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Abstract

Background: There is currently no method to precisely measure the errors that
occur in the sequencing instrument/sequencer, which is critical for next-generation
sequencing applications aimed at discovering the genetic makeup of heterogeneous
cellular populations.

Results: We propose a novel computational method, SequencErr, to address this
challenge by measuring the base correspondence between overlapping regions in
forward and reverse reads. An analysis of 3777 public datasets from 75 research
institutions in 18 countries revealed the sequencer error rate to be ~ 10 per million
(pm) and 1.4% of sequencers and 2.7% of flow cells have error rates > 100 pm. At the
flow cell level, error rates are elevated in the bottom surfaces and > 90% of HiSeq
and NovaSeq flow cells have at least one outlier error-prone tile. By sequencing a
common DNA library on different sequencers, we demonstrate that sequencers with
high error rates have reduced overall sequencing accuracy, and removal of outlier
error-prone tiles improves sequencing accuracy. We demonstrate that SequencErr
can reveal novel insights relative to the popular quality control method FastQC and
achieve a 10-fold lower error rate than popular error correction methods including
Lighter and Musket.

Conclusions: Our study reveals novel insights into the nature of DNA sequencing
errors incurred on DNA sequencers. Our method can be used to assess, calibrate,
and monitor sequencer accuracy, and to computationally suppress sequencer errors
in existing datasets.
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Introduction
The sensitive detection of rare genetic variants in a population of cells is critical for

multiple applications in biology and medicine, including industrial microbial engineer-

ing [1], drug-resistance management in infectious disease [2], and in oncology for the
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early detection [3] or non-invasive diagnosis [4] (known as liquid biopsy) of cancers. In

these scenarios, it is highly desirable to detect bona fide mutations present at minuscule

frequencies. Deep DNA sequencing by next-generation sequencing (NGS) technology

holds great promise, but the sequencing accuracy remains a bottleneck for these appli-

cations. For example, the overall DNA sequencing error rate was reported to be > 1000

per million (pm) from 2011 to 2018 [2, 5–7]. We recently discovered that the overall

NGS error rate can be computationally suppressed nearly 100-fold to between 10 pm

and 100 pm through modeling of alignment artifacts and quality variation [8]. This in

turn enabled a series of applications requiring highly sensitive detection of low-

frequency events [9, 10]. In these reports, overall error rate (oER) is measured by a “ref-

erence DNA” method [8] where the DNA library is assumed to be mutation-free. How-

ever, generating mutation-free DNA is itself a challenge. For example, the highest-

fidelity polymerase Q5 was reported to have an error rate (pER, for PCR error rate) of

0.53 pm [11], which can lead to genetically heterogeneous DNA molecules upon PCR

amplification (Fig. 1a). In addition, human cells are estimated to have a mutation rate

of ~ 10−8 (0.01 pm) per position per haploid genome [12, 13]. As a result, DNA ex-

tracted from cell populations can have bona fide low-frequency mutations (Fig. 1b).

Therefore, in reference DNA-based methods, the sequencing readout is a product of

mutations in cells or misincorporations during PCR amplification, as well as errors in-

duced in sequencers (Fig. 1a, b). As a result, it remains unknown how to precisely

measure sequencer error rates (sER), which are necessary to make informed decisions

about platform (e.g., HiSeq vs NovaSeq) and sequencer (i.e., actual instrument) choices

for deep sequencing applications, to diagnose sequencer problems, and to improve the

accuracy of DNA sequencing.

In this work, we present a novel computational method, SequencErr, to precisely

measure sER. The key idea is to utilize the paired-end sequencing methodology (Fig. 1c),

which was designed to double the sequencing yield by sequencing the input DNA mol-

ecule from both ends. When the input DNA molecule is short, forward and reverse

reads overlap and the overlapping base pairs are sequenced twice. Identical readouts

are expected if there are no sequencer errors, and discordance between forward and re-

verse reads must be a result of an error in the sequencer (Fig. 1c). We note that over-

lapping reads have been extensively utilized to reduce errors in the literature [14–18],

and the novelty here is to use overlapping reads to investigate the accuracy of the se-

quencer, flow cells, etc. We investigated error patterns associated with platforms, se-

quencers, flow cells, and tiles in flow cells (see Additional file 1: Supplementary Note 1

for cartoon illustration) by using 3777 datasets from 75 research institutions in 18

countries (Additional file 2: Table S1; see the “Methods” section). Our results provide

critical insights into sequencer accuracy and suggest future directions to enhance in-

strument accuracy.

Calculating sequencer error rate with SequencErr

For a given read pair r, we denote the number of overlapping base pairs between for-

ward and reverse reads as nr. The number of sequenced bases in this region is 2nr,

where r = 1, …, K, and K is the number of read pairs in each evaluation unit (e.g., one

tile). We denote the number of base pairs with a mismatch between forward and
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Fig. 1 Measuring sequencer error rates. a, b Reference DNA method, where large amounts of reference
DNA are needed. This can be achieved by starting from a small amounts of DNA/cells (to minimize inter-
molecule/cell genetic heterogeneity) followed a by a large number of PCR cycles and sequencing.
Alternatively, we can start from b large amounts of starting DNA/cells followed by a small number of PCR
cycles (to minimize PCR errors) and sequencing. In both approaches, mutations/PCR errors (red dots) before
sequencing can confound the sequencer error rate estimate (red triangles). c We interrogate the sequencer
errors by focusing on discordant bases between forward and reverse reads of the same DNA segment
within the overlapping regions. Such mismatches must have happened in the sequencer. d Public datasets
produced by HiSeq, NextSeq, and NovaSeq as of December 2019. Datasets without proper read names,
with very small sizes, or with very short reads (so that overlap is minimal) are not suitable for our analysis
(see the “Methods” section). HiSeq has the most suitable datasets and we downloaded and analyzed ~ 50%
of these. e–g Tile-level error rate across representative sequencers for e HiSeq, f NextSeq, and g NovaSeq.
In each panel, a “good” sequencer (top) is illustrated with a “problematic” sequencer (bottom), where
sequencer identifiers are indicated on the right. h Comparison of overall error rate (oER) and sequencer
error rate (with or without computational error suppression) measurements on a common DNA library
(generated by PCR enzymes Kapa and Q5) sequenced by two sequencing providers (St. Jude Children’s
Research Hospital Computational Biology Genomics Laboratory (SJ) and HudsonAlpha Institute of
Biotechnology (HAIB)), with two different NovaSeq sequencers. Tile arrangements are determined according
to vendor documentation (see the “Methods” section). Tile-level error rates are capped at 200 per million
for visualization purposes. ***Significant Wilcoxon rank-sum test (two-sided) P value (< 0.01). n.s, not
significant (P > 0.01)
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reverse reads as mr. Considering the nested structure of reaction units in a sequencing

run, where a read belongs to a tile, a tile belongs to a swath, a swath belongs to a lane,

a lane belongs to a surface, and a surface belongs to a flow cell (Additional file 1: Sup-

plementary Note 1), we can define the sequencer error rate at different granularity

scales. For example, the tile-level sER can be calculated as:

et ¼
P

rmrP
r2nr

where read pair r∈tile t ð1Þ

Similarly, the flow cell-level sER is defined as:

e f ¼
P

rmrP
r2nr

where read pair r∈flow cell f ð2Þ

and the surface-level sER is defined as:

es ¼
P

rmrP
r2nr

where read pair r∈surface s ð3Þ

Physical location information of reads, such as sequencer and flow cell identifiers and

tile numbers, is stored in the read name, which is critical for our analysis (see the

“Methods” section). We do not specifically analyze the lane effect because it is custom

configurable (see the “Methods” section; Additional file 1: Fig. S1).

Measuring overall sequencing error rate at base pair level

When a reference DNA library has been deeply sequenced (e.g., with > 1,000,000×

depth), the known wild-type bases can be used to calculate overall error rate (oER) in a

site-specific fashion [8] as follows:

error ratei g > mð Þ ¼ #reads with nucleotide m at position i
Total#reads at position i

ð4Þ

where g indicates the reference allele at genomic locus i, and m represents each of the

three possible substitutions caused by sequencing error. For example, at a given site

with reference allele A, we can calculate oER for the three possible mismatches, A>C,

A>G, and A>T. Note that oER is a product of bona fide cellular mutations, PCR errors

(pER), and sequencer error (sER). It is different from the sER measured in Eqs. 1, 2,

and 3. The oER can be used to compare datasets generated by different sequencers, or

to compare datasets with or without removing outlier tiles as discussed later.

Datasets for benchmarking SequencErr

Many datasets across a broad spectrum of platforms, sequencers, flow cells, and sam-

ples are needed to test the efficacy of our method. For this purpose, we analyzed data-

sets from the public repository NCBI Sequence Read Archive (SRA) (see the “Methods”

section) for three major platforms—HiSeq, NextSeq, and NovaSeq (Fig. 1d, Additional

files 3, 4, 5: Tables S2, S3, S4). HiSeq is the most common of these due to its earlier re-

lease (2010), followed by NextSeq (2014) and NovaSeq (2017). A significant challenge

is that read names in many datasets have been reformatted in NCBI SRA (see the

“Methods” section, Additional file 1: Supplementary Notes 2-3, Additional files 3, 4, 5:

Tables S2, S3, S4), possibly to save storage space. This resulted in only 5.2% of the
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public datasets (n = 72,447) being suitable for our study (Fig. 1d). These were generated

in 75 research institutes across 18 countries (Additional file 2: Table S1).

We analyzed the datasets according to flow cells considering that multiple samples

(i.e., multiplexing with barcode) can be pooled in one flow cell, and a sample may be

sequenced in multiple flow cells. In fact, different samples pooled in the same flow cell

tend to have similar tile-level error rates, indicating a minimal sample effect (Additional

file 1: Fig. S1; Additional file 6: Table S5). This resulted in 632, 54, and 24 flow cells

from 108 HiSeq, 20 NextSeq, and 13 NovaSeq sequencers, respectively (Fig. 2a, Add-

itional file 7: Table S6). Tile-level error rates (Eq. 1) of representative flow cells are il-

lustrated in Fig. 1e–g, where the variability of error rates among sequencers, flow cells,

surfaces, and tiles can be observed.

Fig. 2 Analysis of sequencer errors. a Flow cell-level error rate distribution of common sequencing platforms
including HiSeq, NextSeq, and NovaSeq (with the number of flow cells indicated). Outlier flow cells are highlighted in
red. Vertical bars indicate the medians. b Flow cell-level error rate across sequencers (instrument identifiers and
number of flow cells in parentheses; due to limited availability, sequencers with at least 5, 2, and 1 flow cells are
included for HiSeq, NextSeq, and NovaSeq, respectively; see full data in Additional file 1: Fig. S2). Medians are indicated
with a vertical black bar and on the right margin of the figure. Red dots indicate outlier sequencers defined at error
rate cutoff 100 per million (10−4; vertical dashed line). c Comparison of error rate between the top and bottom
surfaces of flow cells. Medians are indicated by vertical bars. Two-sided Wilcoxon rank-sum test P values are indicated
for each platform in the right margin. d Prevalence of outlier tiles across flow cells, stratified by the top and bottom
surfaces. Shown are percentages (x-axis) of outlier tiles with a high error rate (> 100 per million) for top (blue) and
bottom (red) surfaces of each flow cell across three platforms (y-axis). For each platform, the number of flow cells with
more than 10% (dashed vertical line) high error rate tiles is indicated by the numbers on the right. *For HiSeq top
surfaces, percentages < 1% are replaced with a random number in [0%, 1%] for display purposes. +For HiSeq bottom
surfaces, percentage> 30% are replaced with a random number in [30%, 32%] for display purposes
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Comparison of overall error rate and sequencer error rate measures

As illustrated in Fig. 1a–c, the overall error rate (oER, Eq. 4) is a measure of sequencing

errors with a mixture of error sources, including PCR artifacts and sequencer artifacts.

On the other hand, the sequencer error rate (sER, Eqs. 1–3) is a direct measure of er-

rors specific to a sequencer. We, therefore, compared these measures by using a previ-

ously published amplicon sequencing dataset (ENA project ID PRJEB35986) [8]. In this

dataset, genomic loci flanking the spike-in somatic mutations are known to be wild-

type and are used to measure the oER (Eq. 4). On the other hand, the sER was calcu-

lated with Eq. 2. Because exactly the same DNA library (generated by PCR enzyme

Kapa and Q5, respectively) was sequenced by different NovaSeq sequencers from differ-

ent sequencing providers (SJ: St. Jude Children’s Research Hospital; HAIB: HudsonAl-

pha Institute for Biotechnology) [8], it also provided a unique opportunity to

benchmark the instruments. Consistent with the expectation that sER is a subset of the

oER, the measured oER is consistently higher than sER (Fig. 1h). Strikingly, data gener-

ated by SJ demonstrated a significantly (two-sided Wilcoxon rank-sum test, P < 0.01)

higher oER than that generated by HAIB, indicating a strong contribution of sequencer

errors. Indeed, the sER of SJ is also significantly (two-sided Wilcoxon rank-sum test,

P < 0.01) higher than that of HAIB. The consistent significantly (two-sided Wilcoxon

rank-sum test, P < 0.01) lower overall error rate of Q5 than that of Kapa is consistent

with our previous findings [8]. This data supports the value of measuring sER because

lower sequencer error rate can result in lower overall error rate and measuring sER

might help choosing the best sequencers for deep sequencing applications. For ex-

ample, NovaSeq and NextSeq are on average preferred over HiSeq sequencers. Because

different sequencers can have dramatically different error rates (such as the two Nova-

Seq sequencers studied here), specific sequencers with lower error rates are preferred.

To understand the effect of computational error suppression in sER, we performed a

similar analysis as above except without computational error suppression (i.e., no qual-

ity filtering on mapping quality and Phred scores). As a result (Fig. 1h), the sER is now

close to 1000 pm (10−3), which is consistent with previous reports [2, 6]. This result re-

inforced our previous observation that computational error suppression can lead to 10-

to 100-fold error rate reduction [8]. With this observation, we will apply computational

error suppression to calculate sER hereafter unless otherwise stated.

Comparison of sequencer error rates between platforms

We first studied the general sequencer error rate (sER) patterns associated with the

HiSeq, NextSeq, and NovaSeq sequencing platforms. For this purpose, we summarized

flow cell-level sER using Eq. 2. As can be seen from Fig. 2a and Additional file 7: Table

S6, HiSeq, NovaSeq, and NextSeq have an average sER of 32.9, 11.1, and 1.5 pm, re-

spectively. Because HiSeq and NovaSeq have the highest throughput, and possibly the

most popular usage, we conclude that the current sER is ~ 10 pm.

We noticed that many flow cells in HiSeq and NextSeq platforms demonstrate ele-

vated sER (red dots in Fig. 2a). To test if there are systematic error sources, we reorga-

nized the data by focusing on sequencers that have data from multiple flow cells

(Fig. 2b, Additional file 1: Fig. S2 and Additional file 7: Table S6). Only a few se-

quencers have sER greater than 100 pm where all flow cells appear to be affected (red
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dots in Fig. 2b and Additional file 1: Fig. S2). Therefore, we define outliers by using

100 pm as threshold hereafter. Interestingly, tiles in physical proximity in outlier se-

quencers tend to have concordant error rate patterns between flow cells (Additional file

1: Fig. S3, Additional file 8: Table S7), indicating a sequencer problem. On the other

hand, flow cell-level sER appears to be highly stable across runs within the non-outlier

sequencers (Fig. 2b, Additional file 1: Fig. S2), indicating that a successful initial se-

quencing experiment may ensure the generation of high-quality data across many flow

cells. We identified two sequencers (E00332 and NS500183, 1.4% of 141 sequencers;

Fig. 2b, Additional file 7: Table S6) as outlier sequencers and corresponding datasets

were omitted from further analyses. In the non-outlier sequencers (Additional file 7:

Table S6), 17 flow cells (2.5%, n = 661) have marginally high error rate (between 100

pm and 150 pm). One (0.15%, n = 661) flow cell (C5E39ANXX, Additional file 7: Table

S6) has a very high error rate (15,225 pm) and was omitted from further analyses.

Flow cell surfaces

Because it appears that the top surface has a lower sER than the bottom surface in the

representative flow cells (Fig. 1e–g), we next calculated sER in the top and bottom sur-

faces (Eq. 3) for each flow cell. As can be seen in Fig. 2c and Additional file 9: Table

S8, the top surfaces have significantly (two-sided Wilcoxon rank-sum test, P < 0.01)

lower median sER than bottom surfaces for HiSeq and NextSeq. For NovaSeq, the top

surface tends to have lower median sER than the bottom surface, although statistical

significance is not reached. This data indicates a systematic problem in the bottom sur-

faces of flow cells and an apparent quality improvement of bottom surfaces in the

newer sequencers.

Flow cell tiles

Because there are outlier tiles with dramatically elevated sER at the flow cell level

(Fig. 1e–g), we next studied the extent of outlier tiles. We defined a tile as an outlier if

its sER (Eq. 1) is > 100 pm, with the observation that 96.3% flow cells have sER < 100

pm (Fig. 2b, Additional file 1: Fig. S2, Additional file 7: Table S6). As can be seen in

Fig. 2d and Additional file 1: Fig. S4 and Additional file 10: Table S9, 6 out of 580 (1%)

HiSeq flow cells have more than 10% outlier tiles in the top surface, while 397 out of

580 (68%) HiSeq flow cells have more than 10% outlier tiles in the bottom surface. For

NextSeq, 1 out of 51 (2%) flow cells in the top surface and 5 out of 51 (10%) flow cells

in the bottom surface have more than 10% outlier tiles. None of the 24 NovaSeq flow

cells have more than 10% outlier tiles. This data indicates that a high number of HiSeq

flow cells have quality problems originating from the bottom surface. An improvement

of bottom surface quality from HiSeq (68% flow cells) to NextSeq (10% flow cells) and

NovaSeq (0% flow cells) is observed (Fig. 2c). Notably, 44.4% and 88.9% of NovaSeq

flow cells have at least one outlier tile in the top and bottom surface (n = 18; Additional

file 1: Fig. S4, Additional file 11: Table S10). Overall, 94.2% (n = 580), 45% (n = 51), and

95.8% (n = 24) of HiSeq, NextSeq, and NovaSeq flow cells have at least one outlier tile,

respectively (Additional file 9: Table S8).

We next asked if the outlier error-prone tiles in non-outlier sequencers demonstrate

patterns in physical locations. As it turns out, the outlier tiles have a roughly uniform
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distribution of physical positions (Additional file 1: Fig. S5; Additional file 12: Table

S11), although the enrichment of outlier tiles with higher position number is observed

in HiSeq top surfaces while enrichment of outlier tiles with lower position number is

observed in NovaSeq bottom surfaces. It should be noted that the current total number

of publicly accessible datasets for NextSeq and NovaSeq is quite limited, and more ro-

bust estimates can be achieved when more datasets are evaluated.

Effect of sequencer on the overall sequencing error rate

We next studied the effect of different sequencers on oER (Eq. 4) in more detail. For

this purpose, we utilized the COLO829 dilution datasets (see the “Methods” section)

published previously [8], where a common reference DNA library was sequenced by

two sequencing centers, HAIB (HudsonAlpha Institute of Biotechnology, Huntsville,

AL) and SJ (St. Jude Children’s Research Hospital, Memphis, TN) using two NovaSeq

sequencers, A00363 (HAIB) and A00214 (SJ). As can be seen in Fig. 3a and Add-

itional file 13: Table S12, these sequencers have a 10-fold error rate difference, by

which we expect the dataset generated by HAIB to have a lower oER. Notably, the

HAIB dataset has a bi-modal distribution of tile-level error rates. In fact, the lower

error rate tiles are located on the top surface and the higher error rate tiles are located

Fig. 3 Effect of sequencer error suppression on overall sequencing error rates. a A NovaSeq sequencer from
HudsonAlpha Institute of Biotechnology (HAIB) and a NovaSeq sequencer from St. Jude Children’s Research
Hospital (SJ) have dramatically different tile-level error rates estimated by using reference DNA library COLO829
with 1:1000 dilution (see the “Methods” section). Tiles with an error rate > 100 per million (vertical dashed line)
are defined as outlier tiles (large solid dots). b Overall sequencing error rate from these two sequencers on
reference DNA library COLO829. Median error rates (vertical black bars) of each misincorporation type on
known wild-type bases (see the “Methods” section) are indicated in the left margin of the panel, and the two-
sided Wilcoxon rank-sum test P values between HAIB and SJ for each misincorporation types are indicated in
the right margin of the panel. c Effect of removing outlier tiles in the HAIB dataset (1:1000 dilution, see the
“Methods” section) defined in a. Each dot represents the site-specific error rate of given misincorporation types
with (x-axis) and without (y-axis) the outlier tiles. Red dots: spike-in true mutations (see the “Methods” section).
Diagonal (no change) is indicated by gray lines
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on the bottom surface (Additional file 1: Fig. S6a, Additional file 13: Table S12), re-

inforcing the observation of elevated error rates on bottom surfaces (Fig. 2c).

We calculated the site-specific overall sequencing error rate (oER) as previously de-

scribed (Eq. 4; Additional file 14: Table S13). As can be seen in Fig. 3b, the oER of

HAIB is between 4- and 7-fold lower than that of SJ for A>C/T>G and C>G/G>C mis-

incorporations, and the oER difference is less prominent for other error types. This re-

sult indicates two possibilities: (a) the sequencer might have elevated misincorporation

types, such as A>C/T>G, or (b) the reduction of sER has a negligible effect because

PCR error rate (pER) is an order of magnitude greater than sER. To test these hypoth-

eses, we compared the sER (Eq. 2) against oER (Eq. 4). As it turned out, we found a sta-

tistically significant negative correlation between sER and oER in datasets from both

A00214 and A00363 (Additional file 1: Fig. S6c-d), indicating dramatically different

misincorporation types between NovaSeq sequencer and PCR enzymes.

Removing outlier poor-quality tiles improves overall sequencing error rate

Because there appear to be extreme outlier tiles in HAIB sequencer A00363 (tile

#2159) and SJ sequencer A00214 (tile # 2201; Fig. 3a), we next studied the effect of re-

moving outlier tiles on the overall sequencing error rate (oER). For this purpose, we

compared site-specific oER (Eq. 4; Additional file 14: Table S13) by excluding outlier

tiles. As can be seen in Fig. 3c and Additional file 1: Fig. S7a and S8a, 7.6% of C>G/

G>C errors have > 2-fold error rate reduction, with a maximum reduction of 24-fold,

followed by 6% of A>T/T>A errors with > 2-fold error rate reduction in the HAIB data-

set. On the other hand, the allele fractions of spike-in true mutations (red dots, Fig. 3c,

see the “Methods” section) are not affected by the removal of outlier tiles. Therefore,

we conclude that the removal of outlier error-prone tiles can further reduce the overall

error rate. Notably, the numeric error suppression in A00214 appears to have a much

less dramatic effect than in A00363 (which has lower sER; Additional file 1: Fig. S7 and

S8), indicating that removal of outlier tiles is most effective when the instrument/flow

cell is of higher accuracy.

Comparison of SequencErr with FastQC

Because SequencErr is designed to understand sequencing quality, which is conceptu-

ally similar to FastQC [19]—a frequently used quality control tool for sequencing data-

sets—we also benchmarked our method against FastQC. However, these two methods

are fundamentally different in their design principles. FastQC operates on Phred scores

of sequenced bases (regardless of the actual sequence identity) and measures a sample-

level quality metric as the percent of bases with the Phred score above a given thresh-

old, e.g., Q30 percentage. In contrast to FastQC, SequencErr compares the actual se-

quence identity of aligned forward and reverse reads, although quality filters including

Phred score distribution are applied to remove poor-quality data (see the “Methods”

section). We used the previously published dataset [8] for this comparison. As seen in

Additional file 1: Fig. S9a, the FastQC evaluation shows that the Q30 percentage is >

98% across all sequencing cycles, which would be considered good quality. However, by

using our Eq. 1 at the sequencing cycle level, we observed a stable error rate of ~ 11

per million across the sequencing cycles (Additional file 1: Fig. S9b). Strikingly, we were
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able to observe the effect of problematic tiles on the sequencing cycles (Additional file

1: Fig. S9b,c,f), which cannot be observed by reviewing FastQC output file (Additional

file 1: Fig. S9a,e).

Effect of DNA sequencing features on sequencer error rate

We next studied the effect of DNA sequence features on sequencer error rates, by fo-

cusing on (1) GC content, (2) read length, and (3) overall base quality, measured as a

percentage of bases with Phred score greater than 30 (Q30 percentage). Because a large

number of samples are needed to draw a robust conclusion, here we focused on 1167

publicly available HiSeq datasets (Additional file 3: Table S2). As seen from Additional

file 1: Fig. S10, we did not detect a significant correlation between sER score and GC

content and read length features, although a marginally significant negative correlation

with Q30 percentage is observed, indicating that excessive percentage of low-quality

bases can lead to unreliable sequencing output, even if after stringent quality filtering.

This indicates that our SequencErr metric is being highly robust in measuring sequen-

cer reliability in a wide range of parameter settings.

Comparison of SequencErr with error correction methods

In addition to our error suppression method, which operates by identifying and filtering

(i.e., suppression) unreliable reads, considerable efforts have been devoted to error cor-

rection methods, which operates by identifying DNA contexts (i.e., k-mer) that are

error-prone and followed by modifying (i.e., correction) corresponding readout. To

benchmark with these methods, we focused on two error correction methods, Lighter

(v1.1.2) [20] and Musket (v1.1) [21], which are considered to have the top performance

in a recent study by Mitchell et al. [22]. We focused the analysis by using two represen-

tative samples (ERR3781298 and ERR3790800, Additional file 15: Table S14) sequenced

using SJ and HAIB sequencers from previously published dataset [8] where the mutant

and wild-type sites are well-defined (Additional file 14: Table S13). Here, the raw FastQ

files were run through Lighter and Musket to correct errors, followed by standard

pileup (see the “Methods” section). As can be seen in Additional file 1: Fig. S11a-b, the

overall sequencing error rate (oER) obtained by SequencErr far outperforms that of

Lighter and Musket for all 12 possible nucleotide changes, although for C>T/G>A

changes the difference is least dramatic. Interestingly, the overall error rate of Lighter

and Musket does not appear to show improvement compared to the direct standard

pileup. We next hypothesized that DNA sequence context-based modifications may

lead to overcorrection, which could be reflected in overlapping forward-reverse reads

which are expected to have perfect matches. An increase in the mismatch rate would

indicate overcorrection. Indeed, we observed ~ 10-fold increased forward-reverse mis-

matches in this dataset by Lighter or Musket than no correction (SequencErr measure-

ment) (Additional file 1: Fig. S11c-d). Taken together, we have demonstrated that our

error suppression method outperforms error correction methods.

Application of SequencErr on a non-human dataset

Although we have demonstrated SequencErr method can be used to measure sequen-

cer fidelity in the above studies, it remains unknown whether it can be applied to non-
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human datasets. For this purpose, we applied SequencErr on a recently published Se-

vere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) dataset (NCBI SRA Bio-

Project PRJNA625551) to study the error rate of the corresponding sequencer. As can

be seen in Additional file 1: Fig. S12, the involved flow cells/sequencer demonstrated a

comparable sER with those observed in human datasets (red dashed line). We, there-

fore, conclude that our method can also be applied to non-human datasets, although

we believe that a more extensive study on many different non-human datasets could

significantly strengthen this conclusion, which is beyond the scope of this work.

Conclusions
High-throughput DNA sequencing technology has found increasingly important appli-

cations in biology and medicine in the past decade, and sensitive detection of low-

frequency mutations through ultra-high depth sequencing is of great interest in many

aspects of biology and medicine, such as liquid biopsies and in the detection of minimal

residual disease for different cancers after therapy. Precise identification of error

sources in the many steps of DNA sequencing workflow, such as in sequencers, is the

key to enhance DNA sequencing technologies for such applications. However, there is

a lack of methods for measuring the fidelity of sequencers, partly due to the difficulty

in deconvoluting PCR and sequencer errors. As a result, it is difficult to evaluate the

performance of a given sequencer for applications requiring high sequencing fidelity.

In this work, we took advantage of the paired-end sequencing strategy to precisely

evaluate the sequencer error rate (sER). We discovered that for HiSeq, NextSeq, and

NovaSeq platforms, most sequencers have an error rate ~ 10 pm, though 1.4% of the se-

quencers in this study appear to be outliers with flow cells demonstrating sER > 100

pm. In addition to sER, our reported overall error rate (oER) of 10–100 pm (Fig. 1h),

which includes other error sources such as PCR errors, is 10- to 100-fold lower than

the generally reported accuracy of next-generation sequencing methods of 1000 pm

(10−3) [2]. This reflects the successful “suppression” of a poor-quality subset of data by

our novel strategy. On the other hand, this raised an interesting perspective on the base

call quality scores, known as Phred score. Traditional Phred scores were calculated

based on sequencing traces of A/C/G/T bases by summarizing it to features such as

peak spacing, uncalled/called ratio, and peak resolution [23]. For example, the current

NovaSeq platforms only report Phred to score up to 42, which corresponds to P value

of ~ 10−4. Because our data indicated that the calls at many bases have an error rate

close to 10−5 (at least in NovaSeq), we believe a re-evaluation of the current Phred

score calculation is warranted by the instrument manufacturer. For example, it would

be interesting to determine if the Phred score binning strategy that was intended for

better data compression in NovaSeq data may lead to less accurate Phred score

estimation.

Although our current method (and the previous method CleanDeepSeq [8]) is de-

signed for ultra-deep sequencing applications where high accuracy (i.e., low error rate)

is of pivotal importance, it can also be used to determine sequencer accuracy for stand-

ard sequencing projects such as whole-genome and whole-exome sequencing (such

data can be used to help determine which instruments have the lowest error rate). This

is because the typical tens to hundreds of sequencing depth of whole-genome and

whole-exome sequencing are not powered to detect variants at 1% to 0.1% or even
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lower frequencies—which is, in fact, the aim of ultra-deep (tens of thousands or more)

sequencing projects such as liquid biopsy [4]. In this ultra-deep sequencing scenario,

the 30% data loss of our method, as reported previously [8], is not a significant concern

as compared with the heavily redundant sequencing of the barcode-sequencing

method—for example, the > 60,000× sequencing of a recent large-scale UMI method

resulted in a 4577× UMI-collapsed net depth—a 13-fold redundancy [4]. It is possible

that our method can be further refined to filter by reads/sequencing cycles as opposed

to the current tile-based filtering, which is beyond the scope of this work.

Within non-outlier sequencers, the error rates of different flow cells appear to be ra-

ther stable, although there is 2.7% chance of observing outlier flow cells, indicating the

need to continuously monitor the accuracy of sequencers. At the flow cell level, we

found that it is common to observe a small fraction (usually less than 10% in NextSeq

and NovaSeq, 68% in HiSeq bottom surface) of tiles with exceedingly high error rates.

Overall, > 90% of HiSeq and NovaSeq flow cells have at least one outlier tile. We also

discovered that the bottom surfaces of flow cells tend to have higher sequencer error

rates. The bottom surface problem tends to be alleviated in NextSeq and NovaSeq

compared to HiSeq sequencers. This data also indicates that sequencer, flow cell, and

flow cell surface differences (in terms of error rate) persist even after initial error

suppression.

By using a common DNA library (COLO829), we demonstrated that sequencers with

higher sER can lead to an elevated oER, indicating the need for evaluating sequencers

for applications that require high sequencing accuracy, such as ultra-high depth se-

quencing applications. By removing outlier tiles, we achieved the dramatic reduction of

oER in some genomic loci, indicating the benefit of controlling quality at the tile level.

There are a few limitations in our study. First, we did not have as much data from

NextSeq and NovaSeq sequencers compared to HiSeq sequencers. With the continuous

production of large-scale datasets using NovaSeq, we expect to develop a more com-

prehensive picture of this platform in the future. Second, our method requires overlap-

ping forward and reverse reads, which may be challenging for some applications such

as whole-genome sequencing, where the insert size is generally large to maximize the

sequencing yield. This might be overcome by mixing a small fraction of short DNA

segments as an “internal standard” [24] to each whole-genome sequencing run to

monitor the sequencer accuracy. Nevertheless, our ability to identify problematic flow

cells by using whole-genome sequencing datasets (see the “Methods” section) on HiSeq

sequencers indicates that the small fraction of short inserts in conventional WGS li-

braries may provide enough information to assess sequencer error rate. Moreover, ref-

erence mapping is required for our approach to determine the overlapping regions

between forward and reverse reads, which renders it challenging to apply our method

to sequencing data from a species without a reference genome available. In this work,

we were not able to study the effect of sequencing conditions such as cluster density

and PhiX spike-in because such parameters are not reported in publicly available data-

sets. Future studies on these parameters are warranted.

It should be noted that barcode-based sequencing methods such as Safe-Seq and

UMI methods (designed to suppress both PCR errors and sequencer errors through re-

dundant sequencing followed by read collapsing within read families labeled by the

same barcode) are an effective experimental error suppression method, but it cannot be
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used to specifically measure the sequencer errors because PCR errors and sequencer er-

rors cannot be separated by barcode-sequencing technology (Fig. 1a, b). On the other

hand, because our method can provide accuracy information on the sequencer, we be-

lieve an integrative approach of our method with barcode-sequencing methods can re-

sult in a further improvement of the overall sequencing accuracy, which will be our

future study focus.

In summary, we have developed a computational method that can precisely assess se-

quencer errors. By using a large cohort of public datasets, we discovered error patterns

across platforms and among sequencers, flow cells, and tiles. We also developed soft-

ware that can discover and computationally suppress such errors. We expect our

method to impact the assessment, monitoring, and ultimately the improvement of se-

quencer accuracy.

Methods
Read name

The raw sequencing reads have names formatted as follows: <instrument>:<run num-

ber>:<flowcell ID>:<lane>:<tile>:<x-pos>:<y-pos> (https://help.basespace.illumina.com/

articles/descriptive/fastq-files/; last accessed February 11, 2020). For example, the first

record in dataset ERR3790565 has a read name of A00363:103:H3CMMDRXX:1:1101:

21124:1000, which indicates that the sequencer ID is A00363, and this dataset was gen-

erated on its 103rd run, on a flow cell with ID H3CMMDRXX. This read was generated

in lane 1, on tile 1101, with x position 21,124 and y position 1000. Our algorithm

parses the read name to obtain information on sequencer, flow cell, and tiles according

to this format.

Public sample acquisition

We tested our method on public datasets from NCBI SRA (https://www.ncbi.nlm.nih.

gov/sra). We searched NCBI SRA datasets by using the following filters: (1) species is

human; (2) data is paired end; (3) platform is either HiSeq, NextSeq, or NovaSeq; (4)

read length is at least 70 bps (to allow overlap between forward and reverse reads); and

(5) data is deposited between January 2015 and December 2019. We discovered that

many datasets do not have read names in NCBI SRA, possibly to save storage space,

rendering the dataset unsuitable for our purpose (Additional file 1: Supplementary

Notes 2-3). To avoid downloading datasets unsuitable for our analysis, we manually

checked several samples per study by using the NCBI SRA web application (Additional

file 1: Supplementary Notes 2-3). A study was excluded if it failed this manual check

(Additional files 3, 4, 5: Tables S2, S3, S4, Fig. 1d). It should be noted that this proced-

ure may result in missing datasets from studies with heterogeneous read name

information.

A dataset may have a shorter read length. For example, dataset SRR10388700 has a

read length of 36, so the forward-reverse overlap is minimal (Additional file 1: Supple-

mentary Note 3). A significant fraction (19%) of datasets from the NextSeq platform

were excluded by this filter (Fig. 1d).

A dataset with few reads is not informative for our analysis. For example, NovaSeq

dataset SRR8717673 has only 31.6 million bases. We, therefore, excluded SRA runs
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when the number of bases is < 500 million for HiSeq and < 100 million for NextSeq

and NovaSeq. Thirty-three percent of NextSeq datasets were excluded by this filter

(Fig. 1d).

For HiSeq sequencers, there are a few studies with a large number of datasets, such

as the study SRP214023 with 600 datasets. We decided to exclude such “very large”

studies (those with > 50 datasets) so that we can have a broader representation of dif-

ferent research institutions. Studies < 10 datasets were excluded as well. Some datasets,

such as study SRP215355, were found to have some samples with lost read names and

therefore a study size < 10. After this filter, 2830 HiSeq datasets were included in our

analysis (Fig. 1d, Additional file 3: Table S2).

Flow cell layout information

We obtained the physical layout information for HiSeq, NextSeq, and NovaSeq as de-

scribed in Additional file 1: Supplementary Note 4-6 (as of February 11, 2020). Such in-

formation was used to generate Fig. 1e–g.

Algorithm description

To calculate the sequencer error rate (sER), we utilized mismatches in the overlapping

regions between forward-reverse read pairs. We first ensure the read pairs have good

sequencing quality by using the method as described previously [8]: (1) a read with

poor mapping quality (MAPQ < 55 or MAPQ > 254) is discarded, (2) the read must not

have complex alignments (the CIGAR string has a pattern of digits followed by the let-

ter “M,” i.e., matches regular expression /^\d+M$/), (3) the overall Phred quality of the

read must be good (< 5% of bases to have Phred quality score < 20), and (4) a base with

Phred quality score < 30 is excluded even if its read is included. Because our method re-

lies on forward-reverse read pairs, in this work, we required the reads must be properly

paired. In addition, (5) the first five base pairs of both forward and reverse reads were

removed for the well-known quality drop at read end [8]. To determine the mutation

type (i.e., one of the 12 possible misincorporations), we (6) first performed allele count-

ing by using the previously published CleanDeepSeq algorithm [8], and determined the

genotypes of all genomic positions with depth > 10×; genomic sites with a dominant al-

lele (allele fraction > 95%) are used to calculate errors. The algorithm is implemented

in C++.

Reference DNA library: COLO829 dilution dataset

To compare the effect of different sequencers as well as outlier-tile removal on the

same reference DNA library, we took advantage of the COLO829 dilution dataset

(NCBI SRA: PRJNA474341) generated previously [8]. Briefly, the melanoma cell line

COLO829 (ATCC CRL-1974) and its matched normal cell line COLO829BL (ATCC

CRL-1980; derived from peripheral blood of the same patient) have been well studied

for somatic DNA variants and are proposed to serve as a reference standard for cancer

genome sequencing [25, 26]. A dilution experiment was performed previously [8] to

study the error profiles in deep next-generation sequencing datasets, where DNA from

melanoma cell line COLO829 was mixed with DNA from the normal cell line

COLO829BL at low concentrations of 1:1000 and 1:5000 to mimic the low allele
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fraction scenario. To generate spike-in controls, 19 known somatic substitutions were

analyzed by amplicon sequencing (with a flanking region ~ 100 bps for each marker) at

> 1,000,000 depth [8]. In this dataset, the same DNA library was sequenced at SJ (St.

Jude Children’s Research Hospital, sequencer identifier A00214) and HAIB (HudsonAl-

pha Institute of Biotechnology, sequencer identifier A00363) independently.

Interestingly, upon downloading, we found that the read name of our submitted data-

set (PRJNA474341) was also lost during submission. To enable reproducibility of our

results, we have re-uploaded all relevant FastQ files to European Nucleotide Archive

(ENA, https://www.ebi.ac.uk/ena) with accession number PRJEB35986 and with the

read names preserved. The sample ID mappings are provided in Additional file 15:

Table S14. Datasets with PCR amplification using NEB Q5 High-Fidelity DNA poly-

merase and sequenced with NovaSeq were analyzed in this work.

Data source, filtering, and processing

All public data (Additional files 3, 4, 5, 15: Tables S2, S3, S4, S14) were downloaded

from NCBI SRA by using the SRA Toolkit (v2.8.1.3; https://www.ncbi.nlm.nih.gov/

books/NBK158900/). The downloaded FastQ files were mapped to hg19 as previously

described [8] by using bwa (0.7.12-r1039) with the option “aln.” A total of 1663 whole-

genome sequencing data (Additional file 3: Table S2, rows 22,029–23,691) are down-

loaded from a previous St. Jude LIFE (SJLIFE) study [27] which is accessible at St. Jude

Cloud (https://platform.stjude.cloud/requests/cohorts). For example, the outlier se-

quencer E00332 in Fig. 2b was used for this cohort. All other relevant data are included

in the article or supplementary files.

Because sequencing errors are rare, a large number of overlapped base pairs between

forward and reverse reads are needed to obtain reliable estimates of error rates. For this

purpose, we required a flow cell to have at least 2,000,000 overlapping base pairs to be in-

cluded in the analysis (e.g., Additional file 1: Fig. S2). The same threshold was used at the

sample level for Additional file 1: Fig. S1. This threshold is reduced to 1,000,000 when

analyzing the surface-level error rates in Fig. 2c, d, Additional file 1: Fig. S3, S4, S5.

Within each platform, such as HiSeq, there could be differences among sub-models,

such as HiSeq 2000/4000. For example, the flow cells could have a different number of

tiles per swath (Additional file 1: Supplementary Note 4-6). To account for this, we

generated Additional file 1: Fig. S4 and S5 by using flow cells with the most frequent

number of tiles (HiSeq, 24; NextSeq, 12; NovaSeq, 78).

Data analysis with error correction methods

Files in FastQ format were corrected by using Lighter and Musket methods with the re-

ported optimum k-mer sizes, i.e., 30 and 28, respectively [22]. Both corrected and un-

corrected FastQ files were aligned to hg19 using BWA aln [28]. The pileup summary of

aligned reads was calculated using LoFreq plpsummary command with parameters -Q

30 -q 30 -m 55 -d100000000 [29].

SequencErr on St. Jude Cloud

An end-to-end pipeline deployable through a graphical point-and-click interface is

available on St. Jude Cloud (https://platform.stjude.cloud/workflows/sequencerr).
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Academic users can create an account in St. Jude Cloud and run this pipeline without

restrictions.
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