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Abstract

Introduction: Genes contain multiple promoters that can drive the expression of
various transcript isoforms. Although transcript isoforms from the same gene could
have diverse and non-overlapping functions, current loss-of-function methodologies
are not able to differentiate between isoform-specific phenotypes.

Results: Here, we show that CRISPR interference (CRISPRi) can be adopted for
targeting specific promoters within a gene, enabling isoform-specific loss-of-function
genetic screens. We use this strategy to test functional dependencies of 820
transcript isoforms that are gained in gastric cancer (GC). We identify a subset of GC-
gained transcript isoform dependencies, and of these, we validate CIT kinase as a
novel GC dependency. We further show that some genes express isoforms with
opposite functions. Specifically, we find that the tumour suppressor ZFHX3 expresses
an isoform that has a paradoxical oncogenic role that correlates with poor patient
outcome.

Conclusions: Our work finds isoform-specific phenotypes that would not be
identified using current loss-of-function approaches that are not designed to target
specific transcript isoforms.

Introduction
Transcript isoforms are a major source of bio-diversity and have a critical role in

regulating biological responses. In mammalian cells, two main mechanisms drive

the generation of transcript isoforms: alternative splicing and differential promoter

usage. Alternative splicing is a post-transcriptional mechanism to generate tran-

script isoforms and uses the splicing machinery. Differential promoter usage is a

mechanism by which alternative promoters within a gene drive the expression of

different transcript isoforms [1]. Promoter usage is defined by measurable
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epigenetic promoter changes that include H3K4me3 and H3K27ac [2–4]. RNA-Seq

in conjugation with ChIP-Seq profiling in human cells has shown that the majority

of transcript isoforms are produced by differential promoter usage rather than al-

ternative splicing [5]. Consistent with these observations, most genes in the human

genome contain multiple promoters that have the ability to transcribe various iso-

forms [6, 7]. Although we do not fully understand how cells determine which pro-

moter to use, selection of a particular promoter will lead to the expression of a

specific transcript isoform with a unique function. Therefore, in addition to regu-

lating when a gene is transcribed, promoters also regulate which isoforms are

expressed.

Large-scale programs such as the FANTOM network use CAGE-Seq to measure

the abundances of transcript isoforms in various tissue organisms and disease con-

ditions [8]. These studies found that transcript isoforms are tissue and cell type-

specific, and different isoforms are expressed or suppressed in different disease

states. In cancer, we and others found that gain and loss of promoters is pervasive,

resulting in the expression of hundreds of cancer-specific transcript isoforms [9,

10]. Indeed, some cancer associate isoforms such as ALK [11] and RASA3 [10]

were shown to play a role in cancer progression while other cancer-specific iso-

forms such as ERBB2 were found to have a better prognostic value then canonical

ERBB2 expression [9]. Furthermore, in some cases, isoforms from the same gene

could have unique and sometimes opposite functions. For example, the anti-

apoptotic BCL2L1 gene expresses two isoforms that have different protein prod-

ucts: BCL-xL which inhibits apoptosis and BCL-xS which promotes apoptosis [12].

Taken together, all the emerging data demonstrate the importance of transcript

isoforms in regulating biological processes. Recognising the importance of isoforms,

over the past years, there have been a large number of experimental approaches

that have been developed to measure isoform abundances [2, 8]. The next step is

to define the function of these transcript isoforms using gain- and loss-of-function

studies. However, despite the dramatic progress we have made in functional gen-

omics, approaches for isoform-specific functional screens are still lacking.

CRISPR technology has been rapidly transforming our ability to understand gene

function in normal or disease conditions [13]. CRISPR knockout (CRISPRko) tar-

gets WT Cas9 to gene exons generating indels and missense mutations that ultim-

ately result in suppressing the expression of the target gene [14]. Since many

transcript isoforms share a large portion of their exons, it is challenging to design

isoform-specific CRISPRko sgRNAs. CRISPRi uses a catalytically inactive Cas9

(dCas9) fused to a transcription repressor (KRAB) that when targeted to a pro-

moter inhibits gene expression [15]. A major limitation in the use of CRISPRi is

the requirement to identify the exact location of the transcriptional start site

(TSS). In fact, others [16] and us [17] have shown that CRISPRi works only within

a limited window from the TSS. Although these properties are challenging in CRIS

PRi screens aimed at identifying phenotypes associated with genes, in this case,

CRISPRi enables highly specific differential targeting of promoter-driven isoforms.

Here, we exploited this feature of CRISPRi and developed a CRISPRi sgRNA library

that targets promoters that are gained or lost in GC and drive the expression of

GC-associated transcript isoforms.
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Results
Targeting of dCas9-KRAB to promoters results in suppressing the expression of specific

isoforms

Our previous work using tiling sgRNA libraries found that a critical consideration in

the design of effective CRISPRi sgRNAs is the distance from the TSS [17]. Others and

us have shown that CRISPRi-induced phenotypes are only observed when dCas9-KRAB

is targeted to a defined region that is located ± 150 bp from the TSS [16, 18]. Based on

these observations, we hypothesised that targeting of dCas9-KRAB to a specific pro-

moter within a gene will enable isoform-specific suppression. To test this hypothesis,

we used the HNF4A gene which expresses two transcript isoforms (P1 and P2 in

Fig. 1a). Both of these HNF4A isoforms show a CAGE-Seq peak (Fig. 1a, bottom panel)

indicating that both of these transcripts are expressed. Following infection of YCC3

cells with sgRNAs targeting HNF4A promoter P1 or promoter P2, we measured the ex-

pression of these two HNF4A transcript isoforms using isoform-specific primers. We

found that sgRNAs targeting promoter P1 had an effect only on HNF4A isoform 1 ex-

pression (Fig. 1b), and sgRNA targeting promoter P2 inhibited only HNF4A isoform 2

expression (Fig. 1c).

To assess the ability of CRISPRi to induce isoform-specific phenotypes, we developed

a pooled sgRNA library targeting 55 pan cell-essential genes (defined as genes that had

a lethal effect in more than 90% of cell lines in DepMap [20]). For each of these 55

genes, we used high-coverage RNA-Seq in 4 cell lines and the transcript-specific Sal-

mon algorithm [21] (Additional file 2: Table S1) to identify the most highly expressed

isoform as well as the second most abundant transcript. Based on these annotations,

we designed a pooled sgRNA library (Additional file 2: Table S2) and used this library

to transduce 5 GC cell lines and one normal immortalised gastric cell line (HFE145).

Genomic DNA extracted 21 days post-infection was used for sequencing and quantifi-

cation of sgRNA abundances. Using this dataset, we found that only sgRNAs targeting

the most abundant transcript had the expected anti-proliferation effect. For example,

IMP3 is a pan-essential gene that contains two known promoters (P1 and P2 in Fig. 1d).

CAGE-Seq analysis from the FANTOM5 consortium [8] shows that different from

HNF4A (Fig. 1a), only the P2 promoter of IMP3 is active while P1 has only residual

transcriptional activity (Fig. 1d). Consistent with these measurements, we found that

sgRNAs targeting dCas9-KRAB to the P2 promoter and not the P1 promoter had the

expected lethal effect (Fig. 1e) demonstrating that CRISPRi mediates isoform-specific

phenotypes. We further validated these observations across the larger panel of 55 pan-

essential transcripts. We found that only sgRNAs targeting high expressing pan-

essential transcripts had the expected anti-proliferation effect while sgRNAs targeting

the low expressing transcripts had no effect on proliferation (Fig. 1f and Additional file 1:

Fig. S1A-E). Taken together, our results demonstrate CRISPRi as a reliable tool for

inhibiting the expression from specific promoters.

CRISPRi screen of gastric cancer-associated isoforms identifies isoform-specific

dependencies

Using nano-chip-seq, we have previously measured the abundance of H3K4me3, a

histone mark that is present in transcriptionally active promoters, in tumour and
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adjacent normal tissue from 17 GC patients [10]. By comparing H3K4me3 abundance

in tumour and normal pairs from these patients, we identified a set of transcript iso-

forms that are gained or lost in GC (Fig. 2a and Additional file 2: Table S3). As an ex-

ample, we show a representative profile of TRPM2, a gained GC-associated isoform

(Fig. 2b). In both GC patient tumours and cultured cell lines, gain of promoter activity

in the TRPM2 gene leads to the expression of a cancer-specific isoform.

Using gene set enrichment analysis (GSEA) [23], we assessed the pathways enriched

in these GC gained or lost isoforms and found that upregulated GC-associated isoforms

are enriched with genes whose promoters are regulated during embryonic development

(Fig. 2c) consistent with the fact that we identified these active promoters by profiling

promoter regulation. GC isoforms that are lost are enriched with known downregulated

Fig. 1 CRISPRi as a tool for inhibition of specific promoter-driven transcript isoforms. a Structure of the
HNF4A gene. Isoforms P1 and P2 are marked. CAGE-Seq peaks from the FANTOM project [19] are shown in
the bottom panel. b qRT-PCR quantification of HNF4A transcript P1 following CRISPRi-mediated suppression
of transcript P1 or P2. Data is shown as mean ± SD, n = 2. pValue is calculated using two-tailed unpaired t
test (***p≤ 0.001). c qRT-PCR quantification of HNF4A transcript P2 following CRISPRi-mediated suppression
of transcript P1 or P2. Data is shown as mean ± SD, n = 2. pValue is calculated using two-tailed unpaired t
test (***p≤ 0.001). d Structure of the IMP3 gene. Isoforms P1 and P2 are marked. CAGE-Seq peaks from the
FANTOM project are shown in the bottom panel. e Violin plot showing IMP3 dependency following CRIS
PRi-mediated suppression of different isoforms in GC cell lines. Dots represent individual sgRNAs targeting
the indicated IMP3 transcript isoform. pValue is calculated using two-tailed unpaired t test (****p≤ 0.0001,
*p≤ 0.05). f Distribution of sgRNAs targeting different transcript isoforms of 55 pan cell-essential transcripts.
Green, negative control sgRNAs. Purple, sgRNAs targeting the highest expressed (based on RNA-Seq)
transcript isoform. Red, sgRNAs targeting the low expressed (based on RNA-Seq) transcript isoform
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GC genes (Fig. 2c). These observations suggest that transcript isoforms that are gained

or lost in GC drive the expression of functional transcript isoforms.

To assess the functional role of these GC-associated transcript isoforms, we per-

formed a systematic pooled CRISPRi proliferation screen. We selected GC-associated

Fig. 2 CRISPRi screen identifies GC essential transcript isoforms. a Transcripts with gain or loss (compared to
adjacent normal) of H3K4me3 signal in GC. Fold change is calculated by comparing H3K4me3 signals in
tumour and adjacent normal tissue. H3K4me3 signals are an average of 17 tumour or normal signals from
[10]. b Example H3K4me3 profiles of a gained GC transcript, TRPM2. c GSEA showing the top-scoring
enriched pathways of transcripts with gain or loss of H3K4me3. d Scheme describing the isoform-specific
CRISPRi screen. A library containing 8852 sgRNAs targeting 820 GC gained transcripts was used to identify
transcripts that are essential for the proliferation of normal gastric (HFE145) or 5 GC cell lines. e Distribution
of sgRNAs targeting negative controls or core essential genes. f Expression levels of AXIN2, a WNT target
gene, in GC cell lines. g Violin plot showing CTNNB1 dependency in GC cell lines. Dots represent individual
CTNNB1 targeting sgRNAs. pValue between WNT-active and WNT-inactive cell lines was calculated using
two-tailed unpaired t test. (*p ≤ 0.05). h–m MAGeCK analysis [22] was used to identify transcript isoforms
that are essential in a normal gastric cell line (HFE145) or 5 GC cell lines. GC gained transcripts are in blue,
and unaltered transcripts are in grey. Pan-essential genes (genes that score as essential in ≥ 90% of cell
lines in DepMap) are indicated with a red border
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isoforms for screening based on the following criteria: (a) GC-specific promoters with

the deregulation of H3K4me3 in ≥ 2 samples (normal vs cancer); (b) RNA-Seq in pri-

mary GC shows high isoform expression (FPKM ≥ 5). Based on these criteria, we se-

lected 820 isoforms (Additional file 2: Table S3) and designed a pooled CRISPRi

sgRNA library targeting the promoters of these gained/lost isoforms (6 sgRNAs/tran-

script, Additional file 2: Table S2). For each of these transcripts, we also included

sgRNAs targeting an unaltered isoform (Additional file 2: Table S2). Although in many

cases, the unaltered transcript is not expressed in these cells (Additional file 2: Table

S3), this control enables to determine the specificity of this approach. sgRNAs were de-

signed by identifying the promoter sequence using CAGE-Seq, and the sgRNAs were

selected to be ± 150 bp from the TSS. Since some of these regions are highly AT or GC

rich, for some of these promoters, only a limited number of sgRNAs are available. To

ensure sgRNA specificity, we selected sgRNAs that only aligned once to the human

genome. In addition, as positive controls, we included 612 sgRNAs targeting 102

known core cell essential genes [24, 25] and 1064 negative control sgRNAs. Following

library transduction, cells were propagated for 21 days followed by DNA extraction and

quantification of sgRNA abundance (Fig. 2d). Negative control sgRNAs had no effect,

and as expected, suppression of core essential genes had a dramatic anti-proliferation

effect (Fig. 2e and Additional file 1: Fig. S2A-E). Furthermore, known oncogenes

showed expected dependencies. For example, the WNT/β-catenin pathway is deregu-

lated in 3 of these 6 cell lines, consistent with previous observations [26, 27] and as

measured by AXIN2 expression (Fig. 2f). As expected, β-catenin (CTNNB1) targeting

sgRNAs had an anti-proliferation effect only in WNT/β-catenin active cell lines

(Fig. 2g). To identify GC essential isoforms, we used MAGeCK analysis [22] to calculate

isoform dependency scores in 5 GC cell lines (SNU1750, TMK1, SNU484, OCUM1

and YCC3) and one normal immortalised gastric cell line (HFE145) (Additional file 2:

Table S4). As statistically significant isoform dependencies, we considered isoforms

with an FDR ≤ 0.1. As expected, the majority of scoring transcripts are pan-essential

genes (Fig. 2h–m) and are not likely to be directly involved in GC.

To identify GC-gained transcripts that are also essential in multiple GC cell lines, we

eliminated pan-essential transcripts and compared transcript dependencies among 5

GC cell lines (Fig. 3a). We found 24 transcripts that were essential in at least 1 cell line;

10 of these transcripts were essential in ≥ 2 cell lines (Fig. 3a). We have previously

shown that bidirectional promoters are a major source of off-target effects in CRISPRi

screens [17]. Specifically, sgRNAs directed to a particular TSS will also target any TSS

located within 1000–2000 bp from that sgRNA. We found that 5 transcripts are located

within 2000 bp from another TSS (Additional file 1: Fig. S3A). Three of these 5 tran-

scripts (ATP5A1, ARPC5L and KIAA0895) are located in close proximity to a pan-

essential gene and most likely scored due to off-target inhibition of the cell-essential

gene (Additional file 1: Fig. S3B). Our analysis revealed 7 transcripts that show a gain

of H3K4me3 in GC and are essential for GC proliferation (Fig. 3b). To prioritise these

transcripts, we compared GC dependencies to a non-transformed gastric cell line

(HFE145) (Fig. 3b). We validated three transcript isoforms which showed greater de-

pendency in GC than in normal immortalised cells including CIT, CCNE1 and MTA3.

The proliferation phenotype we observed following the introduction of sgRNAs target-

ing these GC-gained transcripts was isoform-specific. We found that sgRNAs targeting
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a promoter from the same gene that drives the expression of a transcript that is un-

altered, and many times not expressed, had no effect on proliferation (Fig. 3c–e). In

consonance, with these observations, H3K4me3 abundance in the promoters of these

isoforms was higher in GC tumours compared to adjacent normal tissue (Fig. 3f–h).

Thus, we have identified two types of transcripts: (a) transcripts that are not expressed

in normal conditions and are gained in cancer (e.g. CIT, CCNE1) and (b) transcripts

that gain an additional cancer-associated transcript (e.g. MTA3, ZFHX3).

Validation of CIT, CCNE1 and MTA3 as isoform-specific GC dependencies

To validate these observations, we cloned individual sgRNAs targeting these GC-gained

transcripts (Additional file 2: Table S7). Following sgRNA infection, we used a crystal

violet proliferation assay as a readout and found that all the sgRNAs that scored in our

screen also inhibited proliferation as individual sgRNAs (Fig. 4a, b). Consistent with

these observations, all sgRNAs that showed a proliferation phenotype inhibited target

Fig. 3 CRISPRi screen identifies GC-specific transcript isoforms. a Transcripts with an FDR ≤ 0.1 as
determined by MAGeCK analysis were considered significant. Venn diagram showing the transcripts that
score in multiple GC cell lines (not including pan-essential genes). Crossed genes exhibit a bidirectional
promoter that is shared with a cell-essential gene (Additional file S3). b Heatmap showing GC-essential
isoform dependencies. HFE145 is a normal gastric cell line. c–e Violin plots showing sgRNAs targeting CIT,
CCNE1 and MTA3. Dots represent individual targeting sgRNAs. f–h H3K4me3 signals in promoter regions of
CIT, CCNE1 and MTA3 from GC patient tumour and adjacent normal tissue showing that these essential
transcripts are gained in most GC patient samples
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expression (Additional file 1: Fig. S4A-C). Since out of these transcripts only MTA3 ex-

presses two unique isoforms (Additional file 2: Table S3), we confirmed that the MTA3

sgRNAs inhibit only the targeted isoform (Additional file 1: Fig. S4C). Similar to what

we observed with TRPM2 (Fig. 2b), the non-essential transcript had very low levels of

expression in these cells. We further observed a similar anti-proliferation effect using a

BrDU assay (Fig. 4c) demonstrating the reliability of these observations. As an add-

itional approach, we used an anchorage-independent growth assay in YCC3 cells. We

found that suppression of CIT had a dramatic effect on anchorage-independent growth

while CCNE1 or MTA3 did not show a decrease in colony formation (Fig. 4d–f).

Of the two CIT promoters, only P1 drives the expression of a transcript that is gained

and essential in GC (Fig. 4g). We validated these observations using another histone

mark (H3K27ac) and by isoform-specific PacBio long-read mRNA sequencing (Fig. 4g).

To further validate CIT dependency, we used a larger panel of GC cell lines (Fig. 4h).

Although H3K4me3 is gained in most of these cell lines (Additional file 2: Table S3),

only four of these eight cell lines were CIT-dependent (Fig. 4h). CIT mRNA and

protein were expressed in all CIT-dependent cell lines (Fig. 4i, j). Two of the CIT-inde-

pendent cell lines (Rerf, OCUM1) had very low CIT expression and no detectable CIT

protein (Fig. 4i, j) suggesting that in these cell lines, H3K4me3 signals did not result in

CIT expression. Surprisingly, we found that although CIT mRNA and protein levels

were high in HFE145 and SNU1750 (Fig. 4i, j), these cells were not sensitive to

suppression of CIT (Fig. 4h). This type of de novo resistance is found for many known

oncogene dependencies and is typically associated with activation of alternative

pathways.

CIT is a serine/threonine kinase that is required for localisation of the kinesin KIF14

and plays a role in cytokinesis [28]. Consistent with these reports, CIT and KIF14 CRIS

PRko dependency profiles [20] are highly correlated (Additional file 1: Fig. S5A) suggest-

ing a similar function. To gain insights into the cellular processes regulated by CIT in GC,

we used mass spectrometry to quantify phosphorylated proteins following CIT knock-

down (Additional file 2: Table S5). Among the 15 proteins with a significant phosphoryl-

ation reduction (p < 0.05), 6 (40%) are known cytoskeleton regulators (Fig. 5a).

Phosphorylation of NDRG1, a regulator of the cytoskeleton that has been implicated

in cancer migration and invasion [30, 31], was dramatically downregulated following

the suppression of CIT expression. We further validated these findings using a

phospho-NDRG1 antibody (Fig. 5b). These observations identify CIT as a regulator of

the cytoskeleton and suggest CIT inhibitors as a strategy to inhibit cancers with a gain

of CIT expression.

To identify CIT inhibitors, we queried the L1000 drug repurposing database [29].

Specifically, following CIT suppression in YCC3 cells, we used RNA-Seq to measure

the changes in the gene expression (Additional file 1: Fig. S5B and Additional file 2:

Table S6). By selecting the top 100 up- and downregulated genes, we generated a CIT

signature that was used to query the L1000 expression signature database [29]. Consist-

ent with our proteomic analysis, we found that the CIT and “tubulin inhibitor” signa-

tures were highly correlated (Fig. 5c, d). We also found a strong connection between

CIT and the “PKC activator” signature. We validated these findings, by treating CIT-

dependent and CIT-independent cell lines with two PKC activators (Fig. 5e, f). PKC ac-

tivators had a dramatic inhibitory response on CIT-sensitive GC cell lines. However,
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PKC activators did not inhibit CIT targets such as NDRG1 phosphorylation

(Additional file 1: Fig. S5C-F). These results further confirm CIT as a cytoskeleton

regulator and demonstrate PKC activators as drug mimetics of CIT.

Fig. 4 Validation of GC-essential isoforms. a Crystal violet proliferation assay following CRISPRi-mediated
suppression with sgRNAs targeting CIT, CCNE1 and MTA3. Data is shown as mean ± SD, n = 2; each dot is a
different sgRNA. b Images from crystal violet proliferation assay of HFE145 (normal gastric cell line) or YCC3
(GC cell line) 7 days post-infection with sgRNAs targeting CIT, CCNE1 or MTA3. c BrDU proliferation assay. 7
DPI with the indicated sgRNAs. Data is shown as mean ± SD, n = 2; each dot is a biological replicate of the
indicated sgRNA. pValue is calculated using two-tailed unpaired t test. (*p≤ 0.05). d Anchorage-
independent growth of YCC3 cells following CRISPRi-mediated suppression of the indicated genes.
Following sgRNA infection, 50,000 cells were plated on a semisolid surface. A number of colonies were
quantified by counting 5 different images for each sgRNA. Data is shown as mean ± SD; each dot is a
different image. pValue is calculated using two-tailed unpaired t test. (*p≤ 0.05). e Images of YCC3 colonies
in control cells or following suppression of CIT expression. f WB showing the CIT expression in YCC3 cells
following CRISPRi-mediated suppression. g H3K4me3 and H3K27Ac at the CIT promoter in GC tumours and
adjacent normal tissue. Bottom panel shows the CIT PacBio sequencing in GC cell lines. h The indicated GC
cell lines were infected with control or CIT-targeting sgRNAs (two sgRNAs). Seven days post-infection, cell
proliferation was assessed using a crystal violet staining assay. The results are plotted as an average ± SD of
two sgRNAs. Each dot represents a different sgRNA. pValue is calculated using two-tailed unpaired t test.
(*p≤ 0.05). i CIT RNA-Seq reads in GC cell lines. j CIT protein levels in GC cell lines
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Promoter specific CRISPRi screens identify isoform-specific functions for the tumour

suppressor ZFHX3

ZFHX3 is known as a tumour-suppressor gene (TSG) that is frequently mutated in

various cancer types [32, 33]. Opposite to what we expected from a TSG, we found that

50% (8/16) of GC tumours had upregulated H3K4me3 on the ZFHX3 promoter

(Fig. 6a). ZFHX3 has two isoforms that are expressed from two promoters (Fig. 6b);

however, only P2 showed GC-specific gain of H3K4me3 (Fig. 6b). Consistent with this

observation, PacBio sequencing identified the P2 transcript in cancer cell lines (Fig. 6b).

The two ZFHX3 isoforms encode a similar catalytic protein; however, the P2 transcript

has additional 914aa at its N terminus (Fig. 6c).

Fig. 5 CIT regulates the cytoskeletal and microtubule network in GC cell lines. a Phosphoproteins detected
in YCC3 cells following CRISPRi-mediated suppression of CIT expression (results are shown as an average of
two CIT sgRNAs in duplicate). b Validation of NDRG1 phosphorylation regulated by CIT in YCC3 cells. Seven
DPI with CIT sgRNAs WB analysis was used to quantify the protein levels of CIT, NDRG1 and phspho-NDRG1
(Thr346). c Compound classes that score as associated with the CIT expression signature using the L1000
platform [29]. d Individual compounds within drug classes that score as associated with CIT signature.
e CIT-dependent or CIT-independent cell lines were treated with PKC activators, and proliferation was
assessed after 7 days using a crystal violet staining assay. f Images of crystal violet staining following
treatment with PKC activators
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In consonance with these observations, we found that CRISPRi-mediated suppression

of ZFHX3 isoform P2 inhibited proliferation in all 6 cell lines we tested (Fig. 6d). We

validated these findings using individual ZFHX3 isoform P2 targeting sgRNAs (Fig. 6e, f

and Additional file 1: Fig. S6). As a complementary assay, we validated that the ZFHX3

isoform P2 is required for proliferation using BrDU staining in YCC3 cells (Fig. 6g).

Since ZFHX3 is a transcription factor to evaluate the mechanism of ZFHX3 isoform

P2, we measured how suppression of this isoform affects the expression of known

ZFHX3 target genes. Previous reports have shown that the tumour suppressor isoform

of ZFHX3 (isoform P1) upregulates the expression of the tumour suppressor CDKN1A

Fig. 6 Identification of genes that express alternative transcripts with opposing functions. a H3K4me3
signals in the promoter of ZFHX3 in tumour or adjacent normal tissue. Fifty per cent of GC patients show a
gain of H3K4me3 at the ZFHX3 promoter. Each bar represents a tumour or normal sample from the
indicated GC patient tissue obtained using nano-chip-seq [10]. b Profiles of H3K4me3 signals in two patient
samples with a high signal, showing a tumour-specific gain of transcript P2. Bottom panel shows the PacBio
reads of ZFHX3 from GC cell lines. c Schematic describing the protein generated from P1 or P2 promoters
of ZFHX3. d Violin plot showing the proliferation changes from the CRISPRi screen induced by sgRNAs
targeting transcript P2 of ZFHX3. Each dot represents a different sgRNA. e Proliferation changes following
CRISPRi-mediated targeting of ZFHX3 transcript P2, measured using crystal violet staining assay in GC cell
lines 7 days post-infection. The results are plotted as an average ± SD of two sgRNAs, n = 2. Each dot
represents a different sgRNA. f Representative images from e. g Proliferation of YCC3 cells measured 7 DPI
with sgRNAs targeting ZFHX3 transcript P2 using BrDU proliferation assay. The results are plotted as an
average ± SD, n = 2. Each dot represents an independent experiment. pValue is calculated using t test (p≤
0.05). h qPCR of ZFHX3 target genes following the suppression of ZFHX3 transcript P2. RNA extracted 5 DPI
with ZFHX3 sgRNAs was used for qPCR of CDKN1A or MYB. The results are plotted as an average ± SD, n = 2.
Each dot represents an independent experiment. pValue is calculated using t test (p≤ 0.05)
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and downregulates the expression of the oncogene MYB [32, 34]. Suppression of

ZFHX3 isoform P2 resulted in the opposite expression pattern (Fig. 6h) suggesting a

negative loop feedback mechanism.

In vivo validation of CIT and ZFHX3

To further explore the relevance of these findings in GC patient populations, we

assessed CIT and ZFHX3 dependency in mouse xenografts. YCC3 cells expressing CIT

or ZFHX3 sgRNAs were injected subcutaneously into immune-deficient mice. Similar

to what we observed in cultured cell lines, CRISPR-mediated suppression of CIT or

ZFHX3 led to the reduction in expression of the target (Additional file 1: Fig. S7A,B)

and tumour size (Fig. 7a, b).

Based on these results, we tested if the expression of these transcripts is predictive of

GC patient outcomes used two patient cohorts (TCGA and ACRG). Although CIT ex-

pression was not correlated with patient outcomes (Additional file 1: Fig. S7C,D), we

found a strong correlation between ZFHX3 expression and patient survival. In accord-

ance with our model and consistent with the role of the P2 transcript as an oncogene,

we found that that high expression of ZFHX3 was significantly correlated with patient

poor survival in both the ACRG (Fig. 7c, d) and the TCGA (Additional file 1: Fig. S7E,

F) cohorts. Taken together, we conclude that these two ZFHX3 isoforms encode pro-

teins with opposing functions which may be a general mechanism for the regulation of

protein function.

Discussion
Promoter usage is a major driver of transcript isoform expression. Methods to measure

isoform-specific expression such as CAGE-Seq and histone ChIP-Seq are becoming

more widely used and leading to the discovery of isoform-specific expression that is tis-

sue- and disease-specific [8–10]. It is becoming clear that isoform expression has im-

portant roles in regulating biological processes; yet, we lack tools for systematic

evaluation of promoter-driven transcript isoforms.

RNAi could be targeted to isoform-specific sequences and could be used for isoform-

specific studies. However, seed-driven off-target effects complicate the interpretation of

RNAi-driven data [35]. Traditional CRISPRko approaches are typically aimed at target-

ing the first few exons of a gene and are not be able to distinguish between different

promoters [25]. Furthermore, since in many cases isoforms share large portions of their

sequence, it is difficult to generate isoform-specific CRISPRko sgRNAs. Our work dem-

onstrates the ability of CRISPRi to target alternative promoters that drive the expres-

sion of functional transcript isoforms. CRISPRi works only at a defined window from

the TSS and as such could be used for isoform-specific suppression.

In the present study, looking at isoform-specific GC transcripts, we found the serine/

threonine kinase CIT as a dependency in cells with gain of H3K4me3 signal on a de-

fined promoter. In these experiments, we also identified two cell lines (OCUM1 and

Rerf) which although had the H3K4me3 signal did not show any CIT mRNA or protein.

These observations suggest a possible post-transcriptional inhibitory mechanism and

emphasis that histone mark changes do not always lead to a gene expression outcome.

Importantly, these findings demonstrate that CIT is only required in a specific context
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and suggest that CIT inhibitors will not have a general toxic effect. CIT has previously

been reported as a potential target in breast [36], colon [37] and brain [38] cancers.

Here, we show that GC cell lines with expression gain of a specific CIT isoform are

highly sensitive to CRISPRi-mediated CIT suppression. Furthermore, our results using

proteomics and expression profiling demonstrate CIT as a critical regulator of the cyto-

skeleton network and suggest CIT expression as a cancer treatment biomarker. CIT did

not score as a specific dependency in DepMap [20] using CRISPRko across a large

panel of cancer cell lines. This is most likely due to the fact that CRISPRko sgRNAs do

not take isoforms into consideration, and those miss these isoform-specific signals.

Using the L1000 drug repurposing hub, we identified and validated PKC activators as

small molecules that mimic the effect of genetic suppression of CIT expression. Al-

though further studies are needed into how PKC activators modulate CIT activity, these

results suggest a path towards the development of potent CIT inhibitors.

Our work shows that in some cases, transcripts from the same gene could have op-

posite functions. Other such known examples include BCL-xL and BCL-xS, two

BCL2L1 transcripts with opposing functions [12]. Although we currently do not know

the extent of this phenomena, this should be considered when designing genetic

screens. Most current CRISPR libraries target the entire gene and do not take into

Fig. 7 High expression of ZFHX3 predicts the worse outcome of GC patients. a Four DPI of YCC3 cells with
the indicated sgRNAs 2e6/site were injected to three sites of immune-deficient mice. The results are shown
as average ± SD, n = 6. pValue is calculated by comparing the control to each of the sgRNA-treated samples
using the t test (p≤ 0.05). b Tumours extracted from xenograft. c Kaplan-Meier survival plot and d subclass
by patient type using the ACRG patient cohort
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account transcript variants. Our results demonstrate that ZFHX3 isoform P2 functions

as an oncogene. This may represent an opportunity for differential mutational control

during cancer progression. Further analysis of cancer mutations focused on the location

of mutations in relation to isoform expression may shed a new light on this type of

genes.

We show that transcript usage could explain some inconsistencies between functional

and structural genomics. Furthermore, these results imply that simple expression pat-

terns may be misleading when trying to interpret the function of a gene. Although this

study was focused on identifying alternative promoters that are essential for GC patho-

genesis the same approach could be used as a general strategy to functionally classify

transcript isoforms.

Methods
Cell lines and media

Cell lines used in this study were obtained from Japan Health Science Research Re-

source Bank (KATOIII, OCUM1, Rerf) and Korean Cell Line Bank (SNU484,

SNU1750); HFE145 was gifted by Dr. Hassan Ashktorab, Howard University; and

YCC3 was gifted by Yonsei Cancer Centre, South Korea and maintained in a 37 °C in-

cubator, 5% CO2. All cell lines were propagated in media containing 10% FBS and 1%

NEAA in KatoIII - RPMI, OCUM1 - DMEM with 0.5 mM Na-Pyruvate, HFE145 -

DMEM, SNU484 - RPMI, YCC3 - MEM, SNU1750 - RPMI and Rerf - RPMI. Cell lines

(besides OCUM1) were authenticated by STR genotyping performed at the Cancer Sci-

ence Institute of Singapore. OCUM1 cells were authenticated by spotting live cells onto

an ATCC CLA card and sending to the vendor for analysis.

Generation of pooled sgRNA library

sgRNA spacers (Additional file 2: Table S2) were designed to target altered and un-

altered gastric cancer promoters. For each promoter, we designed 6 sgRNAs. sgRNA

pooled libraries were made as previously described [17]. Briefly, oligo pools were pur-

chased from custom arrays (WA, USA) containing sgRNAs and flanking PCR handles

with BsmBI cutting sites (AGGCACTTGCTCGTACGACGCGTCTCACACCG

[20ntsgRNA]GTTTCGAGACGTTAAGGTGCCGGGCCCACAT). Following PCR

amplification, golden gate cloning was used to insert this library into the BsmBI sites of

lentiGuide-Puro vector (Addgene catalogue no. #52963). Following electroporation of

this library to DH5α bacterial cells ensuring at least 1000× representation, maxi prep

(Qiagene) was used to extract the DNA.

CRISPRi screen

CRISPRi pooled proliferation screens were done as previously described [17]. Briefly,

GC cells stably expressing dCas9-KRAB (Addgene: 89567) were infected at a MOI of

0.3 at a multiplicity of 1000 cells/sgRNAs. Twenty-four hours post-infection, infected

cells were selected using puromycin (2 μg/ml). To ensure sgRNA and dCas9-KRAB, ex-

pression cells were maintained with puromycin and blastocidine throughout the screen.

Twenty-one days post-infection, genomic DNA was extracted using NucleoSpin Blood

XL (Clontech), and the sgRNA-Seq was amplified as previously described. sgRNA was
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quantified using HiSeq Illumina sequencing. Deconvolution of sgRNA read counts was

done using the poolQ algorithm with default settings (https://portals.broadinstitute.org/

gpp/public/software/poolq).

MAGeCK analysis

MAGeCK algorithm [22] was used for defining gene scores and for identifying gene es-

sentiality significance. Default settings were used. Reads from replicate samples at day

21 were compared to reads from the DNA pool. Transcripts with an FDR ≤ 0.1 were

considered as hits.

RNA isolation and quantitative real-time PCR

Total RNA was isolated using TRIzol (Sigma Aldrich) from mouse tumours and cell

lines, according to the manufacturer’s instructions. One microgram of total RNA was

reverse transcribed to cDNA using the Maxima Reverse Transcriptase (Thermo Fisher)

in 20 μl reaction with random hexamers and dNTP. Expression levels of genes were

quantified using qRT-PCR using the QuantStudio™5 Real-Time PCR system (Thermo

Fisher). qRT-PCR was performed using the indicated qPCR primers (Additional file 2:

Table S7). GAPDH was used for normalisation. The qRT-PCR conditions were de-

naturation at 95 °C for 5 min followed by 40 cycles of amplification at 95 °C for 15 s and

60 °C for 20 s. The comparative cycle threshold (delta Ct) method was used to analyse

the gene expression levels.

BrDU cell proliferation assay

The BrDU Cell Proliferation Assay Kit (Cat. No. #6813, Cell Signaling Technology) was

used to investigate proliferation upon different gene knockdowns. A total of 5000 cells

were seeded in 100 μl of media on a 96-well plate; following virus infection, cells were

incubated at 37 °C for 5 days. BrDU was then added to the cells which were incubated

for 6 h at 37 °C to incorporate BrDU during S phase. Subsequent procedure was per-

formed according to the manufacturer’s instructions. The BrDU incorporation was

measured at 450 nm with the CLARIOstar microplate reader (BMG Labtech) using the

MARS Data Analysis software (BMG Labtech).

Crystal violet proliferation assay

Following sgRNA infection and selection, cells were allowed to propagate for the indi-

cated time. The media were removed, and cells were washed twice in PBS. 10% of for-

malin in PBS was added and incubated for 20 min at room temperature. Formalin was

removed, and 0.5% (w/v) of crystal violet (Sigma # C0775-25G) was added and incu-

bated for 20 min at room temperature. Crystal violet was removed, and plates were

thoroughly washed with PBS. For quantification, 10% of acetic acid was added to each

well and incubated at room temperature for 30 min. The extracted solution was added

to a 96-well plate and quantified by measuring the OD at 590 nm.

Anchorage-independent growth assay

YCC3 cells (5 × 105) were seeded in 0.3% Noble agar (Sigma, St. Louis) in 6-well plates,

three replicates/sample. Bottom agar consisted of cell line media with 0.6% Noble agar.
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Colony formation was assessed at 3 weeks, and images of each well were taken at a × 5

magnification using an EVOS microscope (Thermo).

Western blot

Western blot was done using BioRad pre-casted gels and a trans-turbo transfer ma-

chine (BioRad). The following are the antibodies used in this study: CIT antibody (BD

Biosciences # 611376), NDRG1 (Cell Signaling # 9485), phospho-NDRG1 (Cell Signal-

ing # 5482) and GAPDH (Sana Cruz # SC32233).

RNA-Seq following CRISPR-mediated gene suppression

Transcript abundance was estimated from the RNA-Seq data against the human gen-

ome reference GRCh37.p13, using transcript annotations taken from the GENCODE

project v19 annotation. Transcript sequences were extracted for this annotation using

RSEM v1.3.2 [39], then transcript quantification performed using Salmon v0.14.1 [21]

and abundance estimates reported in transcripts per million (TPM).

Phospho-proteomic mass spec

Cells were lysed with chilled 4% (w/v) sodium deoxycholate to a final volume of 270 μl.

Approximately 500 μg of protein lysate was reduced and alkylated before overnight

tryptic enzymatic digestion, as previously described [40]. Briefly, phosphopeptides were

enriched with titanium dioxide beads and desalted prior to liquid chromatography-

tandem mass spectrometry (LC-MS/MS) analysis with a QExactive mass spectrometer

(Thermo Scientific) in the Monash Proteomics and Metabolomics Facility [41]. The in-

strument was operated in the data-dependent acquisition mode to automatically switch

between full-scan MS and MS/MS acquisition. Data were processed with MaxQuant

(v1.6.0.16) with standard parameters for phosphopeptide quantification [40]. Log2 in-

tensities were summarised across all samples in a linear mixed model implemented in

the R package Limma [42] for pairwise comparison for each phosphopeptide.

PacBio sequencing

Ten cell lines were selected for PacBio long-read RNA sequencing. Each cell line was

sequenced using four SMRT wells. For each sample, we used the CCS module of Iso-

Seq3 program (https://github.com/PacificBiosciences/IsoSeq3) to generate circular con-

sensus sequence (CCS) reads from the sub-reads generated from the sequencing run.

The reads are classified into full-length non-chimeric (FLNC) and non-FLNC reads.

Following this, the reads that are identified as FLNC are considered for de novo cluster-

ing of reads using the cluster module of IsoSeq3 to identify unique isoforms. All iso-

forms are mapped to the human genome (version hg38) using GMAP [43], and only

high-quality isoforms (supported by at least two full-length non-chimeric reads) are

considered for further analysis. Further quality control and isoform annotations were

performed using SQANTI2 (https://github.com/Magdoll/SQANTI2).

Mouse xenografts

All animal studies were approved by the Monash University Animal Ethics Committee

(AEC – approval number 2020-24197-49078). YCC3 stably expressing KRAB-dCas9
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were infected with lentiviruses containing the indicated sgRNAs. Following puromycin

selection (3 DPI), 2 million cells/site and 3 sites/mouse were subcutaneously injected

into 5-week-old female NSG mice (a kind gift from Professor Gail Risbridger and A/

Prof. Renea Taylor, Monash University) under isofluorane anaesthesia. Tumour growth

was continuously monitored for 4 weeks. Tumours were measured using digital vernier

calliper every 48 h, beginning 3 days after injection, and tumour volume was calculated

using the formula length (mm) × width (mm) × height (mm) and expressed in mm3.
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