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Abstract

The simultaneous quantification of protein and RNA makes possible the inference of past, present, and future cell
states from single experimental snapshots. To enable such temporal analysis from multimodal single-cell
experiments, we introduce an extension of the RNA velocity method that leverages estimates of unprocessed
transcript and protein abundances to extrapolate cell states. We apply the model to six datasets and demonstrate
consistency among cell landscapes and phase portraits. The analysis software is available as the protaccel Python
package.
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Background
Recent technological innovations that allow for assaying
multiple modes of cell states at single-cell resolution are
creating opportunities for more detailed biophysical mod-
eling of the molecular biology of cells. Specifically,
genome-wide probing of molecular states is revealing de-
tailed information about the functional diversity of cells as
determined by gene regulation, transcription, processing,
and translation. The ability to probe cell states has been
driven by improvements in single-cell RNA sequencing
(scRNA-seq) methods [1] and advances in multiomics [2].
These methods allow researchers to quantify mRNA and
protein expression levels in individual cells [3–5]. Further-
more, scRNA-seq can discriminate between nascent and
processed transcripts. The recently described RNA velocity
[6] method takes advantage of this feature of single-cell
RNA-seq to fit a first-order system of ordinary differential
equations describing gene-specific splicing [7] and to infer
kinetic trajectories of single cells.
RNA velocity exploits the transfer of information in gene

expression to extrapolate future cell states. In brief, the
current population of unspliced transcripts is slated to be
processed (Fig. 1a) and thus contains information regarding
the future population of spliced transcripts. We extend this

logic as follows [8]: the current population of proteins was
translated from spliced RNA and thus contains information
regarding the past population of spliced transcripts (Fig. 1b).
We extend the RNA velocity model to protein translation,
resulting in an analogous mathematical formulation for pro-
tein count extrapolation (Fig. 1a). We emphasize that unlike
methods that require time-series measurements [9–11], our
method estimates protein translation kinetics from a single
time-point. To visualize the apparently disparate RNA and
protein estimates in a single cell state representation, we
adapt a method [6] for embedding dynamical information
based on a distance metric in a high-dimensional space
(Fig. 1c). We provide the Python package protaccel to facili-
tate analysis, and apply it to datasets to estimate their past
and future cell states and identify trends in acceleration
behavior.

Results and discussion
We analyze six peripheral blood mononuclear cell (PBMC)
datasets, collected using four different technologies. The
dataset metadata is outlined in Table 1. The four technolo-
gies are CITE-seq [3], REAP-seq [4], ECCITE-seq [5] (with
two datasets: “ctrl,” a healthy control, and “CTCL,” a cuta-
neous T cell lymphoma patient), and 10X Genomics feature
barcoding (with two datasets: “1k” and “10k” cells).
The approximately linear spliced RNA/protein phase

plots (Additional file 1: Figures S1-S6) are qualitatively
consistent with the first-order and constant-parameter
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model of protein production, although we do observe
some deviations by cell type. A subset of linear gene/
protein pairs (Additional file 1: Table S1), manually se-
lected from the phase plots according to concordance
with the model, was used to estimate the gene-specific
protein velocities. To calculate RNA velocity, we use a
broad panel of genes with robust unspliced detection, high
variation, and good agreement with the ODE model

(sample genes and fits shown in Additional file 1: Figures
S7-S12). We extrapolated the cell states, then embedded
them in a projection calculated from the spliced mRNA
space (Additional file 1: Supplementary Note).
The cell type-specific RNA velocities (Additional file 1:

Figure S13-S18) depict a highly directional landscape.
The corresponding protein velocities (Additional file 1:
Figures S19-S24) are rather noisier as a result of sparser

Fig. 1 Model structure and parameter inference. a A single gene’s information transfer through transcription, splicing, and translation, and the
ordinary differential equations governing the spliced mRNA and protein populations. b Conceptual framework for extrapolation from snapshot
sequencing data. c Protein acceleration workflow: estimation of equilibrium states u = γs and s = γpp (black dashed lines) from imputed gene-
specific population data (light brown), gene-specific extrapolation to calculate Δsi and Δpi, identification of nearest neighbors (dark gray: cell i,
intermediate gray: n neighboring cells j, light gray: non-neighbor cells, circle: neighborhood), calculation of transition probabilities and embedded
velocities (red: RNA velocity, blue: protein velocity, Tij: transition probability from cell i to neighbor j, uij: unit vector from cell i to neighbor j), and
visualization of acceleration (blue arrow: protein velocity, red arrow: RNA velocity, combined curvature: gray Bézier curve)
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data collection (dozens of proteins vs. thousands of
genes). We used a Gaussian kernel to determine the net
velocities at regular grid points. The RNA and protein vel-
ocity fields (Additional file 1: Figures S25-S30) suggest
that alignment between the two is strongly associated with
cell type. The combination of RNA and protein velocities
reveals the curvature of the cell state landscape. In a con-
ceptual sense corresponding to Fig. 1b, the immediate
protein velocity and the underlying RNA velocity yield a
second-order estimate of protein acceleration driven by
upstream unspliced mRNA modulation. We visualize cell
movement in the embedding using a Bézier curve calcu-
lated from three points corresponding to past, present,
and future cell states. A high-curvature Bézier curve corre-
sponds to high acceleration.
The protein acceleration landscapes show a diversity of dy-

namics identifiable across datasets (Fig. 2a, Additional file 1:
Figure S31-S36). A distinct set of B cells has high acceler-
ation (CITE, REAP, 10X 1k, 10X 10k); another set, which
forms a separate cluster in t-SNE, has low acceleration
(CITE, REAP, 10X 10k). T lymphocytes tend to show low ac-
celeration and low mobility in general (all datasets), although
a mobile subset is occasionally seen and forms a cluster with
mobile monocytes (CITE, REAP, possibly 10X 1k, possibly
10X 10k). Monocytes are mobile and exhibit a mixture of
unidirectional and accelerated dynamics in a single cluster
(CITE, REAP, ECCITE ctrl, 10X 1k, 10X 10k).
We found that subsets of B cells and of T lymphocytes

exhibit strong protein acceleration. We hypothesize that
the B cell partitioning corresponds to the differences be-
tween cell subtypes, e.g., mature B cells, which are rest-
ing [12] and require dedicated T cell activation [13], and
plasma cells, which quickly respond to stimuli [14] and
would be expected to have high acceleration on the rele-
vant timescales. The T lymphocyte behavior may reflect

recent findings that describe mRNA transcript “pile-up”
due to heavily suppressed translation in naïve CD4+ T
cells [15], or potential lymphocyte plasticity [16]. The
monocyte behavior may correspond to the steady-state
partitioning between monocyte subtypes [17], such as
the transition from classical to non-classical circulating
monocytes [18]. However, due to the imperfect separ-
ation of cell types in the embedding, we caution against
over-interpretation of aggregated velocities.
The quality of data between the four different technologies

is quite disparate. CITE-seq and 10X technologies appear to
give strong velocity signals; inspection of raw phase portraits
suggests that the results are fairly reliable (Additional file 1:
Figures S1, S5-S7, S11-S12). REAP-seq yields lower RNA
counts (Additional file 1: Figures S2, S8) and noisier dynam-
ics. Finally, ECCITE-seq yields extremely sparse acceleration
landscapes (Additional file 1: Figures S33-S34), which result
from the very shallow sequencing of spliced transcripts: we
confirmed that ECCITE-seq captures 1–2 orders of magni-
tude fewer RNA molecules per cell than CITE-seq or REAP-
seq, which is consistent with Fig. 1b of Mimitou et al. [5]
(Additional file 1: Figure S37). Comparison to unfiltered
pseudoaligned 10X data shows that the ECCITE-seq RNA
counts are roughly comparable to counts in empty droplets
in the 10X feature barcoding technology. Overall, the CITE-
seq and feature barcoding technologies appear to be by far
the most reliable.
In addition to using genes with linear behavior to infer

velocity, we qualitatively confirmed consistency between
datasets for the gene CD4, which has a striking non-linear
appearance (Fig. 2b). We hypothesize that the non-linear be-
havior corresponds to regulatory differences due to cell type;
in the context of our model, the data seem to suggest a
unique, low degradation rate in CD4+ T lymphocytes and a
different, high degradation rate in all other blood cell types.

Table 1 Protein acceleration datasets and parameters

Dataset CITE-seq REAP-seq ECCITE-seq ctrl ECCITE-seq CTCL 10X 1k 10X 10k

RNA data GSM2695381 GSM2685238 GSM3596095 GSM3596100 See Methods See Methods

Protein data GSM2695382 GSM2685243 GSM3596096 GSM3596101 See Methods See Methods

Alignment software Cell Ranger 2.2 Cell Ranger 1.3 Cell Ranger 3.0 Cell Ranger 3.0 kallisto 0.46 kallisto 0.46

Counting software velocyto 0.17 velocyto 0.17 velocyto 0.17 velocyto 0.17 kallisto 0.46 kallisto 0.46

Reference genome GRCh38 hg19 hg19 hg19 GRCh38 GRCh38

Cell count 1780 3158 5084 5317 709 7855

Velocity genes 1172 1338 591 667 1114 920

Antibodies 10 41 49 49 17 17

Velocity proteins 7 16 11 12 7 8

Cell types found 5 4 4 3 5 5

Imputation k 400 800 800 800 50 50

Clustering method MVP RVP RVP MVP MVP MVP

Embedding PC2/3 and t-SNE t-SNE t-SNE t-SNE t-SNE t-SNE

MVP ModularityVertexPartition, RVP RBERVertexPartition, PCA principal component, t-SNE t-Stochastic Neighbor Embedding
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Our qualitative protein acceleration framework does not
attempt to account for regulatory differences between cell
types. Future work may involve more granular models to
enable inference of local rather than global parameters,
e.g., the determination of separate parameters for the

CD4+ T lymphocytes and other cell types for the CD4
gene (Fig. 2b). Current protein quantification protocols
are adapted for histological markers on the cell surface;
technology that can quantify cytosolic protein could aid in
more extensive studies of cell dynamics and open a

Fig. 2 Protein acceleration visualization. a CITE-seq PBMC protein acceleration, visualized on a grid in principal component space. b Spliced RNA/
protein phase portraits of CD4 in six PBMC datasets. Dot color identifies cell type (blue: CD4+ T, red: B, yellow: monocytes, green: CD8+ T, purple:
natural killer, pink: not identifiable unambiguously)
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broader range of investigations tractable by protein accel-
eration, as discussed in Additional file 1: Supplementary
Note. In particular, we anticipate this method is naturally
applicable to inferring and validating cell state vector fields
[19]. Finally, the simultaneous quantification of mRNA
and regulatory cytosolic proteins would greatly aid in the
implementation of physically realistic models of gene ex-
pression which explicitly account for regulation by ob-
served transcription factors.

Methods
The key metadata, physiology, and parameters used for
the six datasets are summarized in Table 1. GSM num-
bers correspond to Gene Expression Omnibus (GEO)
samples. 10X Genomics PBMC datasets are available at
the 10X Genomics website [20, 21]. Aligned sequence
files released alongside each original publication were
used whenever available. The velocyto 0.17 command-
line interface was used to generate unspliced count
matrices for the CITE-seq, REAP-seq, and ECCITE-seq
datasets; kallisto 0.46 was used for the 10X datasets.
The velocity calculation and visualization processes

are described in detail in Additional file 1: Supplemen-
tary Note. In brief, scRNA-seq and feature barcoding
data were smoothed using a nearest-neighbor connectiv-
ity matrix, generated using the scikit-learn 0.20.0 Python
package [22]. For each cell, unspliced RNA, spliced
RNA, and protein counts were replaced with the
mean value of k neighbor cells. For ease of
visualization, Louvain clustering was performed using
the louvain 0.6.1 Python package [23]. Cell types were
manually assigned based on markers (Additional file 1:
Table S2) reported in CITE-seq and REAP-seq publi-
cations [3, 4] (Additional file 1: Figures S38-S43).
We implemented the protein acceleration workflow as

the protaccel Python package [24]. protaccel 0.2 was
used for all analyses in this article, with the exception of
Additional file 1: Figures S52-S54, which used protaccel
0.301. To calculate RNA velocities, we fit extreme quan-
tiles of the imputed spliced/unspliced RNA phase plots,
filtered to select “velocity genes” with phase plots de-
scribed sufficiently well by the linear fit (R2 > 0.1), esti-
mated the spliced RNA degradation rates, then
calculated deviations from the equilibrium line. To cal-
culate protein velocities, we followed the same process,
albeit using protein/spliced RNA phase plots and manu-
ally selecting “velocity proteins” with qualitatively linear
phase plot appearance.
To visualize the velocities, we generated low-dimensional

embeddings for the cells, selected to be a set of principal
components (PCs) for CITE-seq and a t-Stochastic Neigh-
bor Embedding (t-SNE) based on the top 25 PCs for all
other datasets, as well as CITE-seq in Additional file 1: Fig-
ure S31 [25]. The PC and t-SNE calculations were

performed using the scikit-learn 0.20.0 Python package
[22]. Consistently with the original RNA velocity publica-
tion [6], we assumed the net velocity direction can be rep-
resented on a low-dimensional embedding by calculating
transition probabilities to an embedding neighborhood of
500 cells. We computed these transition probabilities by
calculating the correlation between high-dimensional vel-
ocity and directions to the embedding neighbors, both
processed with a variance-stabilizing square root transform-
ation. The high-dimensional space of the RNA velocity
workflow is the space of velocity genes; the corresponding
high-dimensional space of the protein velocity workflow is
the space of velocity proteins. Each embedding was parti-
tioned into a 20 × 20 point grid, representing cell states at
t0; grid arrows were generated by applying a Gaussian ker-
nel (smoothing parameter σ = 0.5) to the cell-specific veloci-
ties of 200 cells nearest the grid point. The forward
extrapolation of each grid point, corresponding to informa-
tion about t+1 inferred from RNA velocity, was calculated
by adding the aggregated RNA velocity vector to the grid
point vector. The backward extrapolation of each grid
point, corresponding to information about t−1 inferred from
protein velocity, was calculated by subtracting the aggre-
gated protein velocity vector from the grid point vector.
We produced curved arrows corresponding to the entire
trajectory by fitting a second-order Bézier curve to each
grid point’s t−1, t0, and t+1 locations. The fit was performed
using the bezier 0.9.0 Python package.
We performed all simulations using MathWorks

MATLAB 2018a.
Scripts to reproduce the results of this paper are avail-

able at GitHub [26]. Raw datasets for protein acceler-
ation analysis (velocyto loom files with mRNA counts
and csv files with protein counts) are available on fig-
share [27–30].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13059-020-1945-3.

Additional file 1. Supplementary Information for “Protein velocity and
acceleration from single-cell multiomics experiments.” Supplementary
note describing the theory and implementation of protein velocity, and
including supplementary figures.
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