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Abstract

In high-throughput sequencing data, performance comparisons between
computational tools are essential for making informed decisions at each step of a
project. Simulations are a critical part of method comparisons, but for standard Illumina
sequencing of genomic DNA, they are often oversimplified, which leads to optimistic
results for most tools. ReSeq improves the authenticity of synthetic data by extracting
and reproducing key components from real data. Major advancements are the inclusion
of systematic errors, a fragment-based coverage model and sampling-matrix estimates
based on two-dimensional margins. These improvements lead to more faithful
performance evaluations. ReSeq is available at https://github.com/schmeing/ReSeq.

Keywords: Simulation, Genomic, High-throughput sequencing, Illumina

Background
High-throughput sequencing has revolutionized biology and medicine since it allows a
myriad of applications, such as studying entire genomes at base-pair resolution. The accu-
racy of the obtained results after applying computational methods heavily depends on
collected data and the tools used to process it. This paper focuses on standard Illumina
short-read sequencing of genomic DNA (gDNA) and its BGI counterpart [1, 2], which
are both obtainable for almost every molecular biology lab. In order to fully capitalize on
these datasets, it is important to know the best tools for a given task, the typical error
modes of these tools, and whether a result is robust to fluctuations in the data or changes
in the analysis.
With the ever-growing number of computational tools, evaluating their performance

across the various situations in which they are applied has become an essential part of
bioinformatics [3, 4]. There are two fundamental ways of doing benchmarks and valida-
tions. On the one hand, results can be compared to an estimated “gold-standard” ground
truth derived from real data, which can be based on consensus or an independent dataset
(e.g., technology). On the other hand, tools can be compared on synthetic data, which
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are simulated from a specified ground truth that defines the desired results. Both strate-
gies can introduce biases, through deriving the ground truth or by failing to mimic the
properties of real data, respectively. Ideally, a mix of assessments from real and synthetic
data is used, where differences in the results can highlight biases and provide estimates of
uncertainty.
On real data, performance evaluations require a ground truth and estimating it with

methods similar or identical to evaluated methods can induce a bias. To reduce such
a bias, evaluations often only take into account situations where a confident consensus
can be determined or where an alternative technology delivers reliable results [5]. This
limitation necessarily reduces the breadth of method comparisons. Sometimes, these
shortcomings can be mitigated with deeper sequencing, by using multiple alternative
technologies and by carefully selecting the set of methods that go into the estimation. For
example, extensive effort went into generating datasets with ground truth to assess variant
calling on human gDNA datasets [6], such as the Genome in a Bottle Consortium [7, 8]
and Platinum Genomes [9]. Their detailed variant truth sets were derived using a consen-
sus from multiple aligner/variant caller combinations. Having multiple technologies or
pedigree information further increases the confidence in their ground truth calls. Alter-
natively, as an example of consensus-free approaches, Li et al. used Pacific Biosciences
SMRT sequencing (PacBio) to create two independent assemblies, each of a homozygous
human cell line. The combined assemblies provide the ground truth for a synthetic diploid
dataset [10]. The advantage is that no variant callers are used to estimate the truth, while
the disadvantage is that PacBio-specific errors remain. Despite the effort that went into
the three mentioned truth sets, their results do not agree on variant caller performance,
neither by value (e.g., false-positive rates of single-nucleotide polymorphisms) nor by rank
[10]. Due to an abundance of truth sets in this field, the uncertainty in the comparisons
can at least be assessed with real data alone. In other areas of research, often no published
datasets with an estimated ground truth are readily available. For example, assessing
the influence of polyploidy on variant calls using real data is limited to concordance
checks [11].
Simulated data are a cheap and orthogonal way to benchmark computational meth-

ods and can readily address the shortcomings of real data based evaluations (e.g., biases
toward certain tools or against certain genomic regions). Additionally, robustness toward
properties of data (e.g., error rates) can be easily assessed. However, accurate method
assessments require that simulated data recapitulate the important features of real data
and do not oversimplify or bias the challenge for tested methods. Despite many published
simulators, research comparing simulations has so far neglected to test for these impor-
tant features. Reviews include Escalona et al. [12], which did not show any benchmarks,
and Alosaimi et al. [13], which based the performance report on sensitivity and precision
of mapping (of simulated reads). Unfortunately, this metric says little about the quality of
the simulation; for example, a simulator that samples from unique regions of the refer-
ence and does not include any errors would receive a perfect score. A proper benchmark
requires in-depth testing across a range of use-cases, since the most important features to
mimic from real data depend on the application. We assess here many aspects of real data
and in particular whether the key features for assembly have been reproduced. Further-
more, we show using the example of mapping how to evaluate the scope of simulations in
a benchmark.
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For Illumina gDNA datasets, the simulation frameworks ART [14], pIRS [15], and
NEAT [16] represent the state-of-the-art. Additionally, BEAR [17] was included to eval-
uate the effect of their design choices that simplify metagenomic simulations. We show
below that all current simulators do an unsatisfactory job of reproducing, e.g., the k-mer
spectrum of real data, due to their incomplete models for coverage, quality, and base call-
ing. As a result, methods tested on simulated data score nearly perfectly [18], which has
presumably encouraged the field to rely on real data alone for evaluations; for example,
the Assemblathon 1 [19] used simulations, while GAGE [20] and Assemblathon 2 [21] in
the following years used real data alone.
Table 1 lists the features and input for each of the simulators compared in this study.

The two main simulation components are the coverage model and the quality and base-
call model. Coverage in ART and BEAR is modelled uniformly, while pIRS and NEAT
introduce a GC bias by comparing the coverage across the binned reference [22, 23]. This
procedure is close to the Loess model described by Benjamini and Speed [24], who show
that their alternative model based on the GC of individual fragments results in superior
predictions. Furthermore, the bias from the sequences flanking the start and end of frag-
ments [25] are not taken into account by any simulator. Finally, ART, pIRS, and BEAR
draw DNA fragment lengths from a user-defined Gaussian distribution, while NEAT uses
the empirical distribution from the input bam file.
For the qualities and base-calls, ART draws from empirical distributions of position-

dependent qualities and introduces substitution errors [26–28] according to the proba-
bility given by the quality values. InDels are inserted based on four user-specified rates
for insertion/deletion in the first/second read. In contrast, pIRS, NEAT, and BEAR draw
quality values from a non-homogeneous Markov chain, where the quality depends on the
last quality and the position in the read. pIRS then chooses a base call from a learned dis-
tribution depending on the quality, position, and reference base, while the inserted InDels
depend only on the position in the read. NEAT instead follows a decision tree, where the
occurrences of errors (substitution and InDels) only depends on the quality and the sub-
stituted nucleotide only on the reference base, while the length and nucleotides of InDels

Table 1 Overview of modelled features for the compared simulators

ART pIRS NEAT BEAR ReSeq

Coverage Parameters Parameters Parameters Parameters Mapped reads/
Parameters

GC bias – Mapped reads Mapped reads – Mapped reads
Flanking bias – – – – Mapped reads
Fragment length Parameters Parameters Mapped reads Parameters Mapped reads
Reference-
sequence
bias

– – – Hard-coded/(Reads) Mapped reads

Base qualities Reads Mapped reads Reads Reads Mapped reads
Sequence
qualities

– – - – Mapped reads

Substitution
errors

Hard-coded Mapped reads Hard-coded Reads Mapped reads

Systematic errors – – – – Mapped reads
InDel errors Parameters Mapped reads Hard-coded Reads Mapped reads
Variants – Two genomes Vcf – Vcf

Parameters: Manually selected parameters. Reads: Learned from raw reads. Mapped reads: Learned from mapped reads.
Hard-coded: Cannot be changed. BEAR’s reference-sequence bias estimation from reads is design for metagenomics
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have constant probabilities. It is worth mentioning that in the current version of NEAT,
only qualities can be trained, but the base-call and InDel distributions rely on pretrained
values. Specifically for metagenomics, BEAR’s error model is learned from duplicated
reads using DRISEE [29] and therefore does not require a reference. Its parameters are
obtained from exponential regression on the substitution rates by nucleotide and position
and on the InDel rates by position. A peculiar design choice of BEAR is to replace qual-
ity values at error positions with qualities generated by the error model instead of simply
having error rates depend on the quality values. Notably, neither systematic, sequence-
specific errors [30, 31] nor the relationship between quality and fragment length [32] are
included by any simulator.
The ability for users to train simulators on real data is another important feature,

because profiles require constant updates to changes in sequencers, chemistries, etc.,
and even without technology changes, developer-provided profiles are not always accu-
rate for a given use case due to differences in genome contexts or fragmentation method
(see Results). None of the simulators mentioned can be fully trained on real data, instead
relying at least partially on user-provided parameters or hard-coded models (Table 1).
Real Sequence Reproducer provides well-tested functionality to estimate the necessary

parameters from real data mapped to a reference. Based on these estimates, it produces
synthetic data with a k-mer spectrum matching real data without ever directly using k-
mer information (see below). Requiring a reference is not a big constraint, since one is
needed for the simulation anyways and furthermore, with a modest penalty in accuracy,
the ReSeq parameters can be estimated from a de novo assembly generated from the
reads.
We show that ReSeq outperforms all competitors in terms of delivering a realistic sim-

ulation and therefore lays the methodological groundwork for accurate benchmarking of
genomics tools.

Results
ReSeq consists of three parts: statistics calculation, probability estimation, and simula-
tion (Fig. 1). Statistics calculation extracts the necessary information from the mapped
reads and the corresponding reference. Afterwards, probability estimation combines
the extracted matrices into distributions. Finally, the simulation step draws from those
distributions.
For the statistics calculation, a file with variants can be specified, such that their posi-

tions in the reference are excluded from the statistics. Adapters can optionally be specified
and are automatically detected otherwise.
The simulation produces synthetic datamatching the calculated statistics and estimated

biases. The reference provided can but does not need to be the same as the one used dur-
ing the statistics calculation. To impose a clear separation, we will refer to the reference
we simulate from as the template. To simulate single-end reads, the second read file can
simply be ignored; however, paired-end Illumina data are still required for the statistics
calculation. To properly handle coverage variations for sex chromosomes, mitochondria,
or metagenomics, the simulation optionally takes a reference-bias file (not necessary
if template and reference are identical). To simulate diploid and polyploid genomes or
pooled sequencing, variants can be specified. To simulate bisulfite sequencing, allele-
specific methylation values can be defined in an extended bed graph format with multiple
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Fig. 1 ReSeq overview. The three parts of ReSeq (solid, blue) with its mandatory (solid, red) and optional
(dotted, green) inputs. The italic entries for the statistics matrices are independent dimensions in the matrix,
while the normal entries are reduced to two-dimensional interactions

score columns. However, we focus here on monoploid and diploid genomes and will
not include simulations of bisulfite sequencing. For comparisons, we use ten represen-
tative datasets from different species, different Illumina machines and different adapters
(Table 2). Additionally, we included a dataset from BGI [1, 2] to investigate whether
Illumina simulators can also handle this related technology.

Generating qualities and base calls

To simulate quality values and base calls, ReSeq fills six matrices during the statistics cal-
culation (Fig. 1): insertions and deletions, systematic error rates at each reference position,
systematic error tendencies at each reference position, sequence qualities, base qualities,
and base calls. The matrices are used to query the probability of the variable of inter-
est conditional on all other variables in the matrix. For example, in a matrix containing
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Table 2 Used datasets

Identifier Sequencer Adapter Species Reference Accession ID

Sample ID

Ec-Hi2000-TruSeq HiSeq 2000 TruSeq Escherichia
coli

ASM584v2 SRR490124

Ec-Hi2500-TruSeq HiSeq 2500 TruSeq Escherichia
coli

ASM584v2 SRR3191692

Ec-Hi4000-Nextera HiSeq 4000 Nextera Escherichia
coli

ASM584v2 Ecoli1_L001

Bc-Hi4000-Nextera HiSeq 4000 Nextera Bacillus
cereus

ASM782v1 Bcereus1_L001

Rs-Hi4000-Nextera HiSeq 4000 Nextera Rhodobacter
sphaeroides

ASM1290v2 Rsphaeroides1_L001

At-HiX-TruSeq HiSeq X Ten TruSeq
(unknown
barcode)

Arabidopsis
thaliana

TAIR9.171 ERR2017816

Mm-HiX-Unknown HiSeq X Ten Unknown Mus
muscu-
lus

GRCm38.p6 ERR3085830

Hs-HiX-TruSeq HiSeq X Ten TruSeq Homo
sapiens

GRCh38.p13 ERR1955542

Hs-Nova-TruSeq NovaSeq 6000 TruSeq Homo
sapiens

GRCh38.p13 PRJEB33197

Ec-Mi-TruSeq MiSeq TruSeq Escherichia
coli

ASM584v2 DRR058060

At-BGI BGISEQ-500 BGISEQ Arabidopsis
thaliana

TAIR9.171 PRJNA562949

Adapters labeled as unknown are not listed in the Illumina and BGI adapter overview [33, 34]

the base quality BQ, previous quality PQ, and sequence position SP, we would query
p(BQ|PQ, SP) for all BQ, which is a normalized slice of the matrix. These probabilities
would then be used to draw the base quality.
However, due to the amount of variables included in each of these statistics, we cannot

directly use large (sparse) matrices. For example, storing the quality values of Ec-Hi2000-
TruSeq would require a matrix with 4.6 · 109 entries. Therefore, ReSeq only retains
two-dimensional margins of the matrices. For the base-quality values, this means storing
10 two-dimensional margins for each template segment, tile, and reference base combi-
nation: BQ - sequence quality (SQ), BQ -PQ, BQ - SP, BQ - error rate(ER), SQ - PQ,
SQ - SP, and so forth. This removes the higher-dimensional (3+) effects from the distri-
butions, yet still provides a reasonable approximation (Additional file 1: Figure S1). The
new set of marginal matrices has only around 3.0 · 105 combined entries. This saves con-
siderable computer memory, but more importantly prevents sparsity, because sufficient
observations are required to sample accurate probability distributions in the absence of an
analytical description. Using the full matrix, the conditional probability of a base quality
p(BQ|SQ,PQ, SP,ER) would require many observations for every variable combination.
In the reduced representation, the sampling only requires many observations for every
two-dimensional combination of variables (i.e. SQ - PQ, SQ - SP, PQ - SP, etc.). Thus, the
method requires much smaller input datasets.

Comparison of quality values and error rates

Here, we check whether the quality values and error rates show the typical patterns over
the read length on all eleven datasets (Table 2). Additionally, we test Ec-Hi2500-TruSeq-
asm, where the simulation profiles are trained on a non-optimized assembly built from
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Ec-Hi2500-TruSeq that is highly fragmented and has many duplications (QUAST [35]
report in Additional file 2: 61992 contigs, N50 of 402 and covering 98.9% of the E. coli ref-
erence with every covered reference base being represented, on average, 2.553 times in the
assembly). Thus, comparing the results of Ec-Hi2500-TruSeq-asm and Ec-Hi2500-TruSeq
gives insight on how well simulators can build profiles from a fragmented assembly (e.g.,
by filtering). In contrast, using the assembly as simulation template would not allow
similar insight, because a template can only be improved by changing it, which affects
all simulators equally. Therefore, we continue using the E. coli reference as simulation
template.
In general, the simulated mean quality values by position resemble those of real data

(Additional file 1: Figure S2, S3), except for BEAR, which produces reads of varying
length and has for most datasets and positions, average quality scores 5 to 10 Phred
units lower than the real data. A likely explanation for the strong deviation is BEAR’s
design choice to replace quality values at error positions with qualities generated by the
error model instead of having error rates depend on the quality values. For ART, we
observe quality values consistently one Phred unit higher than the real data (Additional
file 1: Figure S3b–e, g–i, k–l). For pIRS and ReSeq, deviations appear with increased posi-
tion (Additional file 1: Figure S3d, g–i), which is likely caused by training the quality
values only on mapped reads. For Hs-Nova-TruSeq, all simulators have a more pro-
nounced decrease in quality compared to real data, which is a result of the preqc filtering
(Additional file 1: Figure S3j). Moreover, in Rs-Hi4000-Nextera, ReSeq experiences a
strong drop in the second read’s quality (Additional file 1: Figure S4d) that is absent from
the first read (Additional file 1: Figure S4c). It is also worth mentioning that pIRS uses the
same quality distribution for first and second reads, despite the clear differences in real
data (Additional file 1: Figure S4). Finally, the mean quality values for Ec-Hi2500-TruSeq-
asm and Ec-Hi2500-TruSeq are the same, as expected, since the qualities are independent
of the reference.
The mean error rates by position are also well reproduced in the simulations

(Additional file 1: Figure S5, S6), except for BEAR, since it uses DRISEE for training
where increased error rates have already been observed [36]. The applied exponential
regression seems to amplify the increased error rates for higher positions (Additional
file 1: Figure S5d–e, g–h, l). At-HiX-TruSeq, Mm-HiX-Unknown, Hs-HiX-TruSeq, and
At-BGI (Additional file 1: Figure S5g-i,l) are outside of BEAR’s defined metagenomic
use-case, but this does not generally affect performance. On another note, Ec-Hi2000-
TruSeq, Ec-Hi2500-TruSeq, and Ec-Mi-TruSeq highlight the weakness of the hard-coded
error models used by ART and NEAT (Additional file 1: Figure S6a-c,k). Such mod-
els require well-calibrated quality values (ART) or identical calibrations to their training
set (NEAT). Especially in Ec-Hi2000-TruSeq, the quality values are not well-calibrated:
while the Phred quality score of 2 predicts a 63% error rate, the observed rate after map-
ping is only 15%. Therefore, ART has strongly inflated error rates in this dataset, which
could be solved by recalibrating the quality values, but then the quality values simulated
from ART would be as inaccurate as the error rate is. Finally, ART’s and NEAT’s error
rates increase sharply for Ec-Hi2500-TruSeq-asm compared to Ec-Hi2500-TruSeq, which
seems to be an artifact from the reference-free error estimation, because increasing the
coverage removes the error-rate differences completely for ART and mostly for NEAT
(Additional file 1: Figure S7).
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Systematic errors

The most important new feature introduced by ReSeq is the representation of system-
atic errors. In older HiSeq2000 data, the systematic behavior of errors is very pronounced
(Fig. 2a,b), but also on the newer HiSeq4000, systematic errors are still present (Fig. 2c, d).
Errors appear bundled at some positions and are strand dependent, which rules out vari-
ants as the cause. Until now, no model exists that predicts sequence-specific errors for a
given position in a read based on all nucleotides in the same read preceding this position.
Therefore, ReSeq distributes systematic errors randomly over the template by drawing
error tendencies and rates for each template base on each strand. The five possible values
for the error tendency are the four nucleotides and no tendency (i.e., random error). Error
tendencies and rates can be stored and loaded to conserve the errors between multiple
simulation runs, because real systematic errors are also very conserved, as highlighted
in Fig. 2e by comparing Ec-Hi4000-Nextera (Ecoli1_L001) with technical replicates from
the same library run on different lanes (Datasets Ecoli1_L002 and Ecoli1_L003) and from
separately prepared libraries sequenced on the same lane (Datasets Ecoli2_L001 and
Ecoli3_L001).
Figure S8 (Additional file 1) shows that ReSeq manages to reproduce the distribution

of systematic errors well, except for Arabidopsis thaliana (Additional file 1: Figure S8g, l),
with its extreme coverage difference between the chromosomes and chloroplast.

Fig. 2 Systematic errors in Illumina data. a, c Screenshots from the Integrative Genomics Viewer [37, 38] for
Ec-Hi2000-TruSeq (a) and Ec-Hi4000-Nextera (c). The forward strand is colored red and the reverse strand
blue. The bright colors mark substitution errors. b, d Amount of errors for all positions in the reference. e
Section from c with the same section from four technical replicates of Ec-Hi4000-Nextera (Ecoli1_L001):
Ecoli1_L002, Ecoli1_L003, Ecoli2_L001, Ecoli3_L001. The datasets are separated by thick black lines
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Heterozygous variants in diploid samples (Additional file 1: Figure S8h–j) and fragmented
references (Additional file 1: Figure S8c) also lead to reduced similarity to real data.

Coverage model

The coverage model defines the probabilities of where simulated reads start and end in
the simulated genome (template). It works on fragment sites, which are defined by their
reference sequence, start position, fragment length, and strand. Sites have been shown to
be a good choice to estimate GC bias [24]. Since in our model duplications are fragments
falling on the same site, the strand was added to make duplications strand-specific. Dur-
ing the statistics calculation, ReSeq determines all possible sites in a genome and counts
the read pairs mapping to them. Sites, where the true counts are likely to deviate from the
observed counts, e.g., repeat regions, are removed by looking at clusters of low mapping
quality (see the “Methods” section). During the simulation, repeats do not require special
consideration as long as they are part of the simulation template.
The model takes four different sources of bias into account: GC and flanking sequence

in a first step and fragment length and reference sequence in a second step. The flanking
bias arises from the nucleotides flanking the start and end of the fragment as a result
of the fragmentation process. We observed that their effect on the coverage is especially
pronounced if enzyme digestion is used (Additional file 1: Figure S9). The GC bias is
due to PCR [23], while the fragment-length bias results from the fragmentation and size
selection. Lastly, the reference-sequence bias represents the original abundance of the
sequence in the sample.
In the first step of the coverage estimation, the GC and flanking bias are fit to the sites

and their counts. Modeling the counts at each site with a Poisson would only account for
statistical duplications. Therefore, we use a negative binomial to additionally account for
PCR and optical duplications. Since coverage biases arise from different processes, we
assume independence and write the mean μn of the negative binomial as a product:

μn = Ñbseq(seqn)blen(lenn)bGC(GCn)bstart,nbend,n

with Ñ as the genome-wide normalization and the different b as the biases for this site.
The normalization parameter is of no further interest after the fit, leaving 128 rele-

vant parameters. The GC bias bGC (Fig. 3a) is binned by percent into 101 bins that are
described by a natural cubic spline with six knots, i.e. six degrees of freedom.
The flanking bias (Fig. 3b) has 120 parameters: one for each nucleotide across each of

thirty positions (10 bases before the fragment to 20 bases within). The flanking bias at the
start and end of the fragment use the same parameters due to their similarity (Additional
file 1: Figure S9), with the end reverse complemented to keep the meaning of positions
relative to the fragment. Since the best way of combining biases from individual positions
in the flank is a priori unknown, we tested the two simple options of a product and a sum
on datasets fragmented using mechanical forces (Ec-Hi2000-TruSeq) and enzymes (Ec-
Hi4000-Nextera). As seen in Fig. 3c, the predictions from the summation model nicely fit
to the observed count means, using 2 · 105 sites per bin.
To properly account for duplications, the dispersion has two parameters, α and β ,

leading to the following mean-variance relationship:

σ 2
n = μn + αμn + βμ2

n.
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Fig. 3 Coverage model. a GC bias for Ec-Hi2000-TruSeq at the four steps of the bias fit for 30 fits with
different fragment lengths. The red dots in the normalized panel are the median value and represent the final
result. The horizontal lines in the GC spline panel are the chosen knots for one example fragment length. b
Flanking bias. The effect of nucleotides in the genome relative to the fragment start or end with position 0
being the start/end. Negative positions are outside of the fragment. Only position − 3 to 11 are shown from
the total model that includes position − 10 to 19. Each box summarizes 30 to 40 fits with different fragment
lengths. The boxes are arranged around their true position for improved readability. The three datasets are all
created with Nextera adapters. c Comparison of combining the different positions in the flanking bias by a
product or a sum. Each dot is one bin of 2 · 105 fragment sites for one of 30 fits with different fragment
length. The fragment sites are ordered by their predicted mean counts μn before binning. The x-axis is the
mean of observed counts in the bin. The y-axis is the mean of predicted mean counts. For the sum the dots
scatter around the identity, while for the product a curve is visible. d, e The observed counts kn for the bins
defined in c are fitted with a negative binomial with constant dispersion r for Ec-Hi2000-TruSeq (d) and
Ec-Hi4000-Nextera (e). While Ec-Hi2000-TruSeq shows a significant slope and nearly no y-intercept,
Ec-Hi4000-Nextera shows the exact opposite

Figure 3d, e, where α is the y-intercept and β is the slope, demonstrates that both param-
eters are needed to properly simulate all datasets and duplication types, even if single
datasets need only one of the parameters (Additional file 1: Figure S10a) [39].
After the other biases have been fitted, ReSeq estimates the reference-sequence and

fragment-length biases by iteratively adjusting them to match the observed coverage.
To test the biases obtained by ReSeq, we use Bc-Hi4000-Nextera, Ec-Hi4000-Nextera,

and Rs-Hi4000-Nextera, which should have similar biases; and indeed, the flanking biases
do not vary much in those three datasets (Fig. 3b), despite the different median GC con-
tent of the underlying genomes (35%, 51%, and 69%). Furthermore, we clearly reproduce
previous findings for Nextera adapters [25], where the biases between a nucleotide and
its complement are very similar if mirrored around position 4 (e.g., A at 5 and T at 3).
The GC biases for the three datasets are compared in Figure S11 (Additional file 1),
where the spread between different fragment lengths highlights the lower confidence in
biases based on fewer sites. Bc-Hi4000-Nextera and Ec-Hi4000-Nextera look very similar,
except for low-confidence, GC-rich fragments. Rs-Hi4000-Nextera looks somewhat dif-
ferent, but its high-confidence region is poorly accessible by the other two datasets. The
reduced occurrence of AT-rich fragments (AT dropout) described in the literature [25] is
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also observed with the exception of Rs-Hi4000-Nextera, which has little power to detect
AT dropout due to its high median GC content. As another test, the biases were esti-
mated on simulated, uniformly distributed data, which results in the expected flat profile
(Additional file 1: Figure S12). The minor deviations for GC biases at the edges are due to
low amounts of available sites. Overall, the above tests show that this part of the coverage
model delivers accurate and consistent results.

Comparison of coverage distributions

Figure 4 shows ReSeq’s improvements over the uniform distribution (ART and BEAR) or
the sliding window approach (pIRS and NEAT), in terms of base-coverage distributions.
No other simulator shows consistently a good accordance with real data. In Ec-Hi2500-
TruSeq-asm (Fig. 4c), the median coverage provided as coverage parameter to ART, pIRS,
and NEAT is not a good estimator for the real coverage, because the duplicated regions
and themany very short hard-to-map contigs in the assembly reduce themedian coverage
from 1011 to 13. Therefore, ART and pIRS do not have an expected peak, whereas NEAT’s

Fig. 4 Base-coverage distribution. Note that j BEAR was omitted due to excessive runtimes. k BEAR was
omitted, because it did not have a single proper pair mapped
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peak is at a very low coverage. ReSeq extracts the coverage itself and is therefore not
directly affected. BEAR requires the number of reads and is therefore also not affected,
but still does not show a peak at the correct coverage. In Figure S13 (Additional file 1),
the median coverage estimated from the mapping to the reference (Ec-Hi2500-TruSeq)
is provided to all simulators except BEAR. Since this is the only coverage parameter for
ART, it performs the same as in Ec-Hi2500-TruSeq. In contrast, pIRS and NEAT do not
manage to simulate a coverage that remotely resembles real data, because their GC-bias
estimation is not robust to fragmented references.
ReSeq’s negative binomial also captures the number of duplicated read pairs well

for most datasets (Fig. 5), despite a decrease in performance with increasing size and
complexity of the genome. A particular case are human samples, where the simulated
duplication numbers exceed the highest real ones, but only around 0.1% of the fragments
are affected for the most severe case in Hs-HiX-TruSeq (Fig. 5i). Other simulators do not
handle duplications and thus do not resemble real data (Fig. 5d–j, l), except for datasets
with low levels of duplication.

Fig. 5 Fragment duplication. The spike at 51 is an artifact of the counting that treats everything above 50 as
51. Note that c ART, pIRS, NEAT, and BEAR are omitted due to low coverage. j BEAR was omitted due to
excessive runtimes. k BEAR was omitted, because it did not have a single proper pair mapped
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Furthermore, ReSeq replicates the fragment-length distribution accurately (Additional
file 1: Figure S14) for two reasons: (i) it does not parameterize the distribution with a
Gaussian, which prevents ART, pIRS, and BEAR from capturing the long tail (Additional
file 1: Figure S14a–c, h–j, l); (ii) it is the only simulator that implements adapters, which
allows for fragment lengths below the read length (Additional file 1: Figure S14d–f, k).
BEAR also allows for shorter fragment lengths, but does so by trimming the read length
and thereby prevents benchmarks that require adapters to be present.
As a further test, we can again use the technical replicates of Ec-Hi4000-Nextera

(Ecoli1_L001). The correlation of the base coverage between Ecoli1_L001, Ecoli1_L002,
Ecoli1_L003, Ecoli2_L001, and Ecoli3_L001 can be seen as a gold standard of how
much the base coverage of simulations should be correlated to real data. We calcu-
lated the three pairwise Spearman correlations of replicates from the same lane and
from the same library, respectively, and compared them to the correlations of three
independent simulations based on Ec-Hi4000-Nextera. For the simulations, we calcu-
lated the pairwise Spearman correlations with themselves and the three correlations
with Ec-Hi4000-Nextera. Table 3 lists the averages of the calculated coverage correla-
tions. For each entry, one of the three corresponding correlations is plotted in Figure S15
(Additional file 1). The correlations highlight three major points. First, ReSeq strongly
increases the correlation between simulation and real data because, despite its high vari-
ance, the whole coverage distribution follows the real trend, which is not visible for other
simulators. Second, independent simulations from ReSeq approach the correlatedness of
real data, but do not populate the low- and high-coverage regions present in real data.
Only pIRS performs similarly, but with a correlation of 1, nearly all randomness seems to
be removed. Third, despite the major improvements, the correlation between ReSeq and
real data is still low and further improvements are possible.

Comparison of k-mer spectra

A good high-level summary statistic to represent a dataset of genomic reads is the k-mer
spectrum, which shows the systematic properties of errors (exponential decrease at low
frequencies) and the coverage distribution (shape and position of peaks) (see Sohn and
Nam Figure 4 [40]). Figure 6 (linear scale) and Figure S16 (log scale, Additional file 1) dis-
play the 51-mer spectra of the datasets and their simulations. The 31-mer and 71-mer
spectra (Additional file 1: Figure S17, S18) are qualitatively the same and the conclusions
drawn in this section are not specific for k = 51. The first row (Fig. 6a–c) is based on
high-coverage E. coli datasets sequenced on the older HiSeq 2000 and 2500 with TruSeq

Table 3 Average (pairwise) Spearman correlations of base coverage

Lane Library Real Simulation

Real 0.91 0.92 - -

ReSeq - - 0.23 0.81

ART - - 0.01 0.00

pIRS - - 0.12 1.00

NEAT - - 0.10 0.26

BEAR - - − 0.00 0.05

The bold numbers highlight the simulators, which are the closest to the correlatedness of real data in the given category. Lane: Ec-
Hi4000-Nextera (Ecoli1_L001) and replicates Ecoli1_L002 and Ecoli1_L003. Library: Ec-Hi4000-Nextera (Ecoli1_L001) and replicates
Ecoli2_L001 and Ecoli3_L001. Real: Ec-Hi4000-Nextera and three simulations. Simulation: Three simulations of Ec-Hi4000-Nextera
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Fig. 6 51-mer spectra of real and simulated data. The shape and position of peaks reflects the coverage
distribution, while the exponential decrease at low frequencies is defined by systematic errors. The black lines
show the minimum between the exponential decrease and signal peak for real data. The first value of R gives
the sum of relative deviations for frequencies (x) up to the minimum. The second value of R gives the sum of
absolute deviations for frequencies larger than the minimum. Both values are stated relative to ReSeq. When
the signal peak of the simulation does not exist or starts before the minimum in real data the values lose their
interpretability. This happens for ART (a, c), pIRS (c, d, l), NEAT (a, c-e, l), and BEAR (b, c, f–g, i, k–l)

adapters and includes the simulations trained on the fragmented assembly instead of the
reference (Fig. 6c). The second row’s bacteria datasets (Fig. 6d-f ) are all produced in a
single HiSeq 4000 run using Nextera adapters (enzyme fragmentation). They are ordered
from left to right by coverage ranging from high (508x) to very high (2901x) and by
genome complexity: single sequence (E. coli), two sequences where one is not present in
the data (B. cereus) and multiple sequences including plasmids of varying abundance (R.
sphaeroides). The plasmids cause multiple smaller peaks in the 51-mer spectrum with
lower frequencies than the main peak (Additional file 1: Figure S16f). Additionally, espe-
cially in Bc-Hi4000-Nextera (Additional file 1: Figure S16e), we observe variants in the
bacteria populations that increase the 51-mer counts between the systematic errors and
the signal peak. Although NEAT and ReSeq accept Vcf files, which allows non-diploid
variants to be specified, we do not include them in the simulation. In the third row,
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we have low-coverage (31x-43x), diploid datasets sequenced on HiSeq X Ten machines
with TruSeq or related adapters. Here, we do include the variants in the simulations,
which results in a second peak in the 51-mer spectrum at half the frequency of the main
peak (Fig. 6h,i). Furthermore, the three genomes contain sequences with differences in
abundance: in At-HiX-TruSeq (Additional file 1: Figure S16g), we observe a second peak
at higher frequencies stemming from the mitochondria; in Mm-HiX-Unknown (Fig. 6h),
complex changes in the NIH3T3 cell line [41], including copy-number variations, broaden
the signal peak; and, in Hs-HiX-TruSeq (Fig. 6i), the X and Y chromosomes strengthen
the heterozygous peak at half the coverage of the main peak. The fourth row is a mix
of sequencers (NovaSeq, MiSeq, BGISEQ) run on different species (H. sapiens, E. coli,
A. thalina) with medium coverage(131x-194x). The diploid species were simulated with
variants.
BEAR does not produce a signal peak that matches the real signal’s shape or position in

any of the tested datasets. ART is consistently underperforming, for the coverage distri-
bution as well as for the systematic errors. Its error rate inflation for Ec-Hi2000-TruSeq
is causing the strong peak shift in the 51-mer spectrum (Fig. 6a). Notably, pIRS struggles
with datasets with Nextera adapters: for Ec-Hi4000-Nextera, it results in a rather flat peak
and an overabundance of high-frequency 51-mers (Fig. 6d), while it maintains a uniform
coverage distribution for the other Nextera datasets (Fig. 6e-f ).
ReSeq compares favorably for the coverage distributions of all datasets, except Ec-Mi-

TruSeq (Fig. 6a–j, l), and for the systematic errors of all datasets, except At-HiX-TruSeq
and At-BGI (Fig. 6a–f, h–k, Additional file 1: Figure S16a–f, h–k). Notably, ReSeq repro-
duces the coverage peak better on data with TruSeq adapters (Fig. 6a, b, g–j), compared
to Nextera adapters (Fig. 6d–f). Furthermore, for all three HiSeq X Ten samples and the
BGISEQ sample (Fig. 6g–i, l), ReSeq slightly underestimates the coverage. This could be
manually corrected by specifying a parameter. For Ex-Mi-TruSeq, it is more complicated,
because the coverage distribution fits (Fig. 4k), but the k-mer peak does not (Fig. 6k).
A likely reason are large differences between the reference and the genome underlying
the data (for instance, a low mapping rate of 65%). Using the higher medium coverage
instead of ReSeq’s own estimation improves the 51-mer spectrum, but reduces the simi-
larity to real data for the base-coverage distribution (Additional file 1: Figure S19). Finally,
the exponential decrease is poorly reproduced in the low and medium coverage datasets
(Additional file 1: Figure S16g–l). We already saw that the systematic errors are harder to
replicate for diploid samples (Additional file 1: Figure S8g–j, l); additionally, the extremes
of the coverage peak, which are missing in simulations (Additional file 1: Figure S15c),
overlap more with the exponential decrease than in high coverage datasets.
Since for Ec-Hi2500-TruSeq-asm (Fig. 6c), the median coverage provided (as coverage

parameter to ART, pIRS, and NEAT) is a poor estimator, the median coverage esti-
mated from the mapping to the reference is provided to all simulators except BEAR for
Figure S20 (Additional file 1). For ART, the improved coverage removes nearly all perfor-
mance losses compared to Ec-Hi2500-TruSeq, which is not surprising, since only InDel
rates and the fragment-length parameters are taken from the assembly. Even though its
performance is still low, ART improves relative to pIRS and NEAT, because these two
do not cope well with the fragmented assembly and produce rather flat and broad peaks.
ReSeq’s coverage model also suffers from using the assembly instead of the reference, but
can still maintain a general resemblance to the real data.
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Fig. 7 Simulated contig N50 for real and simulated data. c preqc crashes for pIRS. f preqc crashes for pIRS
and ART

Comparison of assembly continuity

To check whether the improved representation in the k-mer spectrum has consequences
for applications, we ran the sga preqcmodule on all datasets and their simulations (Fig. 7).
The preqc module estimates the N50 (length of the shortest contig still necessary to cover
50% of the genome) of short-read assemblies for different k-mer lengths. Due to crashes,
Ec-Hi2500-TruSeq-asm is missing pIRS and Rs-Hi4000-Nextera is missing pIRS and ART.
For many datasets, ReSeq follows real data better than the other simulators (Fig. 7a–e).

In the others, namely the low- and medium-coverage HiSeq X Ten and NovaSeq datasets
(Fig. 7g–j), all simulators except BEAR perform equally, because the missed systematic
nature of errors and undetected diploid variants prevent ReSeq from delivering the same
performance. Only in Ec-Mi-TruSeq does ReSeq perform worse than NEAT and ART,
due to the discrepancy between mapped coverage and k-mer coverage. Setting the cov-
erage parameter to the median coverage as for the other simulators mitigates this effect
(Additional file 1: Figure S21). For Rs-Hi4000-Nextera, BEAR deviates drastically from
real data and other simulators (Fig. 7f ). Figure S22 (Additional file 1) shows the same plot
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without BEAR, but due to fluctuations in the real N50 values, no strong conclusions can
be drawn.
In Ec-Hi2500-TruSeq-asm (Fig. 7c), the coverage-parameter estimate from the assembly

strongly affects the N50 values of ART, pIRS, and NEAT. Providing the coverage estimate
from the reference to all simulators except BEAR (Additional file 1: Figure S23), mostly
reverts the drastic changes in N50. pIRS’s difference to real data only slightly increases,
compared to using the reference for the complete training (Ec-Hi2500-TruSeq: Fig. 7b),
while NEAT does not show the unexpected peak of N50 around k = 50 anymore, but
does not restore the slight resemblance to the real data it had in Ec-Hi2500-TruSeq, and
ART fully recovers the increase in N50 toward high k that has at least the same tendency
as real data. Noticeably, ReSeq’s N50 values stay close to the real ones no matter how it
was trained.

Comparison of cross-species simulations

An important property of trained profiles is that not only can they be used to simu-
late the original dataset, but also datasets with alternative templates. To test training
and simulation across species, we split six of the datasets into two groups with identi-
cal sequencer and fragmentation combinations. The datasets were simulated using the
median coverage, template, and variants from the simulated datasets; all other param-
eters and profiles were provided from another dataset within the group. The resulting
51-mer spectra are compared to those of the simulated datasets in Figure S24 (linear scale,
Additional file 1) and Figure S25 (log scale, Additional file 1). In the HiSeq 4000 group
with enzyme fragmentation, we used the profiles from Ec-Hi4000-Nextera to simulate
Bc-Hi4000-Nextera and Rs-Hi4000-Nextera and the profiles from Rs-Hi4000-Nextera
to simulate Ec-Hi4000-Nextera. The results highlight the difficulty of applying profiles
across genomes with very different GC content (Additional file 1: Figure S24a-c). In the
HiSeq X Ten group with mechanical fragmentation and genomes with similar GC con-
tent (Additional file 1: Figure S24d-f ), we used the profiles from Mm-HiX-Unknown to
simulate At-HiX-TruSeq and Hs-HiX-TruSeq and the profiles from Hs-HiX-TruSeq to
simulate Mm-HiX-Unknown.
Similar to the case of simulating the original datasets (Fig. 6), BEAR does not create a

signal peak that matches the real signal’s shape or position in any of the datasets, except
At-HiX-TruSeq (Additional file 1: Figure S24). ART is unaffected by the profile change,
but still shows low performance due to the uniformly distributed coverage. pIRS’s per-
formance on cross-species simulations is hard to judge on the Nextera datasets, because
pIRS already underperforms when reproducing the original Nextera datasets. For exam-
ple, pIRS on Ec-Hi4000-Nextera results in a rather flat peak (Fig. 6d) and simulating other
datasets from its profile results in no visible peak (Additional file 1: Figure S24b,c). How-
ever, for TruSeq adapters and genomes with similar median GC content, pIRS seems
to be unaffected by using profiles trained on a different species (Fig. 6g–i, Additional
file 1: Figure S24d-f )). This is not the case for NEAT, where in the HiSeq 4000 group,
minor peaks appear on the low-frequency side of the main peak (Additional file 1:
Figure S24c, S25a,c), and in the HiSeq X Ten group, an asymmetric signal peak with
a pronounced tail is visible in the simulations based on the Mm-HiX-Unknown profiles
(Additional file 1: Figure S24d,f ). This is likely caused by other sources of bias being
incorporated into the GC bias. ReSeq is missing the abundance information for the
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reference sequences and therefore does not correctly simulate the plasmids in Rs-Hi4000-
Nextera (Additional file 1: Figure S24c), the mitochondrial genome in At-HiX-TruSeq
(Additional file 1: Figure S25d), the copy-number variations in Mm-HiX-Unknown
(Additional file 1: Figure S24e), and the X and Y chromosome in Hs-HiX-TruSeq
(Additional file 1: Figure S24f). This demonstrates how ReSeq nicely separates the
individual biases and produces results (Additional file 1: Figure S24) resembling the
original datasets (Fig. 6). On Mm-HiX-Unknown, we demonstrate that given the abun-
dance information, ReSeq again produces a coverage peak as good as the one from the
simulation trained on the original dataset (Additional file 1: Figure S26, Fig. 6h).
The assembly continuity seems to be unaffected by not incorporating abundance infor-

mation and most simulations perform as well or even slightly better (Additional file 1:
Figure S27b, d–f) than with the profile from the original datasets (Fig. 7e, g–i). The
exception are simulating Ec-Hi4000-Nextera with the profile from Rs-Hi4000-Nextera
and vice versa. For Ec-Hi4000-Nextera, ReSeq, ART, and NEAT show a decrease in sim-
ilarity to the real data and only pIRS and BEAR improved, but they did not have any
resemblance to real data for the original profile (Additional file 1: Figure S27a, Fig. 7d).
For Rs-Hi4000-Nextera, the general trend is unclear, because only ReSeq and BEARman-
age to create artificial datasets that can be evaluated with the preqc module in both cases
(Additional file 1: Figure S27c, S22, Fig. 7f ). ReSeq’s performance drops strongly in rel-
ative terms, but the absolute difference in N50 remains low. On the other hand, BEAR
changes from extremely high N50 values for the original profile to a flat N50 distribution
for the Ec-Hi4000-Nextera profile.
Looking at more detailed statistics, the quality values and error rates remain mostly

accurate (except for BEAR), but reflect the differences between datasets (Additional
file 1: Figure S28, S29, S30, S31). The systematic errors are reproduced by ReSeq
also for cross-species simulations, but the performance for the HiSeq 4000 datasets
with strongly varying median GC content (Additional file 1: Figure S32a-c) is reduced
compared to the simulation of the original datasets (Additional file 1: Figure S8d–f). How-
ever, for the HiSeq X Ten datasets with similar median GC content, the performance
does not change (Additional file 1: Figure S32d–f, S8g–i). Finally, the base-coverage
distribution (Additional file 1: Figure S33) highlights again the effect of the miss-
ing abundance information for ReSeq and NEAT’s issue applying the GC bias across
species.

Comparison of computation requirements

Besides better representation of real data, computational requirements are also impor-
tant. Figure S34 (Additional file 1) shows the total CPU time, the elapsed time and the
maximum amount of memory used for the training and simulation steps of each simula-
tor for the eleven datasets. ReSeq lies on the high side of CPU time for training and in the
intermediate region for simulation (Additional file 1: Figure S34a, d). Noticeably, parts
of ReSeq’s CPU requirements scale with genome size instead of number of reads, which
leads to worse performance in lowly-covered genomes.
Due to ReSeq’s effective parallelization, its elapsed times are low for this benchmark

with 48 virtual CPUs (Additional file 1: Figure S34b,e). In contrast, the single-threaded
processes implemented in perl or python have strikingly high elapsed times. This is well
visible in Hs-HiX-TruSeq and applies to the training of pIRS (over a week), NEAT (several
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days), and BEAR (half a week) as well as the simulation of NEAT (close to 2 weeks) and
BEAR (several weeks). For the simulation, NEAT provides a tool to split the template
and later merge the reads, which can be used for manual parallelization with multiple
instances to reduce the elapsed time to 10 h in this case.
Memory requirements remain mostly below 10GB for training (Additional file 1:

Figure S34c). The exceptions are pIRS needing around 20GB to train on human-sized
genomes and ReSeq requiring around 150GB for training on these datasets. However,
ReSeq’s memory consumption during training strongly depends on the amount of CPUs
used (Additional file 1: Figure S35). Therefore, the memory requirements can be reduced
substantially by a mixed setup, where only a single thread is used for the statistics cal-
culation and multiple threads are used for the probability estimation. Thus, if needed,
ReSeq can still fallback to time and memory requirements that are in the same range as
the simulators using single-threaded training scripts. For simulations (Additional file 1:
Figure S34f), the memory requirements stay also below 10 GB, except for the multiple
instances approaches that require on human-sized genomes 35–90 Gb (ART) or 120Gb
(NEAT). Another exception is BEAR that needs close to 14 GB for Rs-Hi4000-Nextera
and around 100 GB for Mm-HiX-Unknown and Hs-HiX-TruSeq. In typical systems with
2–8 GB per core, BEAR’s high-memory requirements may block many CPUs additional
to the 2 used ones, which could lead to effective CPU times much higher than the values
in Figure S34d (Additional file 1).

Example: genuine comparison of short-read mappers

After comparing ReSeq to other simulators, we demonstrate its use in an example of
a simulation study, where the performance of two popular mapping algorithms, bwa
and bowtie2, is compared. For the simulation, we trained ReSeq either on bowtie2
or bwa mappings to verify that performance is not biased by the mapper used for
training.
As a first quality check, we compare mapping statistics between simulated and real data

for three datasets (Fig. 8a–c). In real data, the number of unmapped pairs and single reads
is higher compared to the simulation, which is most pronounced in Ec-Hi2500-TruSeq
(Fig. 8b), where the mapping of some reads is prevented by deviations between the ref-
erence genome and the true genome underlying the data. In contrast, simulated reads
are drawn directly from the reference template and thus do not exhibit mapping issues
caused by genome deviations. Furthermore, the bowtie2-based Ec-Hi2000-TruSeq simu-
lation (Fig. 8a) compared to the bwa-based simulation and real data has less unmapped
reads for bowtie2 and less soft-clipping, which could be a sign of underestimated adapter
content, but the truth data from the simulations show that the difference in adapter con-
tent can only account for less than 1/6 of the difference in unmapped reads. Finally, the
number of insertions and deletions varies in several cases (Fig. 8a–c), but for the general
comparison of mappers here, the differences are too low to influence the result.
As a next step, we compare the mapping-quality distributions between simulated and

real data (Fig. 8d–f) and observe that the mapping rates increase in mostly identical steps,
when mapping quality requirements are lowered. The overall shifts in mapping rates are
an alternative representation of the different percentages of unmapped reads discussed
in the previous paragraph. A prominent feature not explained by the general shifts can
be seen in Ec-Hi2000-TruSeq (Fig. 8d), where the difference in mapping rate between
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Fig. 8 Comparison between bwa and bowtie2 on E. coli. Each dataset has simulations trained on mappings
from bwa and bowtie2. a–c Statistics of mapping outcomes. Bowtie2 does not clip and therefore has no
soft-clipped bases. d–fMapping quality distribution. Mapping qualities are cumulative, i.e., all mapping
qualities at the given score or higher. Markers are only shown for mapping qualities 0,2,30,42 for bowtie and
0,1,30,60 for bwa. g–iMapping accuracy for all mapping quality thresholds. Markers are only shown for
mapping qualities 0,2,30,42 for bowtie and 0,1,30,60 for bwa. Positives are mapped reads, which fulfill the
correctness criteria (TP) or do not (FP). Overlapping: True and mapped positions overlap independent of
strand. Correct_start: Perfect match of start position and strand. Correct: Perfect match of start and end
positions and strand. a, d, g Ec-Hi2000-TruSeq. b, e, h Ec-Hi2500-TruSeq. c, f, i Ec-Hi4000-Nextera

the two simulations is much more pronounced for high-quality mappings compared to
low-quality mappings. In light of the observed decrease in soft-clipped bases (Fig. 8a),
the mapping rate differences can be explained by a lower number of simulated reads
with many errors (> 10) for the bowtie2-based simulation compared to the bwa-based
(Additional file 1: Figure S36). We observe that bwa handles dense errors by clipping the
reads, while bowtie2 reduces the mapping quality.
Finally, we can use the truth from the simulations to calculate true positives (TP) and

false positives (FP) of read mapping (Fig. 8g-i). In Ec-Hi2000-TruSeq (Fig. 8g), we observe
strong differences in TPs between simulations, which are due to the different amount
of reads with many errors (Additional file 1: Figure S36) and we use the bwa-based
simulation.
Overall, we observe that in the case of strong adapter presence, bwa is the better choice

due to its soft-clipping capability (Fig. 8i), although bowtie2 allows better control over
FPs with adequate mapping quality thresholds in case both read ends are required to
map perfectly. Ec-Hi4000-Nextera also highlights how important adapter simulation is
to get an adequate mapping comparison (Additional file 1: Figure S37). In the datasets
with lower adapter content (Fig. 8g, h), the recommended mapper depends on the down-
stream application. If perfect mapping is required, bowtie2 is the better choice, since bwa
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often clips too much. If only overlaps with the true position are needed, for example for
counting in intervals, bwa slightly outperforms bowtie2. If having a correct start posi-
tion is sufficient, the mappers perform approximately the same with a minimal preference
for bwa if reads with many errors are frequent and a minimal preference for bowtie2
otherwise.

For Ec-Hi4000-Nextera we already mentioned, how different the benchmarking result
would be not using ReSeq and thus not simulating adapters (Additional file 1: Figure S37),
but mapping qualities suggest that this is not the only case (Additional file 1: Figure S38).
Also for Ec-Hi2000-TruSeq, Bc-Hi4000-Nextera, Rs-Hi4000-Nextera, and Ec-Mi-TruSeq,
other simulations do not resemble real data (Additional file 1: Figure S38a,d-f,k). Fur-
thermore, both A. thaliana datasets seem especially hard to reproduce (Additional file 1:
Figure S38g,l). The mapping qualities in the cross-species simulations (Additional file 1:
Figure S39) show largely the same results.

Discussion
ReSeq’s advancements in faithfully reproducing real data (Fig. 9) can improve many
benchmark studies. Short-read error-correction methods could previously not been ade-
quately tested on simulations, because all methods scored nearly perfectly [18]. Many
error-correctionmethods are based on splitting erroneous and correct k-mers at the spec-
trum’s minimum that occurs between the signal peak and the exponential decrease at low
k-mer frequencies. ReSeq improves the shape of the exponential decrease by including
systematic errors and broadens the signal peak with the extended coverage model. The
similarity to real k-mer spectra will drastically increase the difficulty for error-correction
methods. Compared to real data, the simulation has the advantage of knowing the true
sequence for every read and does not require to derive it by mapping to a reference
genome, which can create biases due to repeat regions, ploidy, and deviations between
data and reference. However, simulations do not have the full complexity of real data
and we recommend a combined evaluation that compares the results from simulations
and real data, because it has the potential to hint at inconsistencies caused by deriving
the ground truth or imperfectly mimicking real data and to roughly estimate remaining
uncertainty in the benchmark.
The situation for assembler benchmarks is similar. We have shown above that ReSeq

simulates datasets with realistic N50 values and, in contrast to real data, we can be certain
that the dataset is perfectly represented by the reference used to evaluate the correctness
of the assembly.
In the case of mapping benchmarks, real data with ground truth is incredibly laborious

to produce and in comparison to other simulators, ReSeq includes adapters and reads
with a large number of errors, which increases the faithfulness of the results. Since variant
calling is performed on mapped reads, these improvements will also translate to variant-
caller benchmarks. Additionally, the inclusion of systematic errors adds one source of
false positive variant calls that is not present for other simulators.
Despite all the advancements of ReSeq, no simulation is perfect and neither are the

ground truth estimates from real data. Therefore, it is very important to assess the
scope of a benchmark, clarifying under which circumstances the study results are rel-
evant for real-life applications. The scope of simulations can be tested and defined
with comparisons between real and simulated data on statistics accessible for both (e.g.,
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Fig. 9 Overview of benchmarking results. The scoring is based on absolute distances, mean quotients and
correlation (see the “Methods” section). a Simulations of datasets from their own profiles: a Ec-Hi2000-TruSeq.
b Ec-Hi2500-TruSeq. c Ec-Hi2500-TruSeq-asm. d Ec-Hi4000-Nextera. e Bc-Hi4000-Nextera. f
Rs-Hi4000-Nextera. g At-HiX-TruSeq. hMm-HiX-Unknown. i Hs-HiX-TruSeq. j Hs-Nova-TruSeq. k Ec-Mi-TruSeq.
l At-BGI. b Simulations of datasets from profiles created on another species. The pairings are given in the
following notation: “simulated dataset ← training dataset”: (M) Ec-Hi4000-Nextera ← Rs-Hi4000-Nextera (N)
Bc-Hi4000-Nextera ← Ec-Hi4000-Nextera (O) Rs-Hi4000-Nextera ← Ec-Hi4000-Nextera (P) At-HiX-TruSeq ←
Mm-HiX-Unknown (Q) Mm-HiX-Unknown ← Hs-HiX-TruSeq (R) Hs-HiX-TruSeq← Mm-HiX-Unknown

mapping rates). Our example study, comparing short-read mappers, is limited in three
ways: (i) mapped reads do not vary from the reference, (ii) the reference is completely
assembled and does not have many repeat regions, and (iii) InDel simulations might need
improvements for InDel specific benchmarks. In a more complete study, the scope could
be extended by using references with different levels of continuity, repetitiveness, and
divergence from the simulated datasets. If InDels are of interest, a more detailed investi-
gation of the differences between real and simulated data would be needed. For example,
examining the InDel distribution over the genome could highlight regions where the
reference varies from the true genome of the real data. Larger variations can cause dis-
tortions in the mapping and induce false InDels into reads, which are then translated into
the simulation profiles. An improved reference would reduce the number of false InDels
and thereby increase concordance between simulations.
For optimal simulations with ReSeq, the reference genome and variant calls provided

for training should be of high-quality and closely match the used reads. Homozygous
variants are preferred directly in the training genome instead of the variant file and an
adequate representation of heterozygosity is important to correctly mimic the assembly
challenge. Furthermore, over 100-fold coverage is advised to capture systematic errors
well. Since adapters are learned from the data, the provided reads should not be trimmed.
This requires running the Illumina basecaller with deactivated adapter trimming, which
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is generally advised, because keeping raw data untrimmed allows to later modify the trim-
ming step that can affect analysis results [42, 43]. Therefore, many but not all public
datasets provide untrimmed data.
During the simulation step, the provided template and variants can be synthetic. How-

ever, care should be taken that they mimic real genomes in terms of repetitiveness and
heterozygosity. Furthermore, the GC content of the template should not deviate strongly
from the training reference since GC biases are only accurate in the trainable range.
The only drawback of ReSeq compared to the other simulators are the resource require-

ments. Due to the increase in required memory with used cores, this comes down
to required CPU time. We optimized the code and replaced many time-consuming
calculations with estimations, but further optimizations and estimations could be
implemented.
The biggest potential gain in representing Illumina genomic sequencing data could

be a predictive model for the systematic errors. This would adjust for differences of
systematic-error rates across genomes and could increase sensitivity for lowly-covered
genomes. In the absence of a predictive model, it is most important to improve low-
coverage datasets by handling the strong dependence of systematic-error rate on the
coverage. The dependence is based on the discrete nature of errors and leads in combina-
tion with unequal coverage over the genome to inaccuracies, which become exacerbated
when higher coverages are simulated from low-coverage statistics.
The coverage model could be extended by taking into account interactions between

bases for the flanking bias. Especially for enzyme cutting, the effect of a motif likely varies
from the sum of the effects of each base. Also, the effect of stretches of GC instead of only
the overall GC content could be taken into account, as done for RNA [44].
Finally, additional data types could be supported. For targeted sequencing methods,

ReSeq’s coverage model could be extended to capture and reproduce the coverage dis-
tribution on and around the targets, including off-target effects and target-dependent
enrichments. Defining targets in a general form would allow to reuse the extension
to simulate exons and introns for RNAseq. However, this requires overlapping targets,
which could be handled with equivalence classes. For methods such as 10x Genomics,
barcodes, empty droplets, doublets, and index misassignment could all be added.
Combining barcodes and a coverage-model extension for overlapping targets would allow
to simulate single-cell RNAseq datasets at the read level. Metagenomics and allele-
specific methylation are already supported but would profit from a separate simulator
comparison.

Conclusion
ReSeq improves the faithfulness of simulated data for all tested datasets. To achieve
this, we solved three major challenges. First, we developed a coverage model that can
be trained on complete large genomes. Second, we included systematic errors into the
simulation. Third, we efficiently represented the important statistics, such that memory
requirements remain constrained and the parameters can still be learned from a single
real dataset.
Furthermore, ReSeq provides an easy-to-use training of all required models. No man-

ual choice of parameters is needed, which simplifies usage over a wide range of genomes,
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Illumina machines, and DNA preparations. The results from the At-BGI dataset sug-
gest that sequencers from BGI can also be successfully simulated. Additionally, ReSeq is
more robust to fragmented references during the profile generation compared to pIRS
and NEAT.
The simulation of eleven diverse datasets showed the importance of choosing good

training data that fit the desired simulation in terms of genomic GC distribution,
preprocessing (PCR, fragmentation), and sequencing machine. Therefore, hard-coded
profiles should be avoided.
ReSeq and all of its code are available [45].

Methods
Adapter detection

ReSeq determines adapters automatically from the 10-mers of all unmapped parts of the
reads, which in case of unmapped reads are the whole read or otherwise, the read seg-
ments that exceed the fragment length. ReSeq collects the abundance as starting 10-mer
and the total abundance of 10-mers in the unmapped parts. It does so separately for the
first and second reads. If the starting 10-mer appears a second time within the unmapped
part, the read is rejected and not taken into account for the 10-mer analysis, therefore
removing low-complexity regions.
To find the adapters, the starting 10-mer with the highest abundance is used as a seed

and extended separately in both directions with the 10-mer that has the highest total
abundance of the four possible choices (i.e., added nucleotides). The extension stops when
the most abundant 10-mer has no longer an abundance five times higher than the next
highest abundance or the 10-mer is already present in the adapter. ReSeq generally filters
10-mers consisting of a single repeated nucleotide and trims the poly-A tail at the end of
the adapters. Figure S40 (Additional file 1) demonstrates the procedure for the first (of
the paired-end) reads of Ec-Hi2000-TruSeq.
The automatic detection might fail in case of low adapter presence and does not han-

dle more than one adapter for the first or the second read. For those cases, adapters can
be specified. The adapter sequences are provided in FASTA format and a corresponding
matrix defines the valid adapter pairings for first and second read. For the common Nex-
tera XT v2 and single TruSeq adapters [33], the sequences and matrix are provided with
ReSeq. After the adapters have been determined or specified, ReSeq uses the code from
skewer [46] to find adapters in unmapped and low quality reads. The seqan library [47] is
used for storing and reading from disk and general sequence handling.

Handling of Ns

For the statistics calculation ReSeq ignores positions containing an N in the reference.
At the beginning of the simulation, ReSeq replaces regions of 1 to 99 consecutive Ns in
the template with random bases. Regions with at least a hundred Ns are replaced with
a repeated 4-mer made up from the two bases following and the two bases preceding
the region. This prevents replacing the non-assembled parts of the genome with easy-to-
assemble random sequences. To use the same bases for the randomly replaced Ns over
multiple simulation runs, the replacement can be stored in a FASTA file previous to the
simulation.
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Iterative proportional fitting

To save memory and to reduce the size of the required inputs for the statistics calculation,
ReSeq stores only the two-dimensional margins for each statistic instead of the whole
matrix. To use the marginal matrices as a probability distribution during the simulation,
they need to be converted back to a single matrix. This is done during the probability
estimation step by applying the iterative proportional fitting (ipf ) procedure [48], because
no formula exists that can combine the full set of two-dimensional margins into a single
matrix. Formulas can only satisfy at most a number of two-dimensional margins equal
to the dimension of the matrix [49]. The ipf procedure adjusts the values in the matrix
such that they fulfill one given margin at a time, looping over all given margins. For each
positions ij in the currently handled margin s all contributing matrix elements mijkln are
adjusted in the following way:

mijkln = mijkln
sij

∑
k
∑

l
∑

n mijkln

Repeating those adjustments many times for all margins has been shown to converge
toward the solution [48].
In its original form, the iterative proportional fitting stores the full matrix, which poten-

tially requires TBs of memory. However, the fitting can be nicely combined with a data
reduction technique described by Fienberg [50]. There, a matrix element is stored as the
sum of average differences from the lower dimensional average. For a two-dimensional
matrix, the full description of elementmij is:

mij =[ 1]+[A]i +[B]j +[AB]ij ,

where [1] is the average value of the whole matrix, [A]i is the average value of row i
minus the overall average [1], [B]j is the average value of column jminus the overall aver-
age [1], and [AB]ij is the difference of the element ij from the average predicted by [1],
[A]i and [B]j. The full representation does not reduce memory, since the matrix [AB]
is of the same size as the original matrix m. However, for our four and five-dimensional
matrices, truncating the representation at two dimensions drastically reduces the stor-
age requirements. This truncation corresponds to the two-dimensional margins used for
the iterative proportional fitting. ReSeq includes the overall average [1] and the one-
dimensional vectors [A]i, [B]j, . . . , [E]n into the two-dimensional matrices. Furthermore,
the exponential function is applied to guarantee positive numbers. Thereby, the repre-
sentation of a five dimensional matrix is reduced to the following combination of ten
two-dimensional matrices:

mijkln = e[AB]ij+[AC]ik+···+[CE]kn+[DE]ln

Stored probabilities and conditions

Figure 1 lists all dimensions of the six statistics matrices. The matrices are used to
query the probabilities along the first dimension, conditional on all other dimensions.
The probabilities for the five possible systematic error tendencies (random error and
the four nucleotides) depend on the position in a systematic-error region (see the
“Distinguishing systematic and random errors” section), the GC content before the given
base, the systematic error rate at the first base in an error region, the reference base, the
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previous reference base, and the most frequent nucleotide within the last five bases (dom-
inant reference base). If multiple nucleotides have the same frequency within the last five
bases, ReSeq chooses the one that is the closest to the current base as dominant reference
base. The GC content is calculated in a window from half a read length before the base up
to the base. The error-region position is cut into bins of ten bases with the first bin going
from position one to ten. The position of zero means either the position where the error
region starts, or a position outside of error regions (i.e. no dependence on previous sys-
tematic errors). The probabilities for the systematic error rate at each template position
depend on the same variables, except that the previous and dominant reference base are
replaced by the dominant error.
The sequence quality is based on the GC content of the read, its mean systematic error

rate, fragment length, tile, and whether it is the first or second read(template segment).
Fragment lengths are binned into bins of ten for this purpose.
The four insertion probabilities (one for each nucleotide) and the deletion probabil-

ity depend on the position in the current insertion or deletion, the position in the read,
the GC content of the error-free read, and the last regular base call. ReSeq also models
whether the read position directly before the potential insertion or deletion is itself an
insertion or deletion (InDel before), since this means that the InDel will be an extension
of the current InDel.
Quality values are assigned based on the drawn sequence quality, previous base quality,

read position, systematic error rate, template segment, tile, and reference base.
The regular base calls are determined from the base quality, read position, number of

errors already in the read, systematic error rate, template segment, tile, reference base,
and dominant error.
In the case of soft-clipped bases in themapping ReSeq extends the reads to its full length

for statistic calculations, except if adapters are detected. This removes the bias introduced
by soft-clipping based on low quality, but introduces spurious errors in the rare case of
InDel errors in the extended part.

Distinguishing systematic and random errors

To learn the distribution of systematic errors in the genome, they need to be distinguished
from non-systematic (i.e., random) errors first. For this purpose, ReSeq determines the
most abundant substitution error and its count for every position (reference base, strand).
Then the probability is calculated that at least this many errors are observed under the
null hypothesis (a P value). We assume random errors (the null hypothesis) to have equal
probabilities for every base in non-overlapping windows of the genome and to convert
bases with equal probability to the three possible erroneous nucleotides. Under this sim-
plification, the number of conversions into a specific nucleotide at a given position follows
a Poisson distribution with a mean μ equal to the coverage Nc at the given position times
the median error rate re divided by three: μ = Nc · re

3 . The median error rate is calculated
in bins of 104 reference bases (i.e. 2 · 104 individual positions due to the separation of the
two strands).
After the P value calculation, we apply the Benjamini-Hochberg procedure [51] and call

errors systematic if their adjusted P value is less than 0.05. If both strands are reported
as systematic, there is potentially a variant at this reference base. Therefore, reference
bases are ignored for all statistics, if at this position the most abundant error of the
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forward strand matches the complemented most abundant error of the reverse strand.
When ReSeq detects a non-variant systematic error, the position on this strand gets
assigned the most abundant substitution error as systematic error tendency and its fre-
quency as error rate. Furthermore, the position is set as the start of an systematic-error
region with a length of one read length. The error region is defined by the error rate of the
systematic error starting it. If another systematic error is detected within the error region
it is considered to be caused from the same trigger sequence as the first systematic error,
except if it has a higher error rate in which case the earlier error region stops and a new
error region begins.

Removing low-quality sites

To filter low-quality sites, the start position of reads on the forward strand and the end
position of reads on the reverse strand are considered. Start positions of low-quality reads
(mapping quality < 2) are connected if less than 10 other reads start between them.
Unconnected positions are likely caused by the read and not the site and thus are treated
as high-quality. Connected start positions instead highlight low-quality regions that in
addition to all positions between them, are ignored for the coverage model. Similarly, we
ignore sites ending on or between connected end positions of low-quality reads.

Bias fit selection

To limit the memory requirements of the GC and flanking bias estimation, sites are sep-
arated into combinations of reference sequence and fragment length. From all possible
combinations, ReSeq selects a small fraction and performs one fit each. The selection only
includes combinations, where the sequence is part of the longest reference sequences cov-
ering 80% of the genome (L80) and the fragment length is one of the thirty most abundant
fragment lengths for this reference sequence. Howmany of the thirty most abundant frag-
ment lengths in the selection are fitted depends on the number of reference sequences
in the L80. For a single reference sequence, all thirty are fitted. For twenty and more
sequences, only five fits per sequence are equally distributed over the thirty most abun-
dant fragment lengths. For 2–19 sequences, the number of fits per reference sequence is
gradually reduced. For example, the single sequence of E. coli results in thirty fits, while
the four (of seven) sequences of A. thaliana in the L80, result in 4 · 15 = 60 fits.

Negative binomial model

The coverage is modelled with a negative binomial leading to the following full likelihood
over all sites n:

∏

n

(
kn + rn − 1

kn

) (

1 − μn
μn + rn

)rn (
μn

μn + rn

)kn

where kn is the observed count, μn is the mean, and rn is the dispersion at site n. The
mean is written as a product:

μn = Ñbseq(seqn)blen(lenn)bGC(GCn)bstart,nbend,n

with Ñ as the genome-wide normalization and the different b as the biases for this site.
We cannot determine bseq and blen, because they are identical for all sites n within a fit.
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Thus, those biases are absorbed into the normalization:

μn = NbGC(GCn)bstart,nbend,n

Thismodel could alternatively be described as a generalized linearmodel with a logarithm
link. However, the sheer size of the necessary matrix of explanatory variables makes it
computationally prohibitive. Furthermore, the flanking bias uses the logit link function
internally.
For the flanking bias, we tested two choices to combine the individual positions: sum

and product. If we choose the product of the positions p, the flanking bias at the start
results in:

bstart,n =
∏

p
bf ,p(startn,p)

In contrast, the sum over the positions can become negative, so we apply twice the inverse
logit. Since the center of the logit is approximately linear, this should keep the summation
behavior:

bstart,n = 2
1 + e−

∑
p bf ,p(startn,p)

For the GC bias, we use an exponential to prevent negative values and thus keep the
canonical link function:

bGC(GCn) = ebGC,spline(GCn)

Applying the inverse logit, similar to the flanking bias, improves the speed or convergence
rate for some datasets, but generally performs worse (Additional file 1: Figure S41).
Finally, the dispersion is described with two parameters, α and β :

rn = μn
α + βμn

.

The log-likelihoods are maximized with the limited-memory Broyden-Fletcher-
Goldfarb-Shanno algorithm (L-BFGS) [52, 53] implemented in the NLopt package [54]
due to its low number of required likelihood calculations. To further improve convergence
and speed, ReSeq performs the fit in three steps (Fig. 3a). It starts by fitting a Poisson,
which allows to analytically calculate the optimal GC bias for each bin. In a second step,
the individual GC bins are connected using the cubic natural spline, while the spline’s
knots are greedily adjusted to achieve the highest maximum likelihood. In the last step,
ReSeq maximizes the likelihood for the full negative-binomial model with the knots fixed
to the greedily determined values. Afterwards, the normalized biases and dispersion from
all converged reference sequences and fragment length combinations are merged using a
median to be robust against outliers.

GC knot adjustment

In the second step of the GC and flanking bias fit for the Coverage model, the GC bias
is fitted with a spline, which requires defining the six knot positions. The highest and
lowest knot are fixed at the highest and lowest GC bin. GC bins without at least one
counted fragment in the real data cannot host a knot. Beyond the outer knots, the GC
bias is assumed to remain constant. For the inner four knots, ReSeq tries to find the ideal
distribution. First, the four knots are distributed to have an equal spacing according to the
number of sites. Then ReSeq maximizes the Poisson likelihood with the flanking biases
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fixed to the values determined in the first step of the GC and flanking bias fit (Poisson
without GC spline). It additionally performs this maximization for all knot distributions
that can be reached from the starting distribution by moving only a single of the inner
knots, while maintaining knot order. From the performed fits, ReSeq greedily chooses the
knot distribution with the highest likelihood as the new starting distribution and repeats
this procedure until convergence.

GC biases renormalization

After the third step of the GC and flanking bias fit, the 101 GC biases are renor-
malized to remove the normalization parameter and make them comparable across all
combinations of reference sequence and fragment length. For this, ReSeq only takes
the best-represented GC biases into account to calculate the renormalization factor,
which prevents the highly-variable bins from disturbing the normalization. The best-
represented GC biases are those with the most sites that cover together at least 80% of the
total number of sites. After the normalization, the mean of those best-represented biases
equals 1.

Parameter combination with medians

The flanking biases and the dispersion parameters from the individual fits for each combi-
nation of reference sequence and fragment length are combined with a standard median.
In contrast, the GC biases need a weighted median, because not all fits contain a high
amount of information about every GC bin.
The unnormalized weight of a given GC bias in a fit depends on the amount of sites

lsites,GC with the corresponding GC content and equals to
√
lsites,GC − 1. To account for

the connection between the biases due to the spline, a fraction of the weight is also added
to the other bins depending on the distance:

wGC = √
lsites,GC − 1 +

GC∑

d=1

√
lsites,GC−d − 1

10d
+

100−GC∑

d=1

√
lsites,GC+d − 1

10d

Those weights are then normalized such that the sum over all GC bins equals 1 in each
fit, which makes sure that all fits are equally important.

Reference-sequence and fragment-length bias estimation

After the other biases have been fitted, ReSeq estimates the reference-sequence and
fragment-length biases. It starts by summing flanking and GC biases over all sites for
selected combinations of fragment length and reference sequence bsum,ref ,len. Addition-
ally, the counts of mapped pairs for each reference sequence, Cref , and each fragment
length, Clen, are obtained. The reference-sequence bias bref and the fragment-length bias
blen are then iteratively adjusted until convergence to follow the equations:

bref = Cref
∑

len blenbsum,ref ,len

blen = Clen∑
ref bref bsum,ref ,len
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Corrected reference sequence and fragment length counts

To minimize biases, ReSeq only counts read pairs that pass all filters (mapping quality,
forward-reverse order, maximum fragment length). Furthermore, the read pairs must not
fall on a site excluded due to low-quality mappings. To avoid a distortion of the counts
from the last filter, ReSeq scales the reference-sequence counts from the high-quality part
(that remains after filtering) to the full sequence.
To properly handle short fragment lengths, ReSeq searches for adapters, whose pres-

ence frequently leads to no or low-quality mappings and subsequent exclusion from
the analysis. Hence, if the scan detects adapters, ReSeq will recover otherwise excluded
unmapped and low-quality reads, incorporating the pairs into the fragment-length
distribution.

Bias sum estimation

Summing up the bias over all sites is an essential part of ReSeq. It is necessary to cal-
culate the fragment-length biases during the statistics calculation and to normalize the
biases during the simulation. To speed up the bias sum, ReSeq calculates in both use cases
the sum only every 20th fragment length (the samples) and estimates the other fragment
lengths. The sampling starts at the first fragment length with non-zero counts and stops
as soon as it encounters a zero count, except if this would exclude sampling positions with
at least 10 counts. The estimation of the non-sampled fragment length is different in the
statistics calculation and the simulation due to different requirements.
In the statistics calculation, ReSeq first obtains the fragment-length biases for the sam-

pled lengths. After this fit, ReSeq extends the estimates to all biases by using the ratio of
counts over bias from the samples. This ratio is almost constant except for the shorter
fragment length. Therefore, it is much easier to describe by a natural spline and requires
less sampling than the biases itself. ReSeq estimates the parameters of the natural spline by
a non-linear least square fit to the samples using the L-BFGS algorithm [52, 53] for min-
imization. ReSeq starts by assigning a knot to every sample and then gradually removes
the knots for which the sum over the squared residuals S = ∑

i r2i increases the least, until
only 6 knots are left. Occasionally, ReSeq performs a greedy search for the optimal knot
positions during the reduction, which is similar to the one described above in GC knot
adjustment. Finally, ReSeq uses the optimized spline to calculate the bias estimates for all
fragment lengths.
In the simulation, ReSeq only requires the total bias sum over the whole genome and

all fragment lengths. Thus, the precision of individual values is secondary and another
approach is chosen, where ReSeq applies a spline to interpolate the ratio of the bias sum
over the fragment-length bias using every sample as a knot. From the ratios, the bias
sums are retrieved and subsequently summed over all fragment lengths. Additionally, the
simulation requires the maximum bias for each fragment length, which ReSeq estimates
by using the maximum ratio over all samples multiplied with the respective fragment-
length bias.

Reproducibility of simulator comparison

Except for the parts that are specifically mentioned in this paragraph, everything for this
paper was run through snakemake [55] with the scripts available on GitHub [56]. Figure 3
and Figures S1, S10, S11, S40 and S41 (Additional file 1) represent intermediate values
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from ReSeq. The output of the intermediate values requires additional calculations and
disk writing in performance-critical functions. Therefore, it is triggered by hard-coded
flags and not by parameters to allow the compiler to remove unnecessary code and pre-
vent speed-loss during normal use, when the additional outputs are not needed. Due
to the hard-coded flags, the creation of the intermediate values is not included in the
snakemake pipeline. Instead, we added the csv files containing the intermediate values
to the git repository. Moreover, the computing requirements were manually extracted
from the timing files and inserted into a csv file included in the git repository. The IGV
[37, 38] screenshots included in Fig. 2 are also in the repository, so that all plotting
scripts can be called. We compared the newest versions of the simulators (Addi-
tional file 1: Table S1) and all other software and their versions are stated in Table S2
(Additional file 1) [57–60]. The datasets with sample IDs Ecoli1_L001, Bcereus1_L001,
Rsphaeroides1_L001, Ecoli1_L002, Ecoli1_L003, Ecoli2_L001, and Ecoli3_L001 were
downloaded as raw data from Illumina BaseSpace. We ran the conversion from bcl to
fastq format locally with disabled adapter trimming.

Simulations

The references for each dataset were corrected with pilon [61] before subsequent train-
ings, simulations, and evaluations. If not stated otherwise, all reads were mapped with
bowtie2 [62] in its default end-to-end alignment mode that does not allow for soft-
clipped bases. For diploid organisms, freebayes [63] called the variants and we filtered out
reported variants with qualities below 10. For simulators requiring coverage as a param-
eter, we calculated the median from the coverage summary of samtools stats [64]. Since
BEAR only accepts the number of reads as a parameter, we set it tomatch the total number
of reads in the real dataset. Additionally, BEAR requires the sequence abundances, where
we provided the number of mapped reads divided by the total number of mapped reads or
in case of the cross-species simulations, the sequence length divided by the total genome
length. The insertion and deletion rates provided to ART were obtained from parsing the
CIGAR strings in the bam files. With M, I, D being the number of matches, insertions,
and deletions in the CIGAR strings, respectively, the insertion rate is I

M+D and the dele-
tion rate is D

M+D . The fragment lengths obtained from the mapped reads were fitted with
a Gaussian to retrieve the fragment length parameters. In the case of Bc-Hi4000-Nextera,
Ec-Hi4000-Nextera, and Rs-Hi4000-Nextera, the fragment length was not Gaussian dis-
tributed, but followed an exponential decay. Therefore, we set the mean to the lowest
value accepted by all simulators, which is the read length plus one, and manually fitted
the variance for the second half of the Gaussian. The length of sliding windows were set
for all datasets to the specified fragment length.

Evaluation of simulator performance

To evaluate performance, we counted 51-mers with Jellyfish [65], except for the human
and mouse datasets, where memory consumption skyrocketed and kmc [66] using disk
storage was applied instead. The preqc module of sga [67] calculated in a reference-free
way the mean quality values and error rates by position as well as the simulated contig
length N50. We modified the preqc plotting script to adjust it to the general style. Fur-
ther plots were obtained with ReSeq using bowtie2 [62] mappings. In case of simulated
datasets without adapters, the evaluation with ReSeq requires to specify TruSeq adapters
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as a decoy. To calculate the coverage correlation, we counted the base coverage with sam-
tools depth [64]. For the short-read assembly, we called sga [68] with default parameters,
except for the ropebwt algorithm for indexing. The assembly statistics were calculated by
QUAST [35] with the minimum contig length set to zero.

Speed andmemory benchmarks

We benchmarked the speed and memory usage with GNU time. The single-threaded
processes were run on a machine with four AMD Opteron(tm) Processor 6376 with a
total of 64 cores and 512GB of memory operating Ubuntu 16.04.9. Due to their single
threaded nature, other programs were running in parallel to get a realistic use case. The
multi-threaded processes ran on single cluster nodes with 384 GB memory and two Intel
Xeon Gold 6126 resulting in 48 vCPUs. All 48 possible threads were provided to the
processes.
To report CPU time, we summed user and system time. We summed CPU times of

all processes in a category, as well as elapsed times for multi-threaded processes. For
single-threaded processes, we summed the elapsed times only if the processes were
dependent and needed to be run in series. Otherwise, we took the maximum. For max-
imum memory, we report the maximum resident set size. The memory maxima were
summed if single-threaded processes are run in parallel and the maximum was taken
if they are run in series. For multi-threaded processes, we always took the maximum
memory.
For the multi-instance approaches with NEAT and ART, we ran 48 parallel instances

on the cluster nodes and calculated the times and memory requirements as for single-
threaded processes. For ART the coverage of each instance was adjusted, while for NEAT
the dedicated splitting functionality was used.

Summary scoring

The scores in Fig. 9 are based on three metrics:

1. The sum of the absolute differences between the real and simulated values
(abs = ∑

x |real(x) − sim(x)|).
2. The mean quotient of the real and simulated values with the higher value as the

denominator, so that the score goes from 0 to 1:

quot = meanx

( real(x)
sim(x) real(x) < sim(x)
sim(x)
real(x) real(x) ≥ sim(x)

)

3. The Spearman correlation cor between real and simulated values.

For ART, pIRS, and NEAT, we evaluate the simulations of Ec-HiSeq2500-TruSeq-asm
with the median coverage from Ec-HiSeq2500-TruSeq and for ReSeq the simulation of
Ec-Mi-TruSeq with the median coverage. In all other cases, the default simulations are
used.
Quality values are scored based on the absolute differences as very good (abs < 20),

good (abs < 53), intermediate (abs < 100), poor (abs < 500), or very poor otherwise.
pIRS is penalized by one category for not separating quality values of first and second
reads.
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Error rates are normalized by the mean error rate of the real data and then separated
based on the absolute distance into very good (abs < 20), good (abs < 35), intermediate
(abs < 65), poor (abs < 100), or very poor otherwise. pIRS is penalized by one category
for not separating error rates of first and second reads.
For systematic errors, coverage, duplications and fragment length, the values used in

the metrics are divided by the total to make them independent of genome size or number
of reads (y(x) = ỹ(x)∑

k ỹ(k)
).

The systematic error distributions are truncated when the real values fall below 10
counts or when the lowest coverage threshold to include 99% of the genome is reached.
The coverage threshold removes repeats and plasmids, which would otherwise dominate
the metrics. Based on all three metrics, the systematic errors are scored as very good
(abs < 0.25, quot > 0.6, cor > 0.99), good (abs < 0.5, quot > 0.4, cor > 0.97), interme-
diate (abs < 0.7, quot > 0.2, cor > 0.95), poor (abs < 0.85, quot > 0.1, cor > 0.85), or
very poor otherwise.
The coverage is separated based on the absolute difference into very good (abs < 0.1),

good (abs < 0.35), intermediate (abs < 0.62), poor (abs < 0.9), or very poor otherwise.
The duplication distributions are truncated when the real values reached zero and

scored based on the mean quotients as very good (quot > 0.75), good (quot >

0.25), intermediate (quot > 0.05), poor (quot > 0.01), or very poor otherwise.
Simulators with duplication values exceeding the values of real data are penalized
by one category if less than 0.01% of the fragments are affected or two categories
otherwise.
The fragment length is separated based on the absolute difference into very good

(abs < 0.01), good (abs < 0.05), intermediate (abs < 0.2), poor (abs < 0.6), or very poor
otherwise. BEAR is penalized by a reduction of one category for the trimming of reads,
which violates the fixed read length of real data.
For the k-mer evaluation, the 51-mer spectrum is split at the minimum between the

exponential decrease and the signal peak in real data indicated in Fig. 6. Everything up
to the minimum is evaluated with the mean quotient and correlation, while everything
after the minimum is divided by the total number of 51-mers in this part and then scored
based on the absolute differences. The scores are very good (abs < 0.2, quot > 0.75,
cor > 0.98), good (abs < 0.37, quot > 0.6, cor > 0.9), intermediate (abs < 0.52,
quot > 0.3, cor > 0.75), poor (abs < 0.75, quot > 0.05, cor > 0.48), or very poor
otherwise.
The amount of reads for all mapping qualities are normalized by the total number

of reads and then categorized based on the absolute difference as very good (abs <

0.05), good (abs < 0.1), intermediate (abs < 0.25), poor (abs < 0.4), or very poor
otherwise.
The simulated N50 spectra have only 15 points and their values fluctuate considerably

for some datasets. Additionally, the range of values varies substantially between datasets.
Thus, the above metrics do not separate the quality of simulations well and instead we use
the count of simulated N50 values that are between the minimum and maximum of the
real N50 value and their 1, 2, or 4 neighboring N50 values on both sides. Missing neigh-
bours for the first and last points are replaced with a value twice the first/last value minus
the second/second last value. The given scores are very good (count1 ≥ 13, count2 ≥ 14,
count4 ≥ 15), good (count1 ≥ 5, count2 ≥ 10, count4 ≥ 12), intermediate (count2 ≥ 5,
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count4 ≥ 9), poor (count4 ≥ 6), or very poor otherwise. Simulations with a consistently
wrong direction of change in N50 over at least 4 points are reduced by one category.
The speed is evaluated based on the elapsed times t and separated into very good

(t < 1h), good (t < 4h), intermediate (t < 24h), poor (t < 72h), or very poor
otherwise. If they exist, the threaded or multi-process versions of the simulators are
used.
The memory consumptionmem was scored as very good (mem < 1GB), good (mem <

8GB), intermediate (mem < 32GB), poor (mem < 128GB), or very poor otherwise. Con-
sistent with the speed evaluation, we use the threaded or multi-process versions of the
simulators if they exist.
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