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Abstract

Background: Drug resistance is a major obstacle in cancer therapy. To elucidate the genetic factors that regulate
sensitivity to anti-cancer drugs, we performed CRISPR-Cas9 knockout screens for resistance to a spectrum of drugs.

Results: In addition to known drug targets and resistance mechanisms, this study revealed novel insights into drug
mechanisms of action, including cellular transporters, drug target effectors, and genes involved in target-relevant
pathways. Importantly, we identified ten multi-drug resistance genes, including an uncharacterized gene C1orf115,
which we named Required for Drug-induced Death 1 (RDD1). Loss of RDD1 resulted in resistance to five anti-cancer
drugs. Finally, targeting RDD1 leads to chemotherapy resistance in mice and low RDD1 expression is associated
with poor prognosis in multiple cancers.

Conclusions: Together, we provide a functional landscape of resistance mechanisms to a broad range of
chemotherapeutic drugs and highlight RDD1 as a new factor controlling multi-drug resistance. This information
can guide personalized therapies or instruct rational drug combinations to minimize acquisition of resistance.

Background
Although many cancers can be treated with chemothera-
peutic and targeted drugs, patients frequently develop
resistance over time leading to disease relapse and poor
prognosis. A basic functional understanding of genes
and mechanisms involved in anti-cancer drug resistance
can lead to new biomarkers, drug combinations, or
patient-specific therapies. Pharmacogenomic profiling of
cancer cell lines (CCL) [1–3] compares drug response to
gene expression and has provided insights into anti-
cancer drug mechanisms of action (MoA). Direct mech-
anistic interpretation of these data sets can be difficult
[3], and functional genomics approaches can help
elucidate drug MoA and resistance.

Results and discussion
Whole genome CRISPR knockout screens for 27 anti-cancer
drugs
Whole genome loss-of-function screens using the
CRISPR-Cas9 system are an effective tool for identifying
cell death or resistance mechanisms in response to anti-
cancer drugs [4–8], bacterial toxins [9], or viral infection
[10]. To generate a global perspective on resistance
mechanisms that regulate sensitivity to anti-cancer
drugs, we performed large-scale functional resistance
screens to a spectrum of anti-cancer drugs, covering a
wide range of targeted and cytotoxic agents in clinical use
or preclinical development (Fig. 1a and Additional file 1:
Table S1). The drugs used in this screen target various
critical biological processes that are perturbed during
cancer development and progression (Fig. 1b and
Additional file 1: Table S1). We used the haploid cell
line HAP1, a well-characterized model for functional
genomic studies [11–15], and generated dose-response
cell death curves for all drugs screened using a
resazurin-based cell viability assay (Additional file 2:
Figure S1). We mutagenized cells with the human
Genome-scale CRISPR Knockout (GeCKO) v2 Library,
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a large-scale loss-of-function library consisting of 123,
411 unique single guide RNA (sgRNA) sequences tar-
geting 19,050 human genes [16]. Cells were selected
for resistance using a minimal lethal concentration
(IC90-99; Additional file 1: Table S1) of each anti-
cancer agent for the first 3 days, and then lowered to
allow recovery and expansion of resistant cells. Drug-
resistant cells were recovered, and sgRNA abundance
was quantified relative to an unselected control popu-
lation (Fig. 1c, Additional file 3: Table S2). We then
identified hits that were significantly enriched (false
discovery rate [FDR] < 0.1) using the Model-based
Analysis of Genome-wide CRISPR-Cas9 Knockout
(MAGeCK) method [17]. From this, we found screens

for 20 of 27 compounds yielded at least 1 significant
hit (FDR < 0.1). For the 7 compounds (imatinib,
olaparib, obatoclax, PAC-1, paclitaxel, RO-3066, and
sorafenib) that did not yield significant data, this is
likely due to screening at high drug concentrations
(Additional file 4: Table S3). To evaluate our overall
approach with respect to what has been previously re-
ported for HAP1 cells, we compared the list of essen-
tial genes (i.e., dropout screen data; Additional files 3
and 5: Table S2 and S4) obtained using the GeCKO
v2 library alongside HAP1 screening results obtained
using the pLCV2-TKOv3 and pLCKO-TKOv3 gRNA
libraries [18]. We observed substantial overlap between
these three sets of essential genes (Additional file 2: Figure

Fig. 1 A CRISPR-Cas9 knockout screen identified genes required for the cytotoxicity anti-cancer drugs. a The panel of 27 screened drugs are
classified based on their therapeutic targets and mechanisms of action. b Drugs are grouped according to their primary target/effector pathways
and cellular functions. A single drug may be included in multiple categories. c Schematic design of pooled CRISPR library screens to identify the
genes involved in drug sensitivity
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S2a). The set of 376 essential genes identified in our study
include fundamental biological processes with enrichment
of ribosome, aminoacyl-tRNA biosynthesis, RNA trans-
port, RNA polymerase, pyrimidine metabolism, spliceo-
some, cell cycle, proteasome, DNA replication, and
ribosome biogenesis in eukaryotes (Additional files 1, 2,
and 5: Figure S2b, Table S4 and S5).

Functional resistance profiles reveal known MoA
To assess the ability of this system to identify drug re-
sistance genes or mechanisms, we compared our results
with well-characterized drug MoAs. In resistance screens
for various topoisomerase I inhibitors (camptothecin, iri-
notecan, and topotecan), the top ranked hit was TOP1,
whereas conversely, the top ranked hit for the topoisom-
erase II inhibitor (idarubicin) was TOP2A (both FDR <
0.005, Fig. 2a, Additional files 2, 3, and 5: Figure S3a-f,
Table S2 and S4). We also uncovered critical regulators
involved in drug processing. For example, deoxycytidine
kinase (encoded by DCK) which phosphorylates nucleo-
side analogues intracellularly to exert cytotoxicity [19]
was the top ranked hit for the nucleoside analogues cla-
dribine, cytarabine, and gemcitabine (FDR < 0.005,
Fig. 2a, Additional files 2, 3, and 5: Figure S3 g-k, Table
S2 and S4).
Whole genome resistance profiling effectively captured

known cancer drug transport mechanisms. For instance,
methotrexate (MTX, an anti-folate chemotherapeutic
drug) mimics natural folates to block thymidine biosyn-
thesis via inhibition of dihydrofolate reductase (DHFR)
and requires a transporter to enter the cell. In our sys-
tem, sgRNAs targeting the folate carrier SLC19A1
showed strong enrichment for MTX resistance, inde-
pendently validating this gene association from a prior
study [20] (FDR = 0.00248, Fig. 2a, Additional files 2, 3,
and 5: Figure S4a, Table S2 and S4).
Functional resistance profiling could also identify

encoded proteins involved in drug target-relevant path-
ways. For example, resistance to AZD7762, a checkpoint
kinases (CHKs) inhibitor, could be achieved through loss
of the downstream CHK1 target, CDC25A (FDR =
0.00495, Fig. 2a, Additional files 2, 3, and 5: Figure S4b,
Table S2 and S4). CHKs are important enzymes that
regulate either the G1/S or the G2/M transition in the
cell cycle. In response to DNA damage or incomplete
DNA replication, CHKs become activated and transi-
ently delay cell cycle progression to allow DNA repair or
the completion of DNA replication. AZD7762 drives
checkpoint abrogation via inhibition of CHK1, which
stabilizes CDC25A and impairs DNA repair resulting in
tumor cell death [21, 22] (Additional file 2: Figure S4b).
Moreover, using pathway analysis, we were able to iden-
tify mismatch repair (MMR) machinery (such as MLH1,
MSH2, and MSH6) (FDR < 0.005, Additional files 1, 2, 3,

and 5: Figure S4c, Table S2, S4 and S6) from functional
resistance screening for mercaptopurine (6-MP) and
thioguanine (6-TG). This is consistent with known re-
sistance mechanisms for these compounds [23, 24].

Functional resistance profiles reveal novel MoA
In addition to known regulators of drug sensitivity, nu-
merous top ranked resistance genes identified here have
not been previously linked with drug MoA or resistance,
such as C1orf115-vincristine, KDM1A-vinorelbine, MGA-
vorinostat, PPP6C-docetaxel, and SLC43A2-oxaliplatin (all
FDR < 0.005, Fig. 2a, Additional files 3 and 5: Table S2
and S4). PPP6C, previously implicated in tumorigenesis
and progression [25, 26], was confirmed to regulate sensi-
tivity to the microtubule inhibitor docetaxel (Fig. 2b).
Within the top resistance genes for each compound, we
also identified N-alpha-acetyltransferase 60 (NAA60,
encoded by NAA60) (FDR = 0.00248; Additional files 3
and 5: Table S2 and S4), and this was validated as a medi-
ator of methotrexate resistance (Fig. 2c). NAA60 is an N-
terminal acetyltransferase that acetylates met-lys, met-ala,
met-val, and met-met, and is required for normal chromo-
some segregation [27].
We also identified SLC43A2, a putative oxaliplatin

transporter [28], as a major mediator of oxaliplatin cyto-
toxicity (FDR = 0.00495, Fig. 2a, Additional files 3 and 5:
Table S2 and S4). SLC43A2 encodes an L-type amino
acid transporter (LAT4) which facilitates the movement
of bulky neutral amino acids across the cell membrane
[29]. We confirmed that knockout of SLC43A2 reduced
oxaliplatin sensitivity in multiple cell types (Fig. 2d), flag-
ging SLC43A2 as a potential key mediator of oxaliplatin
cytotoxicity.
Tasisulam, an acyl-sulfonamide inhibitor, suppresses

proliferation in a variety of human cancers [30]. Func-
tional profiling for tasisulam resistance identified two
significant hits, DCAF15 and DDA1, which belong to the
core subunits of the cullin-ubiquitin ligase complex [31]
(both FDR = 0.00248, Additional files 2, 3, and 5: Figure
S5a and b, Table S2 and S4). To confirm a role for
DCAF15 and DDA1 in tasisulam cytotoxicity, we gener-
ated the relevant CRISPR-knockout cells. Depletion of
DCAF15 or DDA1 resulted in an increased resistance to
tasisulam in both HAP1 and HeLa cells (Additional file 2:
Figure S5c and d). Our results independently confirm re-
cent data implicating anti-cancer sulfonamides induce cell
death by disrupting precursor mRNA splicing via the
cullin-ubiquitin ligase-dependent degradation of RBM39/
CAPERalpha [32, 33] (Additional file 2: Figure S5e).
Our whole genome resistance profiling also highlighted

that the transcription factor Y-box-binding protein 1 (YB-1,
the protein encoded by YBX1) was involved in sensitivity to
cisplatin (FDR = 0.05116, Fig. 3a, b, Additional files 3 and 5:
Table S2 and S4), and these results were independently
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Fig. 2 (See legend on next page.)
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validated (Fig. 3c–f). Cisplatin is a platinum-based geno-
toxic agent that blocks DNA replication by DNA cross-
linking, induction of double-stranded DNA breaks,
leading to cellular apoptosis [34]. Accordingly, YB-1-
depleted cells displayed common resistance to other

platinum-based drugs, carboplatin and oxaliplatin
(Fig. 3g–i), in agreement with recent evidence that
checkpoint adaptation (entry into mitosis with dam-
aged DNA) is likely a primary pathway in cisplatin-
induced cell death at pharmacological concentrations

(See figure on previous page.)
Fig. 2 Whole genome resistance profiling identifies known and novel targets/mechanisms of action. a The top hit genes (FDR < 0.1) identified
from each drug screening using MAGeCK. A subset of genes previously linked to modulate drug sensitivity (red text). b A CRISPR-Cas9 knockout
screen identified PPP6C required for docetaxel cytotoxicity. CRISPR-Cas9-targeted cells decreased their sensitivity to docetaxel in HAP1 and HeLa cells.
c NAA60 is involved in methotrexate sensitivity. CRISPR-Cas9-targeted cells decreased their sensitivity to methotrexate in HAP1 and HeLa cells. d A
putative small-molecule transporter (SLC43A2) for oxaliplatin. CRISPR-Cas9-targeted cells decreased their sensitivity to oxaliplatin in HAP1 and
HeLa cells

Fig. 3 Depletion of YB-1 results in resistance to platinum-based drugs. a Chemical structure of cisplatin. b Enriched genes identified from screens
for cisplatin. FDR = 0.1 (blue dotted line). c Western blot validation of sgRNA-mediated depletion of YB-1 in HAP1. d YB-1 and beta-actin levels
were analyzed by Western blot analysis in CRISPR-Cas9-targeted HeLa cells. e, f CRISPR-Cas9-targeted cells decreased their sensitivity to cisplatin
in e HAP1 and f HeLa cells. g Chemical structure of carboplatin and oxaliplatin. h, i Depletion of YB-1 in HAP1 cells reduced their sensitivity to h
carboplatin and i oxaliplatin
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[35]. Together, our findings reveal new genetic insight
into drug-specific and broad mechanisms behind
therapeutic resistance, while creating a comprehensive
data set that can guide further investigation into new
resistance mechanisms.

Identification of novel multi-drug resistance gene
C1orf115/RDD1
In total, our screening isolated 56 significant chemother-
apy resistance genes across the 20 compounds tested
(FDR < 0.1, Additional file 5: Table S4). We next investi-
gated genes that when targeted confer resistance to more
than 1 drug (multi-drug resistance; MDR). In total, we
identified 10 genes that were significantly enriched with
resistance to 2 or more drugs (FDR < 0.1, Additional file 1:
Table S7). Also, MDR genes were classified by their pri-
mary cellular roles. A subset of these MDR genes has pre-
viously been linked to general cellular cytotoxicity or
previously implicated in cancer drug resistance. Among
these are pro-apoptotic genes (including BAX and
PMAIP1 [also known as NOXA]), DCAF15, deoxycytidine
kinase (DCK), mismatch repair genes (including MLH1,
MSH2, and MSH6), topoisomerase I (TOP1), and topo-
isomerase IIA (TOP2A). Importantly, we identified a novel
uncharacterized MDR gene, C1orf115 (named here
Required for Drug-induced Death 1 (RDD1), Fig. 4a),
which we further investigated.
RDD1 encodes a previously uncharacterized protein

containing a DUF4710 domain of unknown function
(Fig. 4a). This gene is widely conserved in vertebrates,
including mammals, marsupials, and birds (Fig. 4b). In
humans, RDD1 is broadly expressed with highest expres-
sion in the gastrointestinal tract, brain, and female re-
productive system [36]. We identified RDD1 as an MDR
gene that, when targeted, causes significant resistance to
two anti-cancer drug screens: cladribine (FDR = 0.00099)
and vincristine (FDR = 0.00495), and guides targeting
this gene were also highly enriched (albeit not signifi-
cant) in imatinib, paclitaxel, and vinorelbine resistance
screens (Additional files 2, 4, and 5: Figure S6, Table S3
and S4). We confirmed our screening results and
found that targeting RDD1 with two distinct sgRNAs
(Additional file 2: Figure S7a) resulted in resistance to
these five anti-cancer drugs, primarily anti-tubulin
agents (paclitaxel, vincristine, and vinorelbine; Fig. 4c,
Additional file 2: Figure S7b and c). Similar results
were obtained independently using RNA interference,
confirming targeting RDD1 leads to multi-drug resistance
(Additional file 2: Figure S7d and e). Moreover, loss of
RDD1 conferred resistance to vincristine and vinorelbine
(which prevent microtubule polymerization [37]) and
paclitaxel (which stabilizes microtubules by preventing
depolymerization [38]), and this resistance could be
rescued by overexpression of a gRNA-resistant RDD1

construct (Additional file 2: Figure S7f). Microtubule-
targeting drugs are clinically used to control various ma-
lignancies, especially ovarian and breast adenocarcinomas
[39]. Further, loss of RDD1 also conferred resistance
to vincristine or paclitaxel in vivo (Fig. 4d, e and
Additional file 2: Figure S7 g) resulting in increased
tumor growth and shortened lifespan in drug-treated
animals. Of note, targeted RDD1 cells did not cause
broad resistance as sensitivity to AZD7762, BI2536,
cabazitaxel, docetaxel, mercaptopurine, obatoclax, and
vorinostat was retained (Additional file 2: Figure S8).
Collectively, our data highlights RDD1 as a new cen-
tral regulator of anti-cancer drug sensitivity and loss
of RDD1 as an important mediator of multi-drug
resistance.

Low RDD1 expression was associated with poor prognosis
in multiple cancers
To assess the prognostic relevance of RDD1, we next eval-
uated RDD1 expression compared to cancer patient out-
come [40]. Notably, significant reductions in RDD1
mRNA expression were observed in multiple cancers such
as breast cancer, colorectal cancer, lung cancer, and ovar-
ian cancer (normal versus tumor) (Additional file 1 and
Additional file 2: Figure S9a, b and Table S8). Moreover,
low RDD1 expression was significantly associated with
poor patient survival (n = 1435 with p = 2.2e−05 and haz-
ard ratio of 0.7135) in ovarian cancer patients (Fig. 5a),
specifically in a paclitaxel-treated cohort (Fig. 5b). This ef-
fect was further replicated in a second independent pa-
tient cohort (Additional file 2: Figure S10a, b). RDD1
expression was significantly correlated with patient out-
come in lung cancer (p = 0.0063 and hazard ratio of
0.6177, Fig. 5c; p = 0.032 and hazard ratio of 0.6412,
Fig. 5d), gastric cancer (p = 0.0002 and hazard ratio of
0.7262, Fig. 5e), liver cancer (p = 0.0018 and hazard ratio
of 0.6099, Fig. 5f), kidney renal clear cell carcinoma (p =
0.00029 and hazard ratio of 0.5037, Fig. 5e), and sarcoma
(p = 0.0197 and hazard ratio of 0.5694, Fig. 5f). Together,
these data highlight the relevance of RDD1 expression in
controlling cancer drug sensitivity and link low RDD1 ex-
pression with reduced patient survival in various cancers.
Our results demonstrate the value of systematic func-

tional identification of anti-cancer resistance genes and
MoAs of small compounds. From a biological perspec-
tive, our genome-wide CRISPR screen established new
functional gene/drug interactions that may help us
understand how anti-cancer drugs kill tumors and how
resistance inevitably develops. This includes functional
validation of RDD1, and other new anti-cancer drug re-
sistance genes warrant further characterization. This
study thereby provides the scientific community with a
comprehensive multi-dimensional dataset and functional
framework for future experimental and computational
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investigations. Together these data, complemented by
existing drug sensitivity information [2, 3] and CRISPR-
Cas9 knockout data [41], may help to shape personalized
therapies, instruct future drug development, and guide
the design of molecularly optimized combination treat-
ments for cancer patients.

Materials and methods
Cell culture
Human HAP1 cells were generously provided by Dr.
Thijn R. Brummelkamp [11]. HeLa cells were gifted
from Dr. Adam R. Cole (Garvan Institute). HEK293T
cells were obtained from the ATCC. Cells were cultured
in medium (HAP1 cells in IMDM (Sigma-Aldrich); HeLa
and HEK293T cells in DMEM (Sigma-Aldrich)),

containing 10% bovine calf serum (BCS; Hyclone La-
boratories), 1× GlutaMAX, 100 U/ml penicillin G, and
100 g/ml streptomycin (Thermo Fisher Scientific) in a
humidified atmosphere of 5% CO2–95% air at 37 °C.
HeLa and HEK293T cell lines were authenticated using
STR DNA profiling. HAP1 cells were not formally
authenticated. All cell lines tested negative for
mycoplasma.

Cell viability assay
Trypsinized cells (1.5 × 104 cells; unless stated otherwise)
were seeded in each well of a 96-well plate. After 24 h,
various concentrations of anti-cancer drugs were added,
and the cells were incubated for an additional 72 h. After

Fig. 4 Characterization of RDD1. a Schematic protein structure of RDD1. b Gene tree of RDD1 from birds to human. c CRISPR-Cas9 RDD1-
targeting cells decreased their sensitivity to the drugs (as indicated) in HAP1 cells. d, e CRISPR-Cas9 RDD1-targeting HeLa cells decreased their
sensitivity to vincristine (VCR) in xenograft tumor model. d Tumor growth and e overall survival are shown. All data represented as mean ± SEM
(n = 4–6 mice per group). d One-way ANOVA followed by Tukey’s post hoc test or e log-rank test, **p < 0.01
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incubation, the medium was aspirated from each well
and 150 μl of fresh medium containing a 0.002% solution
of resazurin (Sigma-Aldrich) was added to the wells and
incubated for 4 h at 37 °C. The absorbance was measured at
570 nm using a microplate spectrophotometer (FLUOstar
Omega, BMG Labtech).

Lentivirus production
To generate lentivirus, the human lentiCRISPRv2 plasmid
library (Addgene 1000000048) was co-transfected with
packaging plasmids pCAG-VSVG and psPAX2 (Addgene
plasmids 35616 and 12260, respectively). Briefly, a T-75
flask of 80% confluent HEK293T cells was transfected in
OptiMEM (Thermo Fisher Scientific) using 8 μg of the
lentiCRISPRv2 plasmid library, 4 μg pCAG-VSVG, 8 μg
psPAX2, 2.5 μg pAdVantage (Promega), 30 μl of P3000
Reagent (Thermo Fisher Scientific), and 30 μl of Lipofecta-
mine 3000 (Thermo Fisher Scientific). Cells were incu-
bated overnight, and then, the media were changed to
DMEM (Sigma-Aldrich) with 10% BCS and 1× GlutaMAX
(Thermo Fisher Scientific). After 48 h, viral supernatants
were collected and centrifuged at 2000 rpm for 10 min
to get rid of cell debris. The supernatant was filtered
through a 0.45-μm ultra-low protein binding filter
(Merck Millipore). Aliquots were stored at − 80 °C.

Cell transduction using the GeCKO v2 library
HAP1 cells were transduced with the GeCKO v2 library
by spinfection. Briefly, 2 × 106 cells per well were plated
into a 12-well plate in IMDM media supplemented with

10% BCS and 8 μg/ml polybrene (Sigma-Aldrich). A
titrated virus was added in each well along with a no-
transduction control. The plate was centrifuged at 2000
rpm for 1 h at 37 °C. After the spin, cells were incubated
overnight and then enzymatically detached using Try-
pLE™ Express (Thermo Fisher Scientific). Cells were
counted, and each well split into duplicate wells. One
replicate was treated with 1 μg/ml puromycin (Thermo
Fisher Scientific) for 3 days. Percent transduction was
determined as cell count from the replicate with puro-
mycin divided by cell count from the replicate without
puromycin multiplied by 100. The virus volume yielding
a MOI (multiplicity of infection) of approximately 0.4
was used for large-scale screening.

HAP1 anti-cancer drug resistance screen
1 × 108 HAP1 cells were transduced as described above
using 12-well plates with 2 × 106 cells per well. Puro-
mycin was added to the cells 24 h post-transduction and
maintained for 7 days. Cells were pooled together into
larger flasks after 3 days incubation of puromycin. On
day 7, cells were split into treatment conditions in dupli-
cate with a minimum of 2.5 × 107 cells per replicate
(seeding density ~ 225,000 cells/cm2). Two replicates
were cultured in IMDM supplemented with anti-cancer
drugs (Additional file 1: Table S1), and one replicate was
cultured in regular IMDM media. Replicates were either
passaged, or fresh media with drugs was added every 2–
3 days. During screenings, we reduced the concentration
of the drugs to select the resistance cells in CRISPR KO

Fig. 5 Low RDD1 expression was associated with poor prognosis in multiple cancers. a–h The Kaplan-Meier survival plots of patient overall
survival using the a–f Kaplan-Meier Plotter database or g, h OncoLnc online tools. p values were calculated using the log-rank (Mantel-Cox) test
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pool whereas untransduced HAP1 cells were treated
with the drugs to ensure the drug was cytotoxic in each
case. Cells were harvested after 14 days of the treatment
for genomic DNA analysis.

Genomic DNA sequencing
Genomic DNA (gDNA) was extracted from harvested
cells with a Blood & Cell Culture Midi Kit (Qiagen) and
used for PCR reactions as described previously [16].
Primers used to amplify lentiCRISPR v2 sgRNAs for the
first PCR are as follows: sense, 5′-AAT GGA CTA TCA
TAT GCT TAC CGT AAC TTG AAA GTA TTT CG-
3′, and antisense, 5′-TCT ACT ATT CTT TCC CCT
GCA CTG TTG TGG GCG ATG TGC GCT CTG-3′.
A second PCR was performed to attach Illumina adap-

tors and barcode samples. The second PCR was done in
a 100-μl reaction volume using 5 μl of the first PCR
product. Primers for the second PCR include both a
variable length sequence to increase library complexity
and a 6-bp barcode for multiplexing of different bio-
logical samples: sense, 5′-AAT GAT ACG GCG ACC
ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC
GCT CTT CCG ATC T (1–9 bp variable length
sequence) (6 bp barcode) tct tgt gga aag gac gaa aca ccg-
3′, and antisense, 5′-CAA GCA GAA GAC GGC ATA
CGA GAT AAG TAG AGG TGA CTG GAG TTC
AGA CGT GTG CTC TTC CGA TCT tct act att ctt tcc
cct gca ctg t-3′.
Amplification was carried out with 18 cycles for the

first PCR and 24 cycles for the second PCR. PCR prod-
ucts from the second PCR were gel extracted, quantified,
mixed, and sequenced using a HiSeq 2500 (Illumina).
The sgRNA sequences against specific genes were recov-
ered after removal of the tag sequences using the Check-
out script (http://100bp.wordpress.com) and Cutadapt
(ver. 1.12).
Enrichment of sgRNAs (Additional file 3: Table S2),

genes (Additional files 4 and 5: Table S3 and S4), and
KEGG pathways (Additional file 1: Table S6) was ana-
lyzed using MAGeCK [17] (ver. 0.5.7) by comparing read
counts from cells after drug selection with counts from
matching unselected cell population.

Plasmid constructs and gene validation
To validate the candidate genes from screening, sgRNAs
from the parent library were cloned into pLentiCRISPRv2
(Addgene plasmid 52961). The control sgRNA was used
from the parent library. Lentiviruses were produced as
described above, and transduced HAP1 or HeLa cells were
selected with 1 μg/ml puromycin 24 h post-infection. Two
weeks later, puromycin was removed, and cells were
allowed to recover for three additional days before
analysis. Gene disruption efficiency was verified by

Western blot. The sequences of the sgRNAs used are
in Additional file 1: Table S9.
The gRNA-resistant construct (OE_RDD1) was made

by directed mutagenesis using the Quick-Change kit
(Stratagene) following the manufacturer’s protocol. To
create the OE_RDD1 construct, the sgRNA targeting site
(sgRDD1_B; Additional file 1: Table S9) on pLenti-C-
mGFP (Origene) containing human C1orf115 gene
(pLenti-C1orf115-mGFP) was changed to gRNA resist-
ance sequence (synonymous mutations) using the follow-
ing oligonucleotide—sense: 5′-GCC GCT TAT AGC
GCT CCT TTC GCT GTA GCC ACC AGC GTG GTA
TCC-3′, and anti-sense: 5′-AGC GAA AGG AGC GCT
ATA AGC GGC AGC GAA GCC TTG CAG GCC G-3′.

Western blot analysis
YB-1 antibody was purchased from Cell Signaling Technol-
ogy, Inc. Beta-actin antibody was purchased from Abcam.
Cells were harvested in lysis buffer (50mM Tris (pH

7.5), 150mM NaCl, 1% NP40, 0.5% sodium deoxycholate,
1 mM EDTA, and 0.1% SDS) containing protease inhibitor
cocktail (Sigma-Aldrich), and the protein concentrations
were determined using the BCA Protein Assay (Thermo
Fisher Scientific). The proteins (20 μg) were electropho-
resed on 10% SDS-polyacrylamide gels, transferred to
PVDF membranes (Amersham Bioscience), and incubated
with specific primary antibodies at 4 °C overnight. After
washing, the membranes were incubated with horseradish
peroxidase-conjugated secondary antibodies for 1 h and
were then visualized with enhanced chemiluminescent
substrate (Thermo Fisher Scientific).

Reverse transcription quantitative real-time PCR
Total RNA was prepared using TRIzol reagent (Invitro-
gen) according to the manufacturer’s instructions. Single-
stranded cDNA was synthesized from 2 μg total RNA
according to the manufacturer’s procedure (Bio-Rad). The
primers used for SYBR Green RT-qPCR were as follows:
for human RDD1, sense 5′-AGT ACG GCA AGA ATG
TCG GG-3′ and anti-sense 5′-TTA GCG CAC GAA
GGA TAC CA-3′; for GAPDH, sense 5′-ATG GAA ATC
CCA TCA CCA TCT T-3′ and anti-sense 5′-CGC CCC
ACT TGA TTT TGG-3′. RT-qPCR was performed using
the Roche LightCycler 480 II Real-Time PCR System
equipped with a 384-well optical reaction plate. Relative
quantification of mRNA levels was performed using the
comparative Cq method (ΔΔCq method) with GAPDH as
the reference gene.

siRNA transfections
siRNA transfections were performed using Lipofectamine
RNAiMAX Reagent (Invitrogen) following the manufac-
turer’s protocol. Briefly, 5 × 105 cells were seeded into 6-
well tissue culture plates 1 day prior to transfection with
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50 nM RDD1 siRNA (siRDD1_1-hs.Ri.C1orf115.13.1 and
siRDD1_2-hs.Ri.C1orf115.13.2) or with a non-targeting
control siRNA (siControl) (Integrated DNA Technolo-
gies). After 48 h, the cells were seeded in each well of a
96-well plate for cell viability assay as described above.

Xenograft experiments
Survival studies were performed by subcutaneously
injecting 1 million HAP1 or HeLa cells (sgControl or
sgRDD1) resuspended in 50% matrigel and 50% PBS,
into immunocompromised Balb/c-Fox1nuAusb (mude)
mice. Treatment commenced when tumors reached
150mm3 (100%), and mice were randomized into a treat-
ment group: (a) saline control (intraperitoneally, twice
weekly (day 1, day 4)), (b) vincristine (VCR; 0.5 mg/kg
intraperitoneally, once weekly), and (c) paclitaxel (PTX;
20 mg/kg, intraperitoneal injection, twice weekly (day 1,
day 4)). Tumor size was monitored twice weekly by cali-
pers, and tumor volume calculated using the formula:
0.5 × length × width2. Animals were euthanized at ethical
endpoint (tumor volume > 400%), and tissues collected
for analyses. Survival analyses were performed using the
log-rank test on n = 4–6 mice per group.

Patient survival analysis
We performed survival analysis for RDD1 using the
Kaplan-Meier Plotter (http://kmplot.com/analysis) and
OncoLnc (www.oncolnc.org) online tools that base their
analysis on publicly available gene-expression datasets such
as GEO (Affymetrix microarrays only) and TCGA [42].

Statistical analysis
Statistical analysis performed was specified in the figure
legends. p < 0.05 was considered statistically significant,
unless stated otherwise. No corrections for multiple test-
ing were made for the MAGeCK hits. No statistical
methods were used to determine the sample size before
starting experiments. Cell biology experiments were not
randomized, and the investigators were not blinded with
regard to sample allocation and evaluation of the experi-
mental outcome. For xenograft experiments, blinding
and randomization were performed. Statistical analysis
was performed using GraphPad Prism (V7.0.1, Graph-
Pad) and R ver. 3.5.2.
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