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Abstract

Background: Animal genomes contain thousands of long noncoding RNA (lncRNA)
genes, a growing subset of which are thought to be functionally important. This
functionality is often mediated by short sequence elements scattered throughout the
RNA sequence that correspond to binding sites for small RNAs and RNA binding
proteins. Throughout vertebrate evolution, the sequences of lncRNA genes changed
extensively, so that it is often impossible to obtain significant alignments between
sequences of lncRNAs from evolutionary distant species, even when synteny is evident.
This often prohibits identifying conserved lncRNAs that are likely to be functional or
prioritizing constrained regions for experimental interrogation.

Results: We introduce here LncLOOM, a novel algorithmic framework for the
discovery and evaluation of syntenic combinations of short motifs. LncLOOM is
based on a graph representation of the input sequences and uses integer linear
programming to efficiently compare dozens of sequences that have thousands
of bases each and to evaluate the significance of the recovered motifs. We
show that LncLOOM is capable of identifying specific, biologically relevant motifs
which are conserved throughout vertebrates and beyond in lncRNAs and 3′UTRs,
including novel functional RNA elements in the CHASERR lncRNA that are
required for regulation of CHD2 expression.

Conclusions: We expect that LncLOOM will become a broadly used approach
for the discovery of functionally relevant elements in the noncoding genome.

Keywords: Long noncoding RNA, Molecular evolution, Homology, Integer linear
programming, OIP5-AS1, CHD2, CHASERR, MicroRNA, 3′UTR

Background
Tens of thousands of loci in the human genome encode long noncoding RNA

(lncRNA) transcripts, which do not appear to code for functional proteins [1, 2]. These

genes evolve much faster than most mRNAs [3]: there are no known homologs of ver-

tebrate lncRNAs outside of vertebrates, and only ~ 100 lncRNAs have detectable con-

servation between mammals and fish [4]. On top of these, there are thousands of
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lncRNAs that are transcribed from syntenic regions in mammals and fish, suggest-

ing that homologous lncRNAs may exist in species separated by large evolutionary

distances, yet their sequence similarity evades detection by existing tools [4]. Fur-

thermore, even lncRNAs with detectable similarity across long evolutionary dis-

tances frequently exhibit drastic changes in their exon-intron structure and overall

length, often through species-specific acquisition of transposable elements [4].

These make it difficult to predict functionally important sequence elements by

comparing lncRNAs from multiple species.

The use of comparative sequence analysis for identifying homologous sequences is an

essential step in the functional inference and classification of genomic sequences. The

conventional tools currently available have largely been developed for mRNAs and use

alignment-based methods that search for significantly long stretches of high sequence

conservation. These tools perform poorly when applied to rapidly evolving sequences

such as lncRNAs, which lack long continuous stretches that are highly constrained at

the sequence level. Pairs of sequences will often share short stretches of similarity, but

these typically will not reach statistical significance (e.g., every 6mer would appear by

chance once in every 4-kb sequence, and so two typical lncRNA sequences share many

6mers purely by chance). Multiple sequence alignment (MSA) can be a more sensitive

method to identify shorter regions of homology, but MSAs are often inaccurate for

ncRNA genes [5]. MSAs of dozens of sequences are typically difficult to parse visually,

and they are unable to handle local sequence duplications and have difficulties with

large independent insertions such as those resulting from species-specific transposable

elements. MSA-based methods are thus difficult to use for homing in on specific motifs

that are deeply conserved and may have biological relevance. One alternative to con-

ventional sequence analysis is the SEEKR algorithm [6]. Developed primarily for the

analysis of lncRNAs, SEEKR evaluates the functional similarity of sequences based on

the abundance profiles of short k-mers. Such k-mers may correspond to specific protein

binding sites, and SEEKR was shown to be effective for grouping different lncRNAs

with putatively related functions within the same species [6]. However, more sensitive

approaches are needed to confidently detect specific functional elements that have been

evolutionarily conserved in orthologous lncRNAs in distantly related species.

With these limitations in mind, we developed the LncLOOM (Lncrna Linear Order

cOnserved Motifs) framework, which is based on the identification of combinations of

short motifs found in the same order in putatively homologous sequences from differ-

ent species. There are two key assumptions in LncLOOM. First, that functional ele-

ments often require sequence conservation of short (6–12 nt) motifs, which may

correspond to binding sites of RNA binding proteins (RBPs) or microRNAs (miRNAs),

which recognize elements within this length range [7, 8]. Second, that the order of

these elements is conserved across long evolutionary distances. This may occur either

because the order is important for function, in particular if functionality of the specific

elements is aided by a sequence or structural context in the longer RNA molecule, or

because gain of these elements in evolution is sufficiently rare. These assumptions do

not necessarily hold for many functional elements within biological sequences, but as

we show, this model potentiates a powerful tool for identifying multiple functionally

relevant and deeply conserved elements in various lncRNAs and is also directly applic-

able to other noncoding sequences, such as 3′UTRs.
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Results
The LncLOOM framework

LncLOOM receives a collection of putatively homologous sequences of a genomic se-

quence of interest. Here, we focus on lncRNAs and 3′UTRs, but other elements, such

as enhancers, can be readily used as well (see the “Discussion” section). For lncRNAs,

we use only the exonic sequences for motif identification, but also visualize the posi-

tions of the exon-exon junctions. The input sequences are provided in a certain order

(Fig. 1a), which ideally concurs with the evolutionary distances between the species,

and which can be set automatically based on sequence similarity. The precise defini-

tions of the data structures and algorithms used in LncLOOM appear in the “Methods”

section, and an overview of the framework is presented in Fig. 1. LncLOOM represents

each RNA sequence as a “layer” of nodes in a network graph (Fig. 1b), where each node

represents a short k-mer. For the analysis presented here, we used k between 6 and 15,

as k-mers shorter than 5 will typically result in graphs that are too large for efficient

computation, and conserved k-mers longer than 15 are rare enough to be mostly found

only once in each sequence (longer conserved k-mers will be recovered by merging of

shorter k-mers (see below)). Although 6 is the minimum k-mer length allowed by

LncLOOM, it is possible to initiate motif discovery with k-mers of any length to reduce

graph complexity for the analysis of longer and/or more similar sequences. The order

of the layers reflects the evolutionary distance of input sequences from a query se-

quence, which is placed in the first layer of the graph (human in the analyses described

Fig. 1 Overview of the LncLOOM framework. a Overview of the LncLOOM methodology. LncLOOM processes
ordered lists of sequences and recovers a set of ordered motifs conserved to various depths that can be further
annotated as miRNA or RBP binding sites. b Schematic diagram of graph construction and motif discovery using
integer linear programming (ILP) to find long non-intersecting paths. Sequences are ordered with monotonically
increasing evolutionary distance from the top layer (human). BLAST high-scoring segment pairs (HSPs) that can be
used to constrain the placement of edges (see the “Methods” section) are depicted as pink and red blocks beneath
each sequence. The graph is used for the construction of an ILP problem, and its solution is used for the construction
of a set of long paths that correspond to conserved syntenic motifs
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here), and sequences from the other species are placed in additional sequential layers

of the graph. Edges in the graph connect between nodes with identical k-mers in con-

secutive layers. We note that it is possible to also connect “similar” k-mers, but this

currently results in graphs that are too dense for practical applications of our approach

(see the “Discussion” section), and so here we only connect nodes that are strictly iden-

tical. Under these definitions, our objective is to identify combinations of long “paths”

in the graph that do not intersect each other and therefore connect short motifs that

maintain the same order in different sequences. As we are usually interested in motifs

that are present in the query sequence, we require that the paths begin in the top layer.

The problem of identifying the maximal set of such paths is computationally hard,

since for k = 1 it is the same as the longest common subsequence problem [9], but we

show that it can be translated into a problem of solving an integer linear program

(ILP), for which it is computationally hard to find an optimal solution, but efficient

solvers are available [10] (Fig. 1b and the “Methods” section).

Once the graph is constructed, we begin by identifying paths for the largest k value,

and then use these paths (if found) to constrain the possible locations of paths for

smaller k. This approach allows us to favor longer conserved elements but also to iden-

tify significantly conserved short k-mers. Once all k values are tested, we merge the

resulting graphs and obtain a combination of the motifs and the depths to which they

are conserved. In order to compute the statistical significance of the motif conservation,

we generate an MSA of the input sequences, shuffle the alignment columns, and so de-

rive random sequences with an internal similarity structure similar to that of the input

sequences. The full LncLOOM pipeline is then applied to these sequences, and for each

motif found in the original input sequences to be conserved to layer D, we compute

the empirical probability of identifying either precisely the same motif, or a combin-

ation of the same number of any motifs of that length, conserved to layer D. Additional

P values are computed for a less stringent control, where random sequences with the

same dinucleotide composition are generated and the inter-sequence similarity struc-

ture is not preserved.

A rich HTML-based suite is used to visualize these motifs in different ways, e.g., color

coding them based on the depth of conservation and highlighting motifs in both the query

sequence and in the other sequences (see Figs. 3 and 4 below for examples of LncLOOM

output). The LncLOOM output also includes a color-coded custom track of motifs identi-

fied in the query sequence, which can be viewed in the UCSC genome browser. We anno-

tate motifs using a set of seed sites of conserved microRNAs (from TargetScan [11]) and

RBP binding sites found in eCLIP data from the ENCODE project [12].

LncLOOM identifies deeply conserved elements in the Cyrano lncRNA

The Cyrano lncRNA (OIP5-AS1 in human) is a broadly and highly expressed lncRNA

[13, 14]. Despite being conserved throughout vertebrates, Cyrano exhibits ~ 5-fold vari-

ation in overall exonic sequence length (2340 nt in medaka to 10,155 nt in opossum,

Fig. 2a). The previously identified 67 nt highly constrained element in Cyrano is the

only region that BLAST reports with significant similarity when zebrafish and human

sequences are compared [13]. Furthermore, the entire Cyrano locus is not alignable be-

tween mammals and fish in the 100-way whole genome alignment (UCSC genome
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browser). The highly conserved element contains an unusually extensively complemen-

tary miR-7 binding site, which is required for degradation of miR-7 by Cyrano [13, 14].

In order to identify additional conserved elements, we curated Cyrano sequences

from 18 species where we could locate usable RNA-seq data, including eight mammals,

chicken, X. tropicalis, seven vertebrate fish species, and the elephant shark (Add-

itional file 2: Table S1). LncLOOM identified seven elements conserved in all species,

nine conserved in all species except shark (Fig. 2b), and 37 motifs conserved through-

out mammals. We focus here on the nine elements conserved in all species except

shark (numbered 1–9 in Fig. 2b), seven of which were found to be statistically signifi-

cant by both LncLOOM tests (P < 0.01). Only elements 3–6 fall within the 67-nt con-

served region identifiable by BLAST, including two that correspond to pairing with the

5′ and 3′ of miR-7 (Fig. 2c), and another, UGUAUAG, that resembles a Pumilio Recog-

nition Element (PRE, element #6). This element indeed binds PUM1 and PUM2 in

Fig. 2 Conserved elements in the Cyrano lncRNA. a Outline of the genomic organization of Cyrano exons in
select species. b Sequence elements identified by LncLOOM to be conserved in Cyrano in at least 17 species.
The region containing elements found in the region alignable by BLAST between human and zebrafish Cyrano
sequences is circled. Numbers between elements indicate the range distances between the elements in the 18
species. The circled number above each element indicates the element number used in the text and in the
other panels. c Pairing between the predicted binding elements in Cyrano and the miR-25/92 and miR-7
miRNAs. d Evidence for binding of PUM1 and PUM2 to the UGUAUAG motif (shaded region) in the human
genome. ENCODE project CLIP data (top, K562 cells) and [15] (bottom, HCT116 cells). Shading is based on
strength of binding evidence, as defined by the ENCODE project. e Binding and regulation of the mouse
Cyrano sequence by Pum1/2 and Rbfox1/2. Top: Pum1/2 CLIP and RNA-seq data from [16]. Middle: Rbfox1 CLIP
from mouse brain [17] and from mESCs [18]. Binding motifs for Pumilio and Rbfox are highlighted in yellow
and blue, respectively. PhyloP sequence conservation scores are from the UCSC genome browser. Bottom:
Binding of Ago2 in the mouse brain to the region of the miR-153 binding site near the 3′ end of Cyrano. CLIP
data from [19]. f Top left: Alignment of the region surrounding the conserved AUGGCG motif near the 5′ end
of Cyrano. Top right and bottom: Composite Ribo-seq and RNA-seq data from multiple datasets curated in [20].
ChIP-seq data for YY1 in the K562 cell line from the ENCODE project. Shown is the read coverage and the
IDR peaks
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CLIP data from human and mouse (Fig. 2d, e), and in the mouse neonatal brain, where

Cyrano levels are relatively high, depletion of Pum1 and Pum2 leads to an increase in

Cyrano expression (adjusted P value 3.49 × 10−3, data from [16], Fig. 2e), consistently

with the functions of these proteins in RNA decay [21]. This repression is likely due to

the combined effect of this highly conserved PRE and others—the 18 Cyrano sequences

from different species had 3.2 consensus PREs on average (including two in the mouse

sequence, compared to 1.3 on average in 1000 random shuffled sequences, P < 0.001,

see the “Methods” section).

A putative biological function can be assigned to several additional conserved ele-

ments identified by LncLOOM within the Cyrano sequence. A 9mer conserved in all

18 input species, UGUGCAAUA (element #2 in Fig. 2b), is found ~ 60 nt upstream of

the miR-7 binding site, outside of the region alignable by BLAST. This element corre-

sponds to a miR-25/92 family seed match (Fig. 2c) and was recently shown to be bound

and regulated by members of the miR-25/92 family in mouse embryonic heart [22]. At

the 3′ end of Cyrano, one conserved element (GCAAUAAA) corresponds to the

Cyrano polyadenylation signal (PAS) as well as a miR-137 site. Another sequence found

~ 100 nt upstream of the PAS, CUAUGCA, corresponds to a seed match of miR-153,

and this region is bound by Ago2 in the mouse brain (Fig. 2e). Interestingly, Cyrano

levels in HeLa cells are reduced by 41% and 11% following transfection of miR-137 and

miR-153, respectively [23]. Cyrano is thus under highly conserved regulation by add-

itional microRNAs beyond the reported interactions with miR-7 and miR-25/92.

Approximately 55 nt downstream of the conserved Pumilio binding site, there is a

conserved WGCAUGA motif (W=A/U) that matches the consensus binding motif of

the Rbfox RBPs. This motif is bound by Rbfox1/2 in mouse, as are additional regions

containing instances of WGCAUGA in the 3′ half of Cyrano (Fig. 2e). In fact, analysis

of the 18 Cyrano species showed significant enrichment of WGCAUGA (9.8 instances

vs. 4.5 expected by chance, P < 0.001, see the “Methods” section). In contrast to the

miRNA and the Pumilio binding sites, inspection of various RNA-seq datasets of

Rbfox1/2 loss-of-function identified no effect on Cyrano levels (not shown), suggesting

that the extensive and conserved binding by Rbfox1/2 might affect Cyrano’s functional-

ity, rather than expression.

Another highly conserved 6mer, AUGGCG, is found at the very 5′ of Cyrano. Inspec-

tion of Cyrano sequences and Ribo-seq data from human, mouse, and zebrafish re-

vealed that this 6mer corresponds to the first two codons of a conserved short 2–3 aa

ORF (Fig. 2f). A clear ribosome association is found at the 5′ end of Cyrano at this

ORF, with very limited numbers of ribosome protected fragments observed down-

stream to this element in both human and zebrafish (Fig. 2f), suggesting efficient trans-

lation and ribosome release at this short ORF. The context of the AUG start codon in

the ORF perfectly matches the 12 bases of the TISU motif, a regulatory element influ-

encing both transcription and translation. TISU is located at the 5′ end of transcripts

and acts as a YY1 binding site that may dictate transcription initiation site and as a

highly efficient and accurate cap-dependent translation initiator element, for translation

that operates without scanning [24, 25]. The genomic region of this motif shows strong

YY1 binding to the DNA (Fig. 2f). We speculate that this motif can have a dual func-

tion as a YY1 element regulating Cyrano expression, and as the beginning of the short

ORF that may contribute to Cyrano function, as suggested for other lncRNAs [26].
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Overall, putative biological functions could be postulated to eight of the nine conserved

elements in Cyrano—four as miRNA binding sites, two as RBP binding sites, one as a

conserved short ORF, and one as a PAS. These elements are separated by long

stretches of non-conserved sequences (Fig. 2b), which underscores the power of com-

bining LncLOOM with annotations and orthogonal data to uncover lncRNA biology.

As another example of the ability of LncLOOM to find conserved elements in tran-

scripts known to be associated with the miRNA biology, we applied it to eight homo-

logs of the libra lncRNA in zebrafish and Nrep protein in mammals. This is one of the

few examples of a gene that morphed from a likely ancestral lncRNA to a protein-

coding gene, while retaining substantial sequence homology in its 3′ region [13, 27].

libra causes degradation of miR-29b in zebrafish and mouse through a highly con-

served and highly complementary site [27]. Comparing zebrafish libra with human and

mouse sequences using BLASTN recovers an alignment of ~ 250 nt from the ~ 2.2-kb

human sequence, and for spotted gar, there are additional short significant alignments

(E value < 0.001). LncLOOM found 17 elements conserved between all species, and >

25 conserved in all species except zebrafish (Additional file 1: Fig. S1). These included

the miR-29 site, as well as conserved binding sites for eight additional miRNAs, with

three found outside of the region of alignment between mammalian and fish species by

BLAST (Additional file 1: Fig. S1). It thus appears that Cyrano and libra, the two

lncRNAs that were shown to effectively elicit target-directed miRNA degradation

(TDMD), harbor several additional highly conserved miRNA binding sites, yet in con-

trast to the TDMD-mediated sites, these are canonical seed sites that likely affect

lncRNA, rather than miRNA, levels.

Conserved motifs in the sequence of the CHASERR lncRNA

In order to test the ability of LncLOOM to identify conserved modules in sequences

that are not amenable for BLAST comparison, we focused on CHASERR, a lncRNA

that we recently characterized as being essential for mouse viability [28]. CHASERR ho-

mologs are readily identifiable in different species based on the close proximity (< 2 kb)

to the transcription start site of CHD2, as well as their characteristic 5-exon gene archi-

tecture [28]. We manually curated CHASERR sequences from 16 vertebrates, which

were 579–1313 nt in length, and four of which were likely 5′-incomplete due to gaps in

some of the genome assemblies around the extremely G/C-rich promoter and first

exon of CHASERR [28] (Additional file 1: Fig. S2). BLASTN found significant (E value

< 0.01) alignments between the human CHASERR and the nine sequences coming from

amniotes, but not with any of the six other vertebrates. Conversely, when the zebrafish

sequence was used as a query, BLAST only found homology in other fish species and

in opossum. When the CHASERR sequences are fed into the ClustalO MSA [29], only

three identical positions are found. The limited conservation of CHASERR is thus a

challenge for analysis using commonly used tools for comparative genomics.

LncLOOM identified two k-mers as conserved in all the layers: AAUAAA at the 3′

end, which corresponds to the PAS, and AAGAUG, found once or twice in the last

exon of all CHASERR sequences (motif 1 in Fig. 3a). Inspection of the CHASERR se-

quences found that the AAGAUG motif is substantially overrepresented—CHASERR

homologs had 2.1 instances of it on average, compared to merely 0.45 expected by
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chance (P < 0.01). The context of the motif was also typically similar across these 34 in-

stances, with the motif typically followed by a purine (Fig. 3b). An apparently related

motif, AAAUGGA (motif 2 in Fig. 3a), was conserved in 11 of the sequences. Including

flanking sequences, motif 2 shares an ARAUGR core with motif 1 (Fig. 3b). To the best

of our knowledge, these sequences do not match the known binding preference of any

RBP, and inspection of eCLIP data did not reveal an obvious candidate for a binder.

We therefore further explored the functionality of these sequences experimentally.

To test the functional importance of the conserved elements, we designed antisense

oligonucleotides (ASOs) complementary to the three instances of the conserved motifs

in the mouse Chaserr (Additional file 1: Fig. S3A), and transfected them into Neuro2a

(N2a) cells, where we had previously shown that depletion of Chaserr leads to an in-

crease in Chd2 RNA and protein levels [28]. Transfection of ASO1 and ASO3 individu-

ally or mixed led to a significant increase in Chd2 levels, comparable to that caused by

knockdown of Chaserr (Fig. 3c). Interestingly, ASO treatment led to an increase in

Chaserr levels, as assessed by RT-PCR primer pairs found either upstream or down-

stream of the ASO-targeted region (Fig. 3c).

Fig. 3 Conserved elements in the CHASERR lncRNA. a Human CHASERR gene structure is shown with motifs
conserved in at least four species color-coded by their depth of conservation. The region of the last exon is
magnified, and the motifs discussed in the text are highlighted. b Sequence logos of the sequences flanking
the two most conserved motifs, with the shared AARAUGR motif shaded. c Top: mouse Chaserr locus with the
positions of the primer pairs used for qRT-PCR, and the regions targeted by the GapmeRs (the same ones as
used in [28]) and ASOs highlighted. Bottom: qRT-PCR with primers targeting Chaserr (shown on top) or Chd2
exons in N2a cells treated with the indicated reagents, n = 4 for ASO treatments and n = 5 for GapmeRs. d
Volcano plot for comparison of MS intensities between pulldown with the WT sequence of the Chaserr last
exon and the last exon where the conserved elements were mutated (Additional File 1: Fig. S3A). e qRT-PCR
using primers targeting the indicated regions following IP with the indicated antibody, n = 4. Top right:
Western blot using anti-DHX36 antibody on the indicated sample
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In order to identify proteins potentially binding the conserved regions, we used

in vitro transcription to generate biotinylated RNAs containing the first 322 nt of the

WT sequence of the last exon of mouse Chaserr (bases 559–880 of the RefSeq NR_

037569.1 isoform), the same sequence with AUGG→UACC mutations in four con-

served motifs, and a second mutant in which all seven of the AUGG sites in the last

exon were mutated to UACC (Additional file 1: Fig. S3A). These sequences, alongside

their antisense controls, were incubated with lysates from N2a cells and proteins that

associated with the different RNA variants were isolated and identified using mass

spectrometry. As typical in these experiments, a large number of proteins, 938, was

identified as associating with the WT sequence (Additional file 2: Table S2), and 74 of

these were enriched ≥ 3-fold compared to the antisense sequence; however, only 9 of

these had ≥ 2-fold higher recovery when using the WT sequence compared to both

mutants (Fig. 3d). We then examined public RNA-seq datasets and sought evidence

for changes in Chd2 and/or Chaserr levels when these proteins are perturbed. Such

evidence was available for DHX36 and ZFR (Additional file 1: Fig. S3B-C). We vali-

dated the significant association of Chaserr with DHX36—the protein that showed

the highest enrichment compared to the mutated sequences—using RNA immuno-

precipitation (RIP) and a specific antibody (Fig. 3e). Interestingly, DHX36 is known to

bind G-quadruplex sequences [30, 31], and the conserved elements indeed contain

GG pairs, though those are quite far from each other, and typical G-quadruplexes

contain runs of at least 3 Gs. QGRS mapper [32] predicts one G-quadruplex in the

last exon of Chaserr (Additional file 1: Fig. S3A), but other tools, including G4RNA

scanner [33], that integrate different scoring systems did not find any high-scoring G-

quadruplexes in the last exon of Chaserr. It is also possible that a non-canonical G-

quadruplex forming is formed in this sequence or that it has a different mode of

recognition by DHX36.

LncLOOM is therefore capable of identifying functionally relevant elements within

lncRNAs that can serve as a basis for the design of targeted reagents for perturbing

their function, and enabling the use of proteomic methods for identifying specific, func-

tionally relevant, lncRNA interaction partners.

Deeply conserved elements within 3′UTRs of DICER1 and Pumilio mRNAs

We next wanted to evaluate the applicability of LncLOOM beyond lncRNAs, and for

comparing sequences across longer evolutionary distances. 3′UTRs can dictate RNA

stability and translation efficiency of mRNAs, and they typically evolve much more rap-

idly than other mRNA regions [34]. Orthology between 3′UTRs is rather easy to define,

based on their adjacent coding sequences, which are often readily comparable across

very long evolutionary distances. However, there are very few known cases of long-

range conservation of functional elements within 3′UTRs between vertebrates and in-

vertebrates. In order to study 3′UTR conservation using LncLOOM, we first focused

on genes that act in post-transcriptional regulation, as these typically undergo particu-

larly complex post-transcriptional regulation. Using available RNA-seq and expressed

sequence tag (EST) data, we compiled a collection of 3′UTR sequences of DICER1,

which encodes a key component of the miRNA pathway, from 12 species, including

eight vertebrates, lancelet, lamprey, sea urchin, C. intestinalis, and two DICERs in the
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fruit fly. Human DICER1 3'UTR could be aligned by BLASTN to the 3′UTRs from ver-

tebrate species, but not beyond. LncLOOM identified 15 elements conserved in all the

vertebrate sequences, six with lengths that were not found in random sequences (P <

0.01, Additional file 1: Fig. S4). Eight of the motifs were conserved beyond vertebrates

(and could not be assessed by MSAs or BLAST), and one, corresponding to a binding

site for the conserved miR-219, was found in all species, including the fly Dicer2 3′

UTR.

We then focused on 3′UTRs of the PUM1 and PUM2 mRNAs, which encode Pumi-

lio proteins that post-transcriptionally repress gene expression. Pumilio proteins are

deeply conserved, and there are two Pumilio proteins in vertebrates, PUM1 and PUM2,

with a single ortholog in other chordates and in flies. We curated 3′UTR sequences

from 12 vertebrates and four invertebrates (lamprey, lancelet, C. intestinalis, and fruit

fly). Human and zebrafish 3′UTRs are readily alignable by BLASTN, and there is even

significant homology between the 3′UTR of human PUM1 and those of the Pumilio

mRNAs in lamprey and lancelet, but not of those in fly and C. intestinalis. LncLOOM

identified eight elements conserved throughout vertebrate PUM1 3′UTRs, one of

which, UGUACAUU, was conserved in all 16 analyzed 3′UTRs all the way to the fly

pum 3′UTR (Fig. 4, top). In PUM2, there were three elements conserved throughout

vertebrates, also including UGUACAUU, which was found in all the sequences (Fig. 4,

bottom). Interestingly, this UGUACAUU motif partially matches the PRE consensus,

UGUANAUA, and it is bound by both PUM1 and PUM2 in human ENCODE data,

suggesting that this ancient element is part of the auto-regulatory program that is

known to exist in Pumilio mRNAs [21]. LncLOOM is thus able to identify deeply con-

served elements in 3′UTR sequences, including those separated by > 500 million years,

where available tools do not detect significant sequence conservation.

Systematic analysis of conserved motifs in 3′UTRs uncovers deeply conserved elements

In order to broadly evaluate the predictive power of LncLOOM, we performed a com-

prehensive analysis of 3′UTR sequences. We focused on 3′UTRs that are well-defined

based on the highly conserved coding sequence flanking them, allowing us to build a

high-confidence input dataset spanning hundreds of millions of years of evolution, with

which we could systematically study thousands of elements using LncLOOM. Our

dataset was based on 2439 genes that had 3′UTR MSAs generated as part of the Tar-

getScan7.2 miRNA target site prediction suite [11]. For each gene, we built a dataset of

3′UTR sequences for LncLOOM analysis that contained the aligned sequence from the

TargetScan MSA in each of four species (human, mouse, dog, and chicken), only if

those were 300–3000 nt long. For genes with several 3′UTR isoforms, we selected the

longest 3′UTR. We then added to the dataset, where available, sequences of the 3′

UTRs annotated in Ensembl in additional species, if those were longer than 200 bases.

These included sequences from five non-amniote vertebrate species (frog, shark, zebra-

fish, gar, and lamprey) and two invertebrates (ciona and fly). As our main objective was

to evaluate the ability of LncLOOM to identify deeply conserved elements, we focused

only on genes that had a suitable sequence from at least one non-amniote. The num-

bers of sequences that could be analyzed at different depths are presented in Add-

itional file 1: Fig. S5A. Of the 2439 3′UTR datasets, 2117 contained at least one
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sequence for which BLASTN did not report any significant alignment (E value < 0.05)

to the human sequence, while 2031 datasets contained at least one sequence that did

not have significant alignment to any of the four species (Fig. 5a). We could therefore

analyze a large number of sequences where an MSA-based approach was potentially

unable to interrogate the full depth of conservation.

We used LncLOOM to search for conserved motifs with a minimum length of 6

bases and with P < 0.05 in all LncLOOM tests. LncLOOM detected over 150,000 sig-

nificant motifs in the human sequences, of which 27,826 (18.3%) corresponded to a

seed site of a broadly conserved miRNA family (as defined by TargetScan). Eleven

thousand seven hundred twenty-five k-mers were conserved beyond amniotes, of which

3897 were detected in at least one non-alignable sequence (Fig. 5 and Additional file 1:

Fig. 4 Conserved elements in the PUM1 and PUM2 3′UTRs. The human sequence is shown and the motifs
conserved in at least seven species are color-coded based on their conservation. The occurrences of the
ultra-conserved UGUACAUU motif are in a box
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Fig. 5 (See legend on next page.)
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S5). LncLOOM detected at least one unique k-mer in the first non-alignable layer of

1640 of the 2117 genes that contained sequences that did not align to their respective

human orthologs, while combinations of at least three unique k-mers were found in

1088 genes (Fig. 5b). When considering just sequences that did not align to either of

the four amniote species, at least one unique k-mer was detected in the first non-

alignable sequence in 1529 datasets (Additional file 1: Fig. S5B). In 114 genes, we found

conservation beyond vertebrates and in 97 conservation all the way from human to the

fruit fly. A total of 170 unique k-mers (265 instances) were found in fly genes, of which

only two matched a broadly conserved miRNA binding site (Fig. 5c).

We next considered specific conserved k-mers shared between 3′UTRs of multiple

genes. Within the k-mers detected in non-alignable sequences, 42 were common to at

least 50 genes of which only two corresponded to a broadly conserved miRNA binding

site and 30 were conserved in invertebrate sequences (Fig. 5d). Among these 30, 18 k-

mers contained a UUU sequence in an A/U-rich context, resembling AU-rich elements

(AREs), and 5 contained AUAA, resembling PASs. Other k-mers contained an UGUA

core that resembles a PRE. These three groups of miRNA-unrelated elements are thus

also often very deeply conserved in 3′UTRs, and these conserved occurrences can be

detected by LncLOOM.

To assess the sensitivity of LncLOOM, we compared the binding sites of broadly con-

served miRNAs that were identified by LncLOOM to TargetScan predictions for each

of the 2439 genes, in 2121 of which TargetScan predicted binding sites in the human

sequences. LncLOOM predicted binding sites in 2330 genes, including 217 for which

the TargetScan alignments did not identify any broadly conserved sites (Fig. 5e). A

summary of all miRNA sites predicted by LncLOOM can be found at https://github.

com/LncLOOM/LncLOOM. In a substantial number of cases (29% of the 2117 genes),

(See figure on previous page.)
Fig. 5 Global analysis of conserved motifs in 3′UTRs with LncLOOM. a Number of genes with various numbers
of ortholog sequences that had no significant alignment to their human sequence (black) or to their mouse,
dog, and chicken sequences (gray). b Distribution of combinations of unique k-mers conserved in the indicated
number of sequences that did not align to the human 3′UTR sequence. c Quantification of the total number of
unique k-mers (pink) and their total instances (dark red) that LncLOOM identified per species. The total number
of broadly conserved miRNA binding sites is shown in green, and the number of unique k-mers that
correspond to these sites in yellow. The number of genes that contained any k-mer is shown in gray, and the
number of genes that contained at least one k-mer that corresponds to a miRNA site is shown in black. d Top:
Distribution of unique k-mers that were identified in the first sequence non-alignable to human in multiple
genes (gray). The number of k-mers detected in an invertebrate species in at least one gene is shown in black.
Bottom: Unique k-mers common to at least 50 genes and detected in an invertebrate sequence. k-mers that
resemble an ARE are colored red, those resembling a PAS are blue, and those resembling a PRE are green. e
Comparison of genes that contained broadly conserved miRNA binding sites detected by LncLOOM and
TargetScan in the human sequences of genes analyzed. f Number of broadly conserved miRNA bindings
detected by LncLOOM per number of non-alignable sequences; the percentage of genes with a miRNA site
detected per number of non-alignable layers (black) and the number of unique k-mers corresponding to the
miRNA binding sites (yellow). g Top: Broadly conserved miRNA binding sites predicted by LncLOOM in human
sequences. Sites predicted by TargetScan and recovered by LncLOOM are shown in red, and new sites (not
previously predicted by TargetScan) in blue. Bottom: The conservation of these sites per number of species. h
Comparison of the fractions of genes with at least one miRNA site detected in the indicated species by
TargetScan and LncLOOM. Only sites found in TargetScanHuman were used. i Percentage of genes that
contain a miRNA site detected by LncLOOM per number of non-alignable sequences: (red) miRNA sites that
were previously predicted by TargetScan in the human sequence and recovered by LncLOOM in additional
sequences, that were not part of the MSA used by TargetScan; (blue) new miRNA sites predicted by LncLOOM
but not previously predicted by TargetScan in the human sequences
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LncLOOM found a miRNA binding site significantly conserved in species where the 3′

UTR was not alignable to the human sequence in the MSA (Fig. 5f). To compare

LncLOOM and TargetScan predictions more precisely, we focused on the 2359 genes

for which TargetScan predicted binding sites in the identical human transcript used for

LncLOOM analysis (Fig. 5e), among which LncLOOM recovered 90.24% of all broadly

conserved sites predicted by TargetScan in the human sequences (Fig. 5g). Within the

217 genes, 42 had sites conserved beyond mammals and in several genes conservation

was found in fish and fruit fly species (Additional file 1: Fig. S5D). In addition to the

miRNA sites recovered, LncLOOM identified a further 26,165 broadly conserved sites

that had not been previously predicted (Fig. 5g). When comparing the depth of conser-

vation, LncLOOM often detected the sites recovered by TargetScan in more distal spe-

cies (Fig. 5h and Additional file 1: S5E). Importantly, 831 recovered and 331 new

predictions were detected in non-alignable sequences in 24% and 13% of genes respect-

ively (Fig. 5i and Additional file 1: S5F).

We conclude that LncLOOM is a powerful tool also for the analysis of 3′UTR se-

quences, revealing a greater depth of conservation of miRNA or other functional bind-

ing sites than what is possible by MSA-based approaches while having only a limited

compromise on sensitivity.

Discussion
We presented here a new framework for the detection of conserved elements in puta-

tively orthologous biological sequences. This framework complements the SEEKR algo-

rithm that uses k-mer profile similarity to cluster lncRNAs from the same species [6],

and tailored approaches that combine sequence, structure, and synteny for sensitive

search of homologs of specific lncRNAs with known functional elements in distant spe-

cies [35, 36]. Contrary to SEEKR, LncLOOM requires that the linear order of conserved

k-mers is maintained. Although the order of k-mers may not always be important for

function, this constraint increases the precision of motif discovery as an ordered set of

conserved k-mers is less likely to appear by chance and allows us to consider sets of

conserved elements within the context of rapidly evolving sequences. As we show here,

in many cases, those k-mers correspond to functionally relevant elements.

The main strength of our approach is the ability to detect conserved elements in se-

quences that have diverged beyond alignability and/or have accumulated substantial

lineage-specific sequences such as transposable elements. Such integrations can dra-

matically alter the distances between conserved elements and are particularly common

in lncRNAs [3]. As we show, LncLOOM is sensitive for detection of known functional

elements, such as miRNA binding sites within 3′UTRs or lncRNAs, as well as for de-

tection of completely new elements that we validated to play functional roles using

existing data or targeted experiments. LncLOOM can be particularly useful when

studying lncRNAs with partially known functions, but unknown protein binding part-

ners. MS-based approaches for identifying such proteins typically yield hundreds to

thousands of hits. As we show with Chaserr, targeted mutation of conserved regions al-

lows homing in on specific, functionally relevant interactors.

With these strengths in mind, LncLOOM clearly also has its limitations. The require-

ment for perfect conservation of the motif sequence and the motif order might be too

strict. Binding sites of RBPs can typically tolerate sequence variation, and motifs,
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especially those that appear multiple times in the sequence, can change their relative

position across large evolutionary distances. Still, these constraints are currently re-

quired in order to keep the computational complexity at bay and, more crucially, dis-

cover motif combinations that are statistically significant. Another limitation is in the

linear order of sequences that LncLOOM works with. In the future, we plan to extend

LncLOOM to define relationships between sequences by a phylogenetic tree (with mo-

tifs conserved within monophyletic groups). Another extension that we believe would

be particularly useful is to use the LncLOOM framework for first identifying a set of

motifs in a set of known homologs of a lncRNA, and then use those for querying se-

quences of putative homologs (e.g., in transcriptomes of species where full genome se-

quence is unknown).

For the study of lncRNAs, input to LncLOOM requires sequences of homologs from

multiple species. Despite the availability of a large number of RNA-seq datasets in

many different species, and the increasing inclusion of lncRNAs in annotation data-

bases such as ENSEMBL, this remains a major challenge that here we met through

careful manual annotation of sequences from available annotations, ESTs, and RNA-

seq data. Importantly, LncLOOM is capable of handling cases where parts of sequences

are missing, e.g., due to gaps in genomic sequences, which tend to occur in particularly

G/C-rich or repetitive regions, such as the first exon of Chaserr. Another challenge is

the identification of homologs in species where there is no sequence similarity detect-

able by existing tools. Synteny can be useful in such cases (like in the case of Chaserr),

though in many cases, lncRNAs would be syntenic to multiple other lncRNAs in a

given species. lncRNAs are also often alternatively spliced [37]. We can envision an ex-

tension of LncLOOM to handle multiple possible alternative splicing isoforms, but for

now, a simple solution is to use the union of all possible exons (in their linear order) as

the “lncRNA sequence,” as we have done in the past in other contexts [4].

Once a set of putatively homologous sequences is available, in our experience so far,

LncLOOM is most effective in cases where the sequences span a wide phylogenetic

range, ideally one where for the most distant species there is limited or no homology

detectable by BLAST (as we show for Cyrano and CHASERR). In these cases,

LncLOOM can detect a few highly specific elements that can serve as a basis for func-

tional experiments. When applied to more shallowly conserved functional lncRNAs,

the large number of detected elements makes LncLOOM output more challenging to

use. For example, when applied to NORAD [38, 39] sequences from nine mammals

(4917–5458 nt in length), LncLOOM detects 46 significantly conserved elements shared

in all species, including some as long as 34 nt (Additional file 3). Reassuringly, these el-

ements included five binding sites for the Pumilio proteins, known functional binders

of NORAD [38, 39]. Similarly, when applied to the longer XIST sequences from six

mammals (10,466–25,215 nt in length), LncLOOM identifies 23 significantly conserved

elements (Additional file 4).

Analysis of 19 sequences of MALAT1 (4992–12,676 nt in length, Additional file 5), a

deeply conserved and extremely abundant lncRNA [13, 40, 41], illustrates a more com-

plex scenario of high conservation only up to a certain evolutionary depth. Only six

motifs are conserved in all sequences, including three that form part of the triple-

helical motif at the 3′ end of MALAT1 [42, 43], and another motif in that region is

conserved in 18 of the species. Nine additional short motifs are significantly conserved
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outside of amniotes (i.e., in at least 11 of the input species). In contrast to this relative

scarcity of very deeply conserved motifs (given the length of the RNA), 122 k-mers are

significantly conserved in at least one amniote species (turtle, alligator, or lizard).

We have invested a substantial effort in building a simple yet richly annotated

HTML-based visualization engine for LncLOOM that allows the user to easily execute

it on variable inputs and to obtain information on motifs conserved at different levels.

We believe that this capability will make the tool widely useful for biologists studying

lncRNAs as well as other biological sequences, enabling potent generation of hypoth-

eses on functional elements that can be further dissected experimentally. We also be-

lieve that the framework that we present here for a graph-based discovery of conserved

motif combinations is merely a starting point that will be extended further and serve as

a basis for even more potent tools for biological discovery.

We show here that LncLOOM is capable of working with lncRNA and 3′UTR se-

quences, but importantly, it is also directly applicable to other types of biological se-

quences for which our assumptions of motif order conservation are reasonable, such as

protein sequences and sequences of DNA enhancer elements (in these, motifs may cor-

respond to transcription factor binding sites). The additional challenge in using

LncLOOM for studying enhancer elements is that, in contrast to exonic sequences of

lncRNAs, enhancer boundaries are more difficult to define. For instance, one may use

boundaries of H3K27ac chromatin mark enrichment, but these are typically fuzzy, and

ChIP-seq data are rarely available in matching tissues for multiple species, making it

difficult to construct a set of putative orthologs.

Conclusions
LncLOOM is a powerful new framework for the identification of conserved combina-

tions of short sequence motifs in noncoding elements, capable of recovering both

known and novel functional elements in lncRNAs and 3′UTRs, that can also be applied

to other biological sequences. The assumption of linear order conservation is restrict-

ive, but it is shared with alignment-based methods, and it is the basis for the statistical

power to identify particularly deeply conserved motifs, shared between all vertebrates

in several lncRNAs and conserved in 3′UTRs between vertebrates and insects. As we

further demonstrate, once short functional motifs are identified, they can serve as a

starting point for experimental determination of specific RNA binding partners and for

design of effective antisense reagents for perturbation of lncRNA function.

Methods
Input to LncLOOM

LncLOOM works on a set of sequences from different species. Typically, each sequence

corresponds to a putative homolog from a different species. Currently, we work with

only one sequence isoform per species, though adaptations to cases where multiple se-

quences exist per species, e.g., alternative splicing products, are possible. The input se-

quences are typically constructed through manual inspection of RNA-seq and EST data

and existing annotations. Sequences used as LncLOOM inputs are available within the

LncLOOM implementation: https://github.com/LncLOOM/LncLOOM. We note that

some of the input sequences might be incomplete, and our framework contains specific
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steps to accommodate such scenarios. Prior to graph building, the set is filtered to re-

move identical sequences. This can be further adjusted by the user to remove se-

quences with percentage identity above a threshold—in which case LncLOOM uses a

MAFFT MSA [44] to compute percentage identity between each pair of sequences, and

retain, among the similar sequences, the one that appears first in the input dataset.

Sequence ordering

The LncLOOM framework is built around an ordered set of sequences that ideally

should be from species with a monotonically increasing evolutionary distance with re-

spect to the anchor (query) sequence (which is human in all the examples in this

manuscript). The order of the sequences can be provided by the user or determined

using BLAST [45]. If BLAST is used, the anchor sequence is defined to be the first se-

quence in the dataset. The second sequence is the one with the highest alignment score

to the anchor sequence. Each subsequent sequence is then the one with the best align-

ment score to the preceding sequence among the sequences that have not been ordered

yet. If no significant alignment is found, the next available sequence in the original in-

put is selected.

Overview of the LncLOOM method

Once the ordering of the sequences is established, LncLOOM identifies a set of combi-

nations of short conserved k-mers for different values of k, by reducing each sequence

of nucleotides to a sequence of k-mers, each represented by a node in a graph. Identical

k-mers in adjacent sequences are connected in the graph, with additional constraints

(Additional file 1: Fig. S6) and the use of ILP to find sets of long non-intersecting paths

in these graphs. The set of paths identified in each graph is used to define constraints

on graphs in subsequent iterations and to partition the graph (an example of graph par-

titioning is shown in Additional file 1: Fig. S7). Starting with the largest k and iteratively

decreasing it, LncLOOM constructs an initial main graph for every k-mer length in

the specified range. The main graph is constructed for all ordered sequences in the

dataset and is then pruned layer-by-layer (until only the top two sequences remain)

into a series of subgraphs for which the ILP problem of each is solved independently.

At any given depth, a subgraph may be partitioned into an additional set of smaller

subgraphs based on the paths found in previous iterations. In practice, this approach al-

lows us to favor the identification of deeply conserved and longer motifs over shorter

and less conserved ones and to also keep the size of the ILP program to below 1000

edges, which can be rapidly solved, keeping the overall runtime of LncLOOM to mi-

nutes even when applied to dozens of long sequences.

Graph building

Given a dataset of lncRNA sequences from D species and k-mer length k (mini-

mum 6 nt), LncLOOM constructs a directed graph G = (V, E), where V is the set of all

nodes in the graph and E is the set of edges. The graph is composed of D layers, where

D is the number of sequences in the dataset. Each sequence is modeled as a layer (L1,

L2 ... LD), and layer Li, which corresponds to a sequence of length N(i), is composed of

nodes (v1, v2 ...vN(i)-k + 1) where each node vn represents the k-mer at position n in the
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ith sequence (Fig. 1b). All pairs of nodes that represent the same k-mer and are found

in consecutive layers (Li and Lj if j = i + 1) are connected by an edge xuv = (u,v) where

u ∈ Li and v ∈ Lj. Since each substring typically appears multiple times in a sequence,

the number of edges may greatly exceed the number of nodes in the graph. Ordered

combinations of k-mers that are deeply conserved correspond to long paths in G that

do not intersect (i.e., for each xumvq ; xunvr∈E;m < n⇔q < r;m≠n and q≠r Þ and have a

node in L1. Our goal is thus to find a set S in such that each edge is reachable from L1
via edges that are in S and no two edges in S intersect. Ideally, we would like to find

the largest S, subject to potential additional constraints. For example, we may not be in-

terested in short paths and so require that edges in S are all found on paths that reach

to a certain layer.

Identification of long non-intersecting paths using ILP

In the ILP problem, each edge in G is represented by a variable xuv which is assigned a

value of 1 if (u,v) is in S. The objective function is defined to maximize ∣S∣:

maximize
X

u;vð Þ∈Exuv

subject to: xuv ∈ {0, 1}

The additional constraints imposed on this model are derived from several consider-

ations. Firstly, LncLOOM aims to identify short conserved k-mers that appear in the

same order in lncRNA sequences. However, it is unlikely that k-mers will appear only

once in each sequence. Therefore, the constraints applied to the ILP model should

allow for complex paths that contain multiple repeats of a single k-mer in one or more

layers, provided it is not intersected by a path of a non-matching k-mer that has equal

or greater depth (Fig. 1b and Additional file 1: S6A). To ensure selection of non-

intersecting paths, the following constraint is imposed on any pair of edges that inter-

sect between two consecutive layers:

xumvq þ xunvr ≤1 ;

If:

m < n and q > r OR m > n and q < r

um; un∈Li

vq; vr∈Lj

j ¼ iþ 1

As the above constraint only considers the starting position of each node, it also ex-

cludes intersecting edges that connect identical k-mers that are repeated in two con-

secutive layers. In the case where a k-mer is repeated in both consecutive layers, a

network of edges is constructed from each repeat-repeat connection (Additional file 1:

Fig. S6B). This network of edges may override the selection of other paths that are

equally conserved but connect fewer k-mers. Therefore, it is important to impose this

constraint on edges that connect the identical k-mers, as it promotes the splitting of

the complex path into multiple non-intersecting paths that are interspersed by paths of

uniquely occurring k-mers. However, if the network of edges connecting the identical
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repeats is constrained only against each other in the absence of any other path, the ILP

solver can select any possible solution of edges from the multiple repeat-repeat connec-

tions. This can lead to the suboptimal exclusion of repeated k-mers during subsequent

iterations of graph refinement (scenario illustrated in Additional file 1: Fig. S6B). To

avoid this scenario, the intersection constraint is only imposed on edges that connect

identical k-mers if there is at least one other path, with equal depth, that intersects the

network of repeated k-mers (Additional file 1: Fig. S6C-D).

To favor the selection of deeply conserved k-mers over repetitive shallower k-mers,

the following two constraints are imposed on the successors and predecessors of each

node v ∈ Li if 1 < i < y:

M
X

n∈Z
xvn≤M

X
n∈P

xnv

M
X

n∈P
xnv≤M

X
n∈Z

xvn

where Z and P denote the respective subsets of all immediate successors and predeces-

sors of node v, y is a minimum depth requirement, and M is a sufficiently large con-

stant (in practice we used 100). Under this constraint, only paths that have continued

connection from L1 to at least Ly are selected. At the same time, this constraint allows

for the selection of connected complex paths that contain tandemly repeated k-mers in

one or more layers (Fig. 1b).

In graph G, each layer Li consists of nodes (v1, v2 ...vN(i)-k + 1) that start at every con-

secutive position in the sequence and have a length of k bases. It follows that from the

set S, the set Sunion can be formed by merging edges that connect adjacent nodes that

overlap with each other. Once the ILP has been solved, these overlapping nodes will be

combined into a single longer k-mer. This step may encounter a scenario where a set

of adjacent k-mers represent a region of a sequence that contains a string of a single re-

peated base (see Additional file 1: Fig. S6A for an example). It is then possible that

layer-specific insertions will be included in the resulting merged k-mer. To overcome

this, the following constraint is imposed on any pair of edges that connect adjacent k-

mers which overlap in either Li or Lj such that the start and length of the overlapping

region is equal between the two adjacent nodes in each layer:

xumvq þ xunvr ≤1

If:

n≤mþ k − 1 and m < n and mþ k − 1ð Þ − n≠ q þ k − 1ð Þ − r

OR

r≤q þ k − 1 and q < r and mþ k − 1ð Þ − n≠ q þ k − 1ð Þ − r

um; un∈Li

vq; vr∈Lj

j ¼ iþ 1

ILP is a well-known NP-hard problem [46], which poses a major challenge in the

scalability of LncLOOM to very long sequences or large datasets. To overcome this

limitation, several steps have been included in the framework which reduce the
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complexity of the ILP of each graph and also favor the selection of deeply conserved k-

mers. These include graph pruning, the partitioning of the graph based on simple

paths, additional constraints on edge construction, and the iterative refinement of non-

intersecting complex paths.

Graph pruning

Two pruning steps are used in the LncLOOM framework. The first step involves the

exclusion of nodes that correspond to k-mers which are excessively repeated in one or

more layers. The number of allowed repeats per layer can be adjusted by the user and

can greatly reduce the density of edges in longer sequences when a small k (e.g., 6) is

used. For a given k-mer length, this step is performed during the construction of the

initial graph on all sequences in the dataset and any excluded nodes are then excluded

from all resulting subgraphs. The second pruning step is performed for each iteration

of subgraph construction at a given level and excludes all nodes that do not have a con-

nected path from L1 to the current depth.

Partitioning the graph to reduce computational complexity

The constraints imposed on the ILP problem allow for the selection of simple or com-

plex paths, where simple paths are defined as paths that contain only one node per

layer. Simple paths consist of definitively selected edges that should not intersect shal-

lower paths and therefore present boundaries at which the graph can be partitioned

into smaller subgraphs that can be independently solved (Additional file 1: Fig. S7).

Currently, these graphs are solved consecutively but in the future there is room for the

use of parallel computing to handle larger datasets, provided that at least one simple

path is found. The partition is based on simple paths of the current k-mer length that

are found at each level in the layer-by-layer iterations. Each subgraph is constructed by

selecting a subset of nodes that is located between two simple paths τa and τb with

depth = y, where the boundaries are defined as the ending and starting positions of the

nodes within each path: W = {vn| q + k − 1 < n, n + k − 1 < r, vq ∈ τa, vr ∈ τb} for each layer

L1 to Ly − 1 (the last layer is removed for the next iteration). In the case that k-mers of

adjacent simple paths overlap, the k-mers are first combined and the boundaries are de-

fined on the starting and ending position of the longer combined k-mer.

Refinement of non-intersecting complex paths

In contrast to simple paths, complex paths can contain branches that connect repeated

k-mers, particularly in paths that are selected in early iterations when the graph is not

constrained. In an unconstrained graph, it is impossible to decipher which of the re-

peats appear by chance in each layer. Therefore, complex paths are not used to con-

strain edge selection in graphs in subsequent iterations. Instead, the set S that is found

in each iteration is divided into (1) a subset of simple paths that are used for partition-

ing and edge constraint definition and (2) a subset of complex paths that are stored

separately and continuously refined in the subsequent iterations. During refinement,

the complex paths are optimized to remove branches that intersect with newly discov-

ered paths (Additional file 1: Fig. S7). The refinement of complex paths is performed at

two stages during the layer-by-layer eliminations. Firstly, before solving a subgraph that
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spans y layers, an individual graph of only complex paths is constructed from the sub-

set LCd = y of longer k-mers with depth = y and the subset Cd > y from paths of the

current k-mer length that have a minimum depth of y + 1 (complex paths selected in

previous iterations at the current k-mer length). A subset of refined complex paths, Cre-

fined, is then found according to the ILP problem described above. However, the follow-

ing additional constraint is imposed to ensure the selection of all complex paths in Cd >

y over any shallower path in LCd = y:

For every path, τ in Cd > y

X
xuv≥1∀ u; vð Þ∈τ j u∈L1 and v∈L2

Under this constraint, at least one repeated k-mer is selected from L1 for each path τ

in Cd > y. When this constraint is imposed together with the constraints described

above, a refined path that spans at least y layers will be included in the solution. Once

the set Crefined has been found, the subgraph of all k-mers of the current length and

depth is constructed. All paths in Crefined are then added to the current subgraph and

the ILP problem is solved with the additional constraint imposed to favor the selection

of each path τ in Crefined. This solution is then divided into a set of simple and complex

paths for the next iteration. LncLOOM also includes an option to store and refine sim-

ple paths, such that simple paths of shorter k-mers with greater depth are favored over

longer and shallower k-mers. However, if this option is applied, the graph is not parti-

tioned and no constraints are imposed on edge construction in subsequent iterations.

Therefore, this option is computationally expensive and can only be used to analyze a

small dataset of short sequences.

Using BLAST high-scoring pairs (HSPs) to reduce graph complexity

BLAST can also be used as an optional step in the process of LncLOOM graph con-

struction. BLAST HSPs are local ungapped alignments between segments, with signifi-

cant similarity, of sequences found in consecutive layers. We use these HSPs to

constrain edge construction, such that any pair of nodes that are not contained within

the same HSP between two consecutive layers are not connected. The HSPs that are

found by BLAST are redundant in that HSPs may overlap one another and any seg-

ment may be matched to multiple segments in the target sequence. In regard to any set

of HSPs that overlap each other, only the most significant pair is included in the HSPs

used for graph construction. Similarly, in cases where one segment aligns with multiple

segments in the target sequence, only the highest scoring alignment is included. The

constraints that are derived from BLAST analysis can effectively decrease the number

of possible paths in graphs and promote the correct placement of edges between layers

where some of the sequences are incomplete (Fig. 1a).

Graph size restriction

Although steps have been included to reduce the complexity of the ILP problem, in

some scenarios, the graph is too large to be solved within a reasonable time. To address

this bottleneck, the total number of edges in a graph is restricted. By default, the max-

imum number of edges allowed in the ILP problem is 1200, but it can be set to any

number above 50. During any iteration, if the number of edges in a graph G exceeds
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the maximum limit, then the graph is divided into a series of subclusters in which the

ILP problem is individually solved. Starting with the path that has the fewest edges

(fewest repeated k-mers), an individual graph is constructed from each path τ in G, and

only those paths in Crefined that intersect it. ILP is then used to optimize the allowed

edges in this subcluster of G, Crefined is then updated to contain these edges and the

path τ is removed from G. This process is repeated for each path that remains in G

until all paths have been individually optimized against Crefined or the number of edges

in G is the maximum limit, at which point all remaining paths in G are optimized

against each other in a single ILP problem. If the number of edges in a graph con-

structed from an individual subcluster of intersecting paths exceeds the maximum

limit, then ILP does not proceed and only the paths from Crefined are retained in the

solution.

Discovery of motifs in extended 5′ and 3′ regions of sequences

Input to LncLOOM may occasionally contain sequences that are 5′- or 3′-incomplete.

As the data set is ordered by homology and not completeness, these sequences may be

found in any layer in the graph and obstruct the layer-by-layer connection of nodes in

these regions. To reduce the chance that conserved motifs are lost in this scenario,

motif discovery is performed in three stages. In the first stage, LncLOOM identifies

motifs from a primary graph that is constructed on all sequences in the dataset (a total

of D sequences). LncLOOM then determines which sequences have a potentially ex-

tended 5′ or 3′ end by considering the position of the first and last motifs in each se-

quence relative to their median position across all sequences (Additional file 1: Fig.

S8A). Based on this, LncLOOM builds and solves individual graphs of the extended 5′

and 3′ regions of the more complete sequences in the data set. To build the 5′

extended graph, LncLOOM first calculates the median position, Mq, of the starting pos-

ition of the first node vqi j vqi∈S in each layer L1 to LD. A subset of nodes W = {vn| n +

k − 1 < qi} is then extracted from each layer Li if qi > t ·Mq, where t is some tolerance

defined by the user. The nodes of the extended 3′ graph are extracted based on the

ending positions of the last motifs relative to the length of each sequence. Specifically,

LncLOOM calculates the median relative position, MRe, of the ending position of the

last node vri j vri∈S in each layer L1 to LD, where Rei ¼ riþk − 1
NðiÞ . A subset of nodes W =

{vn| n > ri + k − 1} is then extracted from each layer Li if Rei <MRe · (1 + t). By default, t

= 0.5 for the extraction of both the 5′ and 3′ graph but a tolerance can be independ-

ently defined for each graph. This step of motif discovery only proceeds if nodes from

an extended region of the anchor sequence have been included in the graph. To avoid

a scenario where shallowly conserved motifs prevent identification of 5′ or 3′ trunca-

tions in deeper layers, for example because of motifs found close to the 5′ end are only

conserved in the first two layers, a “minimum depth” parameter can be applied to select

the positions of the first and last motifs in each sequence from a subset of motifs that

are conserved to a specified depth. If the minimum depth parameter is applied, then all

motifs that do not meet the specified depth requirement are also removed from the so-

lution (scenario illustrated in Additional file 1: Fig. S8A).
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Calculation of motif modules and neighborhoods

Once the ILP problem has been solved for all subgraphs in the framework, each set of

non-intersecting paths that was selected from the primary, 5′ extended, and 3′ ex-

tended graphs is processed into motifs modules and neighborhoods. A motif module is

defined as an ordered combination of at least two unique motifs that is conserved in a

set of sequences, where each motif is allowed to have any number of tandem repeats.

By default, modules are calculated at every layer, Li ∣ 2 ≤ i ≤D of the graph by extract-

ing paths that span all layers from L1 to Li. If a minimum depth d is specified in the pa-

rameters, then modules are calculated at every layer Li ∣ d ≤ i ≤D. As described above,

motif discovery is performed through an iterative process of layer-by-layer elimination.

This leads to the selection of longer regions of identity as the set of sequences continu-

ously decreases to contain sequences that are more closely related. Consequently,

shorter motifs that are more deeply conserved are often embedded in the longer motifs

that are only conserved between the top layers (Additional file 1: Fig. S8B). We define

these regions within the graph as motif neighborhoods, where each neighborhood com-

prises all nodes in the graph that are connected to a single region of overlapping nodes

in L1, together with the flanking regions of each node in each layer. To calculate motif

neighborhoods, LncLOOM first combines all overlapping nodes in L1 to form a set of

reference k-mers that represent each neighborhood. For each reference k-mer, all paths

that are connected to each shorter k-mer which is embedded within the reference k-

mer are then included into that neighborhood. For each motif in each layer, the length

of flanking regions is calculated relative to the position of the motif in the reference k-

mer (Additional file 1: Fig. S8B). The motif modules and neighborhoods from each of

the primary, 5′ extended, and 3′ extended graphs are presented in HTML and plain

text file formats.

Calculation of motif significance

Motif significance is inferred by calculating empirical P values of each motif in two genres

of random datasets. Firstly, for a motif of length k that is conserved to Li, we determine

the empirical probability of finding the exact motif found in the real dataset and any com-

bination of the same number of any motifs of the same length or greater at least once in

Li of a set of random sequences that has the same percentage identity between consecu-

tive layers as observed in the input sequences. This is achieved by using MAFFT [44] to

generate an MSA of the input sequences, and then running multiple iterations of

LncLOOM (100 for the analyses described in this manuscript) iterations in which the col-

umns of the MSA are randomly shuffled. Secondly, we determine the empirical probabil-

ity of finding the exact motif and any combination of the same number of any motifs of

the same length at least once in Li of a set of random sequences generated such that each

layer has the same length and the same dinucleotide composition of its corresponding

layer in the input sequences (but without preserving % identity between layers). Only the

former P values were used in the analyses described in this manuscript. Multiprocessing

has been implemented to execute the iterations in parallel.
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Functional annotation of motifs

LncLOOM has two optional annotation features. Firstly, the discovered motifs can be

mapped to binding sites of miRNAs by identifying perfect base pairing with the seed re-

gions of conserved (conserved throughout mammals) and broadly conserved (typically

found throughout vertebrates) miRNAs from TargetScan [11]. For each motif, the type

of pairing (6mer, 7mer, 7mer-A1, 7mer-M8, or 8mer) is determined in each sequence

by considering the motif together with the immediate flanking base from both sides of

the motif. A match is only found if the complete seed region (6mer) directly matches

the motif. Secondly, motifs that are found in genes that are expressed in HepG2 or

K562 cell lines can also be mapped to binding sites of RBPs identified by eCLIP in the

ENCODE project [12]. To determine the chromosome coordinates of each motif in a

selected query sequence, LncLOOM uses BLAT [47] to align the sequence to the gen-

ome and then calculates overlaps with the coordinates of binding sites of RBPs which

are extracted from ENCODE bigBed files using the pyBigWig package. Alternatively,

the user can also upload a BED file that specifies the chromosome coordinates and

length of each exon in the query sequence. The extracted eCLIP data is filtered to ex-

clude all peaks with enrichment < 2 over the mock input. RBPs that bind a large por-

tion of the anchor sequence are marked, as the overlap of their binding peaks with any

conserved motif is less likely to be functionally relevant for that specific motif.

LncLOOM implementation and availability

LncLOOM has been open sourced and is available for download from https://github.

com/lncLOOM/lncLOOM and is licensed under the Mozilla Public License 2.0. It is

implemented in Python and is supported on Linux/Unix-based systems. Graph building

is performed using the networkx package [48]. The integer programming problems are

modeled using PuLP [49] and are solved by either the open source COIN-OR Branch-

and-Cut solver (CBC) (https://www.coin-or.org/) or the commercial Gurobi solver

(https://www.gurobi.com/). LncLOOM utilizes the following alignment programs dur-

ing graph construction, motif annotation, and the empirical evaluation of motif signifi-

cance: BLAST [45], BLAT [47], and MAFFT [44]. The multiprocessing python package

is used to compute statistical iterations in parallel.

Calculation of motif enrichment

For evaluating the enrichment of specific motifs in sequences, we generated 1000 sets

of random sequences matching the dinucleotide composition of the input sequences

and counted the occurrences of the motifs to compute the expected number of motifs

and the empirical P values.

Analysis of publicly available sequencing datasets

The following sequencing datasets found in GEO or SRA were used in this manuscript:

GSE115429 (PUM1 CLIP in HCT116 cells), GSE95197 (PUM1/PUM2 CLIP and RNA-

seq in mouse brain), SRP030031 (Rbfox1/Rbfox2 CLIP in mouse brain), GSE54794

(Rbfox2 CLIP in mESCs), GSE16338 (Ago2 CLIP mouse brain), and GSE140217

(miRNA overexpression in HeLa cells). ENCODE eCLIP datasets were taken from

https://www.encodeproject.org/. Unless indicated otherwise, sequencing reads were

Ross et al. Genome Biology           (2021) 22:29 Page 24 of 31

https://github.com/lncLOOM/lncLOOM
https://github.com/lncLOOM/lncLOOM
https://www.coin-or.org/
https://www.gurobi.com/
https://www.encodeproject.org/


mapped to the hg19 human genome assembly using STAR aligner [50] and gene ex-

pression levels were quantified using RSEM [51] and RefSeq annotations.

LncLOOM analysis of lncRNAs and 3′UTRs

LncLOOM was used to analyze Cyrano sequences from 18 species, libra (Nrep in

mammals) from 8 species, CHASERR sequences from 16 species, DICER1 sequences

from 12 species, and a PUM1 and PUM2 sequences from 16 species. For all genes,

LncLOOM parameters were set to search for k-mers from 15 to 6 bases in length and

the sequences were reordered by BLAST with the human sequence defined as the an-

chor sequence in each case. HSP constraints were not imposed. Motif significance was

calculated over 100 iterations. The order of sequences for each gene as represented in

the LncLOOM framework is shown in Additional file 6: Table S1.

LncLOOM was also used to analyze 2439 3′UTR genes. The datasets were con-

structed from 3′UTR MSAs generated by TargetScan7.2 miRNA target site prediction

suite [11] and included the sequences of human, mouse, dog, and chicken that were be-

tween 300 and 3000 nt. Depending on availability and length (> 200 bases), sequences

from frog, shark, zebrafish, gar and lamprey, cioan, and fly were obtained from Ensembl

and added to their respective gene datasets. For each dataset, we used BLASTN, with a

cutoff E value of 0.05, to classify which sequences in each of the respective species had

no detectable alignment to their human ortholog, as well as those sequences that also

did not align to mouse, dog, and chicken. k-mers identified by LncLOOM were

matched to seeds of broadly conserved miRNA families, for which TargetScanHuman

reported a human miRNA. To evaluate the sensitivity of LncLOOM, we compared the

broadly conserved miRNA binding sites identified by LncLOOM to predictions re-

ported by TargetScan (http://www.targetscan.org/cgi-bin/targetscan/data_download.

vert72.cgi). Specifically, we only compared the miRNA sites from genes in which Tar-

getScan reported sites in the identical representative human transcript as used in our

LncLOOM datasets. In total, this corresponded to 2359 of the 2439 genes.

Tissue culture

Neuro2a cells (ATCC) were routinely cultured in DMEM containing 10% fetal bovine

serum and 100 U penicillin/0.1 mgml− 1 streptomycin at 37 °C in a humidified incuba-

tor with 5% CO2. Cells were routinely tested for mycoplasma contamination and were

not authenticated.

Mass spectrometry sample preparation

Samples were subjected to in-solution tryptic digestion using suspension trapping (S-

trap) as previously described [52]. Briefly, after pulldown proteins were eluted from the

beads using 5% SDS in 50mM Tris-HCl. Eluted proteins were reduced with 5 mM di-

thiothreitol and alkylated with 10 mM iodoacetamide in the dark. Each sample was

loaded onto S-Trap microcolumns (Protifi, USA) according to the manufacturer’s in-

structions. After loading, samples were washed with 90:10% methanol/50 mM ammo-

nium bicarbonate. Samples were then digested with trypsin for 1.5 h at 47 °C. The

digested peptides were eluted using 50 mM ammonium bicarbonate. Trypsin was added

to this fraction and incubated overnight at 37 °C. Two more elutions were made using
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0.2% formic acid and 0.2% formic acid in 50% acetonitrile. The three elutions were

pooled together and vacuum-centrifuged to dryness. Samples were kept at− 80 °C until

further analysis.

Liquid chromatography

ULC/MS grade solvents were used for all chromatographic steps. Dry digested samples

were dissolved in 97:3% H2O/acetonitrile + 0.1% formic acid. Each sample was loaded

using split-less nano-Ultra Performance Liquid Chromatography (10 kpsi nanoAcquity;

Waters, Milford, MA, USA). The mobile phase was (A) H2O + 0.1% formic acid and (B)

acetonitrile + 0.1% formic acid. Desalting of the samples was performed online using a

reversed-phase Symmetry C18 trapping column (180 μm internal diameter, 20 mm

length, 5 μm particle size; Waters). The peptides were then separated using a T3 HSS

nano-column (75 μm internal diameter, 250 mm length, 1.8 μm particle size; Waters) at

0.35 μL/min. Peptides were eluted from the column into the mass spectrometer using

the following gradient: 4 to 30%B in 55min, 30 to 90%B in 5 min, maintained at 90%

for 5 min, and then back to initial conditions.

Mass spectrometry

The nanoUPLC was coupled online through a nanoESI emitter (10 μm tip; New Ob-

jective; Woburn, MA, USA) to a quadrupole orbitrap mass spectrometer (Q Exactive

HF, Thermo Scientific) using a FlexIon nanospray apparatus (Proxeon).

Data was acquired in data-dependent acquisition (DDA) mode, using a Top10

method. MS1 resolution was set to 120,000 (at 200m/z), mass range of 375–1650m/z,

AGC of 3e6, and maximum injection time was set to 60 ms. MS2 resolution was set to

15,000, quadrupole isolation 1.7m/z, AGC of 1e5, dynamic exclusion of 20 s, and max-

imum injection time of 60 ms.

Mass spectrometry data processing and analysis

Raw data was processed with MaxQuant v1.6.6.0 [53]. The data was searched with the

Andromeda search engine against the mouse (Mus musculus) protein database as down-

loaded from Uniprot (www.uniprot.com), and appended with common lab protein con-

taminants. Enzyme specificity was set to trypsin and up to two missed cleavages were

allowed. Fixed modification was set to carbamidomethylation of cysteines and variable

modifications were set to oxidation of methionines, and protein N-terminal acetylation.

Peptide precursor ions were searched with a maximum mass deviation of 4.5 ppm and

fragment ions with a maximum mass deviation of 20 ppm. Peptide and protein identifica-

tions were filtered at an FDR of 1% using the decoy database strategy (MaxQuant’s “Re-

vert” module). The minimal peptide length was 7 amino-acids and the minimum

Andromeda score for modified peptides was 40. Peptide identifications were propagated

across samples using the match-between-runs option checked. Searches were performed

with the label-free quantification option selected. The quantitative comparisons were cal-

culated using Perseus v1.6.0.7. Decoy hits were filtered out. A Student’s t test, after loga-

rithmic transformation, was used to identify significant differences between the

experimental groups, across the biological replica. Fold changes were calculated based on

the ratio of geometric means of the different experimental groups.
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RNA-pulldown assay

Templates for in vitro transcription were generated by amplifying synthetic oligos

(Twist Bioscience) and adding the T7 promoter to the 5′ end for sense sequences and

to the 3′ end for antisense control sequences (see Additional file 6: Table S3 for full se-

quences). Biotinylated transcripts were produced using the MEGAscript T7 in vitro

transcription reaction kit (Ambion) and Biotin RNA labeling mix (Roche). Template

DNA was removed by treatment with DNaseI (Quanta). Neuro2a cells (ATCC) were

lysed with RIPA buffer (10 mM Tris-HCl, pH 8.0, 1 mM EDTA, pH 8.0, 140 mM NaCl,

1% Triton X-100, 0.1% SDS, and 0.1% Na-DOC) supplemented with protease inhibitor

cocktail (Sigma-Aldrich, #P8340) + 100 U/ml RNase inhibitor (#E4210-01), and 1 mM

DTT for 15min on ice. The lysate was cleared by centrifugation at 21130×g for 20 min

at 4 °C. Streptavidin Magnetic Beads (NEB #S1420S) were washed twice in buffer A

(NaOH 0.1M and NaCl 0.05M), once in buffer B (NaCl 0.05M) and then resuspended

in two tubes of binding/washing (NaCl 1M, 5 mM Tris-HCl pH 7.5 and 0.5 mM EDTA

supplement with PI + 100 U/ml RNase inhibitor, and 1 mM DTT). One tube of beads

was washed three times in RIPA supplemented with PI and DTT 1mM, after which cell

lysate was added and pre-cleared with overhead rotation at 4 °C for 30 min. The second

tube was equally divided into individual tubes for each RNA probe. Two to 10 pmol of

the biotinylated transcripts were then added to the respective tubes and rotated over-

head at 4 °C for 30 min. The beads were then washed three times in binding/washing

buffer, after which equal amounts of the pre-cleared cell lysate were added to each

sample of beads and RNA probe. The samples were then rotated overhead at 4 °C for

30 min. Following rotation, the beads were washed three times with high salt CEB (10

mM HEPES pH 7.5, 3 mM MgCl2, 250 mM NaCl, 1 mM DTT, and 10% glycerol). Pro-

teins were then eluted from the beads in 5% SDS in 50 mM Tris pH 7.4 for 10 min in

room temperature.

Antisense oligonucleotide and LNA GapmeR transfections

ASOs (Integrated DNA Technologies) were designed to target the conserved ATGG

sites that were identified by LncLOOM in the last exon of mouse Chaserr (Add-

itional file 1: Fig. S3A). All ASOs were modified with 2′-O-methoxy-ethyl bases. LNA

gapmers (Qiagen), targeted to Chaserr introns, were used for Chaserr knockdown (see

Additional file 6: Table S4 for full oligo sequences). Transfection: 2 × 105 Neuro2A cells

were seeded in a six-well plate and transfected by using Lipofectamine 3000 (Life Tech-

nologies, L3000-008) following the manufacturer’s protocol with a mix of LNA1–4 or

with ASO1, ASO2, ASO3, or a mix of either ASO1 and ASO3 or ASO1–3 to a final

concentration of 25 nM. Endpoints for all experiments were at 48 h post transfection,

after which the cells were collected with TRIZOL for RNA extraction and assessment

by RT-qPCR analysis.

RNA immunoprecipitation (RIP)

Neuro2a cells (ATCC) were collected, centrifuged at 94×g for 5 min at 4 °C, and washed

twice with ice-cold phosphate-buffered saline (PBS) supplemented with ribonuclease

inhibitor (100 U/mL, #E4210-01) and protease inhibitor cocktail (Sigma-Aldrich,

#P8340). Next, cells were lysed in 1 mL of lysis buffer (5 mM PIPES, 200mM KCl, 1
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mM CaCl2, 1.5 mM MgCl2, 5% sucrose, 0.5% NP-40, supplemented with protease in-

hibitor cocktail + 100 U/ml RNase inhibitor, and 1 mM DTT) for 10 min on ice. Lysates

were sonicated (Vibra-cell VCX-130) three times for 1 s ON, 30 s OFF at 30% ampli-

tude, followed by centrifugation at 21130×g for 10 min at 4 °C. Supernatants were then

transferred to new 2-mL tubes and supplemented with 1 mL of IP binding/washing buf-

fer (150 mM KCl, 25 mM Tris (pH 7.5), 5 mM EDTA, 0.5% NP-40, supplemented with

protease inhibitor cocktail + 100 U/ml RNase inhibitor, and 0.25 mM DTT). The sam-

ples were then rotated for 2–4 h at 4 °C with 5 μg of antibody per reaction. Fifty micro-

liters of beads GenScript A/G beads (#L00277) per reaction was washed three times

with IP binding/washing buffer, followed by addition to lysates for an overnight rotating

incubation. After incubation, the beads were washed three times inIP binding/washing

buffer. Ten percent of each sample was collected and boiled for 5 min at 95 °C for

further analysis by western blot. The remaining beads were resuspended in 0.5 mL of

TRIZOL for RNA extraction and assessment by RT-qPCR analysis where immunopre-

cipitation material was normalized to total cell lysate.

Western blot

Protein samples collected from RIP were resolved on 8–10% SDS-PAGE gels and trans-

ferred to a polyvinylidene difluoride (PVDF) membrane. After blocking with 5% nonfat

milk in PBS with 0.1% Tween-20 (PBST), the membranes were incubated with the pri-

mary antibody followed by the secondary antibody conjugated with horseradish perox-

idase. Blots were quantified with Image Lab software. The primary antibody anti-Dhx36

(Bethyl, #A300-525A, 1:1000 dilution) and secondary antibody anti-rabbit (JIR #111-

035, 1:10,000 dilution) were used.

qRT-PCR

Total RNA was extracted from transfected N2a cells using TRIREAGENT (MRC) ac-

cording to the manufacturer’s protocol. cDNA was synthesized using qScript Flex

cDNA synthesis kit (95049, Quanta) with random primers. Fast SYBR Green master

mix (4385614) was used for qPCR. Gene expression levels were normalized to the

housekeeping genes Actin and Gapdh.
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