketching [72, 73], and other string

processing concepts, such as minimal absent words [74], shortest superstrings [75], and

textual transforms such as the Burrows-Wheeler Transform [57]. On the practical side,

we anticipate better implementations of simplitig computation, which could also be

plugged into standard bioinformatics libraries for various programming languages. An-

other series of questions is related to low-memory transformations of simplitigs that

would allow precomputing simplitigs on computational clusters and tailoring them to

specific applications on standard computers; this includes decreasing k, performing set

operations on top of simplitig sets, and computing maximal unitigs from maximal sim-

plitigs. A substantial body of work can be anticipated in the direction of text index-

ing—we showed that simplitigs can be combined with full-text indexes; however,

specialized indexes fully exploiting simplitig properties are yet to be developed. Finally,

indexed simplitigs of bacterial pan-genomes could provide a lightweight alternative to

complex tools implementing read mapping and quasi-mapping to reference graphs,

such as VG [28] or Pandora [76].

In modern bioinformatics applications, de Bruijn graphs are oftentimes employed as

core data structures [77], and simplitigs can be used as their components. For instance,

data structures for membership queries [78] relying on unitigs [38, 40–43] could be

redesigned to use simplitigs instead. In many applications, including some of the trad-

itional alignment-free methods [13, 14], it is desirable to consider k-mers with counts,

which leads to so-called weighted de Bruijn graphs [79]; a recent manuscript [80] intro-

duced monotigs which are a form of short simplitigs to encode this information.

Furthermore, multiple de Bruijn graphs are often considered simultaneously; the result-

ing structure is usually referred to as a colored de Bruijn graph [15] and the associated
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data structures have been also widely studied [41, 43, 51, 81–89]. Although we touched

upon this issue in the “Multiple pan-genomes” section, exploiting the similarity

between individual de Bruijn graphs for further compression in simplitig-based

approaches will be addressed in our future work.

Conclusions
We addressed the question of efficient and scalable representation of de Bruijn graphs.

We showed that unitigs, the state-of-the-art representation, may require inadequately

large computational resources, especially when de Bruijn graphs contain many branch-

ing nodes. We introduced simplitigs, which provide a more compact replacement in

applications that do not require explicit information on the graph topology, such as

alignment-free sequence comparison and k-mer indexing. We introduced a heuristic

for simplitig computation and showed on the examples of model species that unless

the genome is large, even a naive implementation of simplitigs outperforms BCALM,

the main state-of-the-art tool for unitigs. We then studied applications to bacterial

pan-genomics and showed that the utility of simplitigs compared to unitigs grows as

more data are available. We also studied the applications of simplitigs to de Bruijn

graph storage and showed that in the case of single genomes, assemblies provide a bet-

ter compression rate, but for bacterial pan-genomes, simplitigs are preferential. Finally,

we demonstrated on the example of full-text k-mer indexing that simplitigs can sub-

stantially reduce computational resources in downstream applications. Our experiments

also highlight a better scaling of simplitigs for growing datasets: as we have shown in

the paper, with more data available, the comparative benefits of simplitigs over unitigs

become more important. While the growth of public databases negatively impacts the

accuracy of algorithms using inexact representations (e.g., those based on LCA) [90],

simplitigs provide a promising solution offering both exactness and scalability. There-

fore, we envision the simplitig representation and its derivatives to become a generic

compact representation of de Bruijn graphs, in particular, in the context of large-scale

sequence data search engines [88, 91] and repositories such as those of NCBI and

EBI.

Methods
de Bruijn graphs

All strings are assumed to be over the alphabet {A, C,G, T}. A k-mer is a string of

length k. For a string s = s1⋯sn, we define prefk(s) = s1⋯sk and sufk(s) = sn − k + 1⋯sn. For

two strings s and t of length at least k, we define the binary connectivity relation s→kt

if and only if sufk(s) = prefk(t). If s→kt, we define the k-merging operation ⊙k as s⊙kt =

s · suf∣t ∣ − k(t).

Given a set K of k-mers, the de Bruijn graph of K is the directed graph G = (V, E) with

V = K and E = {(u, v) ∈ K2 | u→k − 1v}. For every path p = (v1,…, vp) in G, the string

v1⊙
k − 1v2⊙

k − 1…⊙k − 1vp is called a spelling of p. This definition of de Bruijn graphs is

node-centric, as nodes are identified with k-mers and edges are implicit, and we can

use the terms “k-mer set” and “de Bruijn graph” interchangeably.
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Simplitigs

Consider a set K of k-mers and the corresponding de Bruijn graph G = (K, E). A simpli-

tig graph G′ = (K, E′) is a spanning subgraph of G that is acyclic and the in-degree and

out-degree of any node is at most one. It follows from this definition that a simplitig

graph is a vertex-disjoint union of paths, whose spellings we call simplitigs. A simplitig

is called maximal if it cannot be extended forward or backward without breaking the

definition of simplitig graph. In more detail, a simplitig u1→k − 1u2→k − 1…→k − 1un is

maximal if the following conditions hold:

� Either u1 has no incoming edges in G, or for any edge (v, u1)∈ E, v belongs to

another simplitig and it is not its last vertex

� Either un has no outgoing edges in G, or for any edge (un, v)∈ E, v belongs to

another simplitig and it is not its first vertex

A unitig is a simplitig u1→k − 1u2→k − 1…→k − 1un such that each of the nodes u2, …,

un has in-degree 1 and each of the nodes u1, …, un − 1 has out-degree 1 in graph G. A

maximal unitig is defined similarly.

Comparing simplitig and unitig representations

Simplitig and unitig representations were compared in terms of the number of se-

quences produced (NS) and their cumulative length (CL). For any set of simplitigs (i.e.,

not necessarily maximal ones), NS is bounded by 1 and #kmers, CL is bounded by

#kmers and k · #kmers. The upper bound corresponds to the state of maximal fragmen-

tation, where every k-mer forms a simplig. The lower bound corresponds to the max-

imum possible degree of compaction, i.e., a single simplitig containing all k-mers.

NS and CL are readily connected by the following formula:

CL ¼ #kmersþ k − 1ð Þ � NS ð1Þ

As an important consequence, both characteristics are optimized simultaneously.

Greedy computation of simplitigs

The problem of computing maximal simplitigs that are optimal in CL (i.e., also in NS)

corresponds to the minimum vertex-disjoint path cover problem [92]. This is known to

be NP-hard in the general case, by reduction from the Hamiltonian path problem.

However, the complexity for de Bruijn graphs remains an open question. A greedy

heuristic to compute maximal simplitigs has been used throughout this paper (Algo-

rithm 1). Simplitigs are constructed iteratively, starting from (arbitrary) seeding k-mers

and being extended greedily forwards and backwards as long as possible.

ProphAsm implementation

ProphAsm is written in C++ and implements the greedy approach described above

(Algorithm 1). k-mers are encoded using uint64_t and stored in an std::unordered_

set. The choice of extension nucleotides on branching nodes is done based on the

lexicographic order. Therefore, the only source of randomness is the choice of

seeding k-mers by std::unordered_set::begin; the C++ standard library makes no

guarantees on which specific element is considered the first element. ProphAsm
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does not require any disk space to store intermediate data and its memory con-

sumption corresponded to 38–51 bytes per a unique k-mer (in dependence on the

allocation), consistent with [69].

Uni-directed and bi-directed models

The uni-directed model, as presented above, is useful for introducing the concepts of

unitigs and simplitigs, but it is not directly applicable to data obtained using sequen-

cing: since DNA is double-stranded, every string may come from either strand. At the

level of k-mers, double-strandedness can be accounted for by using canonical k-mers,

i.e., by pairing-up every k-mer with its reverse complement, typically done by taking

the lexicographical minimum of the k-mer and its reverse complement. This subse-

quently requires redefining de Bruijn graphs to bi-directed de Bruijn graphs [93], which

requires a more complex formalism.

Correctness evaluation

The correctness of simplitig computation can be verified using an arbitrary k-mer

counter. Simplitigs have been computed correctly if and only if every k-mer is present

exactly once and the set of distinct k-mers is the same as in the original datasets. The

correctness of ProphAsm outputs was verified using JellyFish 2 [30].

Experimental evaluation—model organisms and performance

Reference sequences for six selected model organisms were downloaded from RefSeq and

UCSC Genome Browser: S. pneumoniae str. ATCC 700669 (accession: NC_011900.1, length

2.22 Mbp), E. coli str. K-12 (accession: NC_000913.3, length: 4.64 Mbp), S. cerevisiae (acces-

sion: NC_001133.9, length: 12.2 Mbp), C. elegans (accession: GCF_000002985.6, length: 100

Mbp), B. mori (accession: GCF_000151625.1, length: 482 Mbp), and H. sapiens (HG38, http://

hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/hg38.fa.gz, length: 3.21 Gbp). For each

genome, simplitigs and unitigs were computed using ProphAsm and BCALM, respectively,

for a range of k-mer lengths [11..32].

Individual experiments were run in parallel on the Harvard Medical School O2 cluster

using Snakemake [94] and SLURM. ProphAsm and BCALM were run with the follow-

ing parameters, respectively: “-k {kmer-length}” and “-kmer-size {kmer-length} -abun-

dance-min 1 -nb-cores {cores} -max-disk 30000.” As BCALM requires a large

undocumented amount of disk space, we used the -max-disk parameter to make a par-

allel execution of many BCALM jobs feasible. The SLURM specifications of resource

allocation for individual species were iteratively adjusted until all jobs would finish; the

final required resources are provided in Additional file 2: Table S9. Time and memory

consumption of jobs were measured independently using GNU Time. Individual jobs

were deployed to computational nodes with different hardware configurations, which

are specified in Additional file 2: Table S10.

Experimental evaluation—bacterial pan-genomes

First, 1102 draft assemblies of N. gonorrhoeae clinical isolates (collected from 2000 to

2013 by the Centers for Disease Control and Prevention’s Gonococcal Isolate Surveil-

lance Project [48], and sequenced using Illumina HiSeq) were downloaded from
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Zenodo [95]. Second, 616 draft assemblies of S. pneumoniae isolates (collected from

2001 to 2007 for a carriage study of children in Massachusetts, USA [49, 50], and se-

quenced using Illumina HiSeq) were downloaded from the SRA FTP server using the

accession codes provided in Table 1 in [50]. For each of these datasets, an increasing

number of genomes were being taken and merged, and simplitigs and unitigs computed

using ProphAsm and BCALM, respectively. This experiment was performed for k = 18

and k = 31. To avoid excessive resource usage the functions were evaluated at selected

points in an increasing distance: for intervals [10..96] and [100..+∞] only multiples of 5

and 20 were evaluated, respectively.

Experimental evaluation—compression

The same six model organisms and two bacterial pan-genomes as above were used for

the evaluation of compression. In the case of the pan-genomes, the 616 and 1102 as-

semblies of S. pneumoniae and N. gonorrhoeae were merged into single files, respect-

ively. Simplitigs and unitigs were computed using ProphAsm and BCALM, respectively,

as previously. All the obtained FASTA files were converted to the same cleaned format:

first, sequences were split at unknown nucleotides using Seqtk [96] (v1.3-r106, “seqtk

cutN -n1”), sequences shorter than 18 bp discarded, all sequences converted to the

one-line format (“seqtk seq -U -C -L18”) and renamed to sequentially assigned num-

bers using bioawk (v1.0–20110810, "bioawk -c fastx" {{ print ">" ++i" \\n"$seq }}"). The

BOSS representation [51] was computed using Themisto [52, 53] (commit 21a48ec,

“build_index --mem-megas 20000 --k {kmer-length} --input-file {input-file} --n-threads

8”) and the obtained files merged using tar. The xz software was applied to the FASTA

and BOSS files with the best compression level and a single thread (XZ Utils v5.2.5, “xz

-T1 -v -9”). Finally, the sizes of the obtained files were computed using wc (“wc -c”).

Experimental evaluation—full-text k-mer queries

In the single pan-genome experiment, the same 1102 assemblies of N. gonorrhoeae

were merged into a single file. ProphAsm and BCALM were then used to compute sim-

plitigs and unitigs, respectively, from this file for k = 19, 23, 27, 31. Each of the three

obtained FASTA files (assemblies, simplitigs, and unitigs) was used to construct a

BWA index, which was then queried for k-mers using “bwa fastmap -l {kmer-length}

-w 99999”. The “-w” parameter (the maximum size of suffix-array intervals) was neces-

sary for ensuring evaluation correctness; otherwise, certain k-mers would be discarded

from matching, inconsistently across the three considered representations. We used a

modified version of BWA fastmap that reports both the time of index loading and the

time of querying (http://github.com/karel-brinda/bwa, commit e1f907c). Query k-mers

were generated from the same pan-genome using WGsim (version 1.10, “wgsim -h 0 -S

42 -r 0.0 -1 {kmer-length} -N 10000000 -e 0”).

For the multiple pan-genome experiment, a list of available bacterial assemblies was

downloaded from ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/assembly_

summary.txt (2020/05/05). For all assemblies marked as complete (i.e., the “assembly_

level” column equal to “Complete genome”) and present in RefSeq (i.e., an empty value

in the column “excluded_from_refseq”), directory URLs and species names were ex-

tracted (n = 9869). These were then used to download the genomes of the isolates using
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RSync, restricted to genomic sequences only (i.e., files matching “*v?_genomic.fna.gz,”

n = 9032). The downloaded assemblies were then merged per species in order to collect

k-mers of individual pan-genomes and used for computing simplitigs and unitigs using

ProphAsm and BCALM, respectively. The obtained simplitig and unitig files were then

merged per categories (e.g., simplitigs for k = 19) and used to construct BWA indexes.

The obtained indexes were queried for 10 million k-mers using BWA fastmap as pre-

viously. The k-mers were generated from the original assemblies of randomly selected

100 genomes using DWGsim [97] (version 0.1.11, “dwgsim -R 0 -e 0 -r 0 -X 0 -y 0 -H

-z 42 -m /dev/null -N 10000000 -1 {kmer-length} -2 0”); the randomization was

performed using “sort -R”.

Computational setup

The experiments were performed on the HMS O2 research high-performance cluster

and on an iMac 4.2 GHz Quad-Core Intel Core i7 with 40 GB RAM. The reproducibil-

ity of computation was ensured using BioConda [98]. All benchmarking was performed

using ProphAsm 0.1.1 (commit ea28b708) and BCALM 2.2.2 (commit febf79a3); in the

BCALM version experiment, its performance was compared to BCALM 2.2.3 (commit

1f8a8b1). Time and memory footprint were measured using GNU Time.
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studied methods, k = 18, 31, before and after compression using xz. Supplementary Table S16. The resulting
compression ratios for individual experiments.

Additional file 5. Detailed information for the single N. gonorrhoeae pan-genome k-mer indexing experiment.
Supplementary Table S17. Characteristics of the resulting pan-genome simplitigs and unitigs for k = 19,23,27,31.
Supplementary Table S18. Performance of k-mer querying for the pan-genome: memory footprint, index load-
ing time and time to query 10 million k-mers using BWA.

Additional file 6. Detailed information for the multiple pan-genomes k-mer indexing experiment. Supplemen-
tary Table S19. List of all genomes used for building the pan-genomes (accession code, version, species, filename,
number of sequences, genome size [bp]); Supplementary Table S20. List of species and the number of genomes
included. Supplementary Table S21. Characteristics of the resulting simplitigs and unitigs of individual species
pan-genomes for k = 19,23,27,31. Supplementary Table S22. Characteristics of the resulting simplitigs and unitigs
for the All-dataset and Solid-dataset and k = 19,23,27,31. Supplementary Table S23. Performance of k-mer query-
ing for the pan-genome: memory footprint, index loading time and time to query 10 million k-mers using BWA (in-
dividual repetitions).
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