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Abstract
Amajor challenge to long read sequencing data is their high error rate of up to 15%. We
present Ratatosk, a method to correct long reads with short read data. We demonstrate
on 5 human genome trios that Ratatosk reduces the error rate of long reads 6-fold on
average with a median error rate as low as 0.22%. SNP calls in Ratatosk corrected reads
are nearly 99% accurate and indel calls accuracy is increased by up to 37%. An
assembly of Ratatosk corrected reads from an Ashkenazi individual yields a contig N50
of 45Mbp and less misassemblies than a PacBio HiFi reads assembly.

Introduction
In Norse mythology, the squirrel Ratatöskr runs up and down the ash tree Yggdrasil, bear-
ing envious words between the eagle at the top and the dragon at the bottom. Short read
sequencing (SRS) has allowed for the accurate identification of small variants (SNPs and
indels) in non-repetitive parts of the genome while long read sequencing (LRS) allows
for the characterization of large and complex variations. We have designed Ratatosk to
carry information between the two technologies with the hope of leveraging the benefits
of both of them.
Oxford Nanopore Technologies (ONT) and Pacific Bioscience (PacBio) are LRS plat-

forms [1] that produce long sequence reads ranging from 103 to 106 bases with an
error rate up to 15% [2]. The high error rate of LRS reads is in part compensated by
their lengths which increase their mapping accuracy, making LRS suitable for numerous
applications in all fields of genomics. LRS used at high coverage on a few individu-
als [3] or low-medium coverage at population scale [4] greatly improves the detection
of structural variants (SVs) because the large size of ONT reads spans SV breakpoints.
Additionally, LRS reads can encompass large sections of highly repetitive regions in
the human genome such as centromeres [5], telomeres [6], and tandem repeats [7].
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Analyzing these regions with SRS is grueling as the reads generally map ambiguously to
multiple locations because of their limited size. Yet, centromeres play an important role in
cancer genomics [8] while short tandem repeat (STR) expansions associate with a number
of genetic diseases [9]. LRS technologies have also enabled de novo haplotype-resolved
assemblies with very few contig breaks [10, 11]. Finally, LRS technologies overcome
chemistry limitations of SRS, in particular GC bias [12] and PCR amplification arti-
facts [13] causing uneven coverages for reads produced by Illumina platforms. Yet, the
high error rate of LRS reads introduces algorithmic challenges in analyzing these data
while filtering out the noise [14]. Highly accurate LRS technologies [15] that perform
circular sequencing and generate highly accurate consensus sequences are emerging but
the required resources are still prohibitive at a population scale. SRS data are therefore
often used to complement to LRS data for SV breakpoint refinement [16] and assembly
polishing [17].
We present Ratatosk, a newmethod based on a compacted and colored de Bruijn graph

for the hybrid correction of genomic LRS reads using SRS data. Ratatosk is specifically
designed to avoid over-correction with incorrect haplotypes or homologous regions as
this would either remove true variants or add artificial ones. Ratatosk introduces sev-
eral new features not included in other hybrid correction tools. First, SRS and LRS reads
color vertices of the de Bruijn graph to highlight existing paths for the correction.
Graph coloring enables pruning the search space when traversing the graph by remov-
ing chimeric paths. Second, LRS reads are anchored to the graph using both exact and
inexact k-mer matches. The latter improves the anchoring of highly erroneous regions of
the LRS reads. Third, the graph is annotated with candidate SNPs to disentangle small
variations between haplotypes that are difficult to capture from erroneous LRS reads.
Fourth, two passes of correction are performed using SRS and LRS reads separately to
take advantage of all data available, as well as increasing k-mer sizes to remove errors
made during the first correction pass. Finally, an optional reference-guided preprocess-
ing of the input data is proposed to improve the error rate and scale Ratatosk to a large
number of compute nodes.
The performance of LRS read error correction tools is usually evaluated by the error

rate, genome coverage, and different assembly metrics of the corrected reads [18, 19].
However, the characterization of variants from the corrected data has yet to be investi-
gated. Additionally, it is often unclear whether hybrid error correction tools scale to large
input data as they are usually evaluated on small non-human genomes such as yeast or
bacteria. In this paper, we demonstrate that Ratatosk can reduce the raw error rate of long
reads 6-fold on average with a median error rate as low as 0.22% on 5 human genome
trios. Ratatosk corrected data maintain nearly 99% accurate SNP calls and substantially
increase indel calls accuracy by up to 37% compared to the raw data. An assembly of the
Ashkenazi individual HG002 [20] created from Ratatosk corrected ONT reads yields a
contig N50 of 45Mbp and less misassemblies than an assembly created from PacBio HiFi
reads.

Previous work

Methods for correcting genomic LRS reads belong to one of two categories: self-
correction or hybrid correction. Self-correction methods refine the reads using
information from the set of LRS reads alone while hybrid correction methods use infor-
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mation from a set of SRS reads originating from the same individuals. Overall, hybrid
correction methods have been shown to outperform self-correction methods in terms of
error rate and compute resource usage [21]. However, a recurrent issue with most error
correction methods is that they do not retain the phasing of the reads, hence limiting the
usage of corrected data to mixed-haplotype assembly. We provide here a short overview
of hybrid correction methods and refer to genomic [19, 21, 22] and transcriptomic [23]
LRS reads correction reviews for more details about self-correction methods.
LoRDEC [24] was the first method to use a de Bruijn graph built from SRS reads as an

index for the correction of LRS reads. The de Bruijn graph has been extensively used as
a data structure for genome assembly [25, 26] and later for SRS reads correction [27]. In
LoRDEC, LRS reads are anchored on the graph using shared k-mers and non-anchoring
subsequences are then corrected using paths which are similar to the uncorrected subse-
quences. Many hybrid error correction tools for LRS reads, including Ratatosk, are based
on the core ideas of LoRDEC. Jabba [28] is derived from the LoRDECmethod besides that
SRS reads are self-corrected before graph construction and LRS reads are anchored to
the graph using maximum exact matches to enable different k-mer lengths during correc-
tion. HG-CoLoR [29] also uses self-corrected SRS reads and aligns them to the LRS reads
to find overlaps. These overlaps anchor the reads onto a variable-order de Bruijn graph
allowing for multiple k-mer lengths. Finally, FMLRC [30] indexes the de Bruijn graph
using a multi-string Burrows-Wheeler Transform of the SRS reads. This representation
is lightweight in memory, enables multiple k-mer lengths and stores implicitly k-mer fre-
quencies. FMLRC has two passes of correction, one using a short k-mer and one using a
long k-mer in order to simplify the graph for high complexity regions to correct. Unlike
the above tools, CoLoRMap [31] constructs a weighted alignment graph from the map-
ping of the SRS reads to the LRS reads. The mapping provides paths in the graph that
maximize the similarity with the subsequences to correct. CoLoRMap takes advantage of
the paired-end information to leap over regions of LRS reads where no SRS reads map.
We refer to LRS reads correction reviews [19, 21, 22] for further information.

Results
We evaluated Ratatosk [32] using our reference-guided preprocessing on a set of
4 Icelandic trios (I1-4) from deCODE genetics [33] and one Ashkenazim trio (HO
and HP) from Genome In A Bottle [20]. Ratatosk is available at https://github.com/
DecodeGenetics/Ratatosk. Each trio was sequenced with both Illumina and ONT
platforms in addition to the PacBio platform for the Ashkenazim trio (see the
“Availability of data and materials” section). Genome coverage and N50 metrics are
reported in Table 1 for the raw long reads. The short reads used are Illumina paired-end
reads of length 151 bases with a mean coverage of 42x in the Icelandic trios and 61x in the
Ashkenazim trio. The Ratatosk corrected reads were subsequently compared to the raw
and FMLRC [30] corrected reads. FMLRC is a reference-free hybrid correction tool for
long reads with one of the best overall performance among hybrid methods [21, 22]. Time
andmemory usage for Ratatosk and FMLRC are reported in Additional file 1. On average,
FMLRC is 28% faster than Ratatosk and uses 39% less memory. All reads were subse-
quently aligned with minimap2 [34] using the default ONT or PacBio setting for further
analysis. All tools requiring a reference genome used the GRCh38.p13 human genome
reference.

https://github.com/DecodeGenetics/Ratatosk
https://github.com/DecodeGenetics/Ratatosk
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Table 1 Genome coverage and N50 for the long reads of the child (C), father (F), and mother (M) in 4
Icelandic trios (I1-4) and one Ashkenazim trio (H)

Sequencing Coverage N50

platform C F M C F M

I1 ONT 63.68 50.94 64.74 20,353 24,093 23,528

I2 ONT 55.68 67.95 70.46 25,767 22,496 20,439

I3 ONT 69.50 57.05 56.62 24,047 27,787 26,856

I4 ONT 57.07 57.40 64.28 23,111 15,234 26,634

HO ONT 46.72 85.23 87.60 52,311 45,924 49,285

HP PacBio 73.85 35.03 32.77 11,065 10,691 10,617

Error rate

Table 2 shows the error rates for the uncorrected long reads as well as the long reads
corrected by Ratatosk and FMLRC. The mean error rate of the Ratatosk reads is about
2.16 times lower than the FMLRC reads and about 6.21 times lower than the raw reads.
In the PacBio data set of the Ashkenazim trio, 50% of the Ratatosk reads have an error
rate of 0.34% or below. This is up to 42.58 times lower than the raw reads and up to
15.02 times lower than the FMLRC reads. Details on the error rate calculations are given
in Additional file 1.
We also show in Table 3 the ratio of aligned reads in the raw and corrected data sets.

On average, the ratio of aligned reads corrected by Ratatosk is similar to the raw reads
while FMLRC has 5.98% more aligned reads compared to the raw data sets. To explain
such a difference, we measured over-correction in the corrected long reads by reporting
in Fig. 1 the number of supplementary alignments and the ratio of ambiguous bases. Sup-
plementary alignments occur when an alignment cannot be represented as a single linear
alignment [35] but instead, as a set of linear alignments. The presence of supplementary
alignments might indicate an SV large enough for the aligner to abandon mapping the
read with a single linear alignment. Supplementary alignments might also indicate that
the read has been partially over-corrected. Finally, ambiguous bases are bases from reads
which do not align in the extremities of primary alignments (soft-clipping) but do align in
at least one distant supplementary alignment of the same reads. The ratio of ambiguous

Table 2 Error rates (in %) for the raw and corrected long reads in 4 Icelandic trios and one
Ashkenazim trio. Best results are highlighted

Raw FMLRC Ratatosk

C F M C F M C F M

Mean I1 11.89 11.19 10.89 3.85 3.55 3.32 1.67 1.73 1.63

I2 10.52 11.20 10.14 3.20 3.48 2.94 1.62 1.71 1.49

I3 9.98 10.52 10.78 3.07 3.16 3.47 1.65 1.58 1.02

I4 10.74 11.18 10.17 3.26 3.57 2.93 1.47 1.66 1.44

HO 8.81 7.82 8.24 2.53 2.23 2.23 1.40 1.37 1.29

HP 14.66 14.80 15.02 7.38 7.54 7.60 3.03 3.12 3.08

Median I1 9.95 9.10 8.84 1.41 1.18 1.11 0.24 0.25 0.23

I2 8.37 9.05 8.22 1.00 1.15 0.88 0.23 0.24 0.22

I3 7.95 8.42 8.72 1.03 0.99 1.27 0.27 0.23 0.27

I4 8.91 9.34 8.16 1.23 1.33 0.96 0.22 0.22 0.22

HO 6.95 5.95 6.62 0.55 0.50 0.56 0.27 0.26 0.26

HP 14.02 14.15 14.48 4.86 4.98 5.11 0.34 0.34 0.34
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Table 3 Ratio of aligned reads (in %) with respect to the number of raw long reads in 4 Icelandic
trios and one Ashkenazim trio. Best results are highlighted

Raw FMLRC Ratatosk

C F M C F M C F M

I1 92.44 91.16 92.67 99.53 99.33 99.50 92.67 91.39 92.89

I2 93.21 93.15 85.72 99.54 99.53 94.46 93.45 93.37 86.00

I3 93.98 92.59 92.75 99.54 99.50 99.46 94.18 92.85 86.50

I4 95.03 94.64 93.87 99.64 99.59 99.59 95.20 94.83 94.07

HO 42.71 60.31 46.47 48.48 67.00 51.57 43.02 60.72 46.79

HP 93.43 92.94 92.89 97.27 97.11 97.02 94.03 93.56 93.51

bases measures the proportion of read bases mapping ambiguously because of chimeric
reads [36] or over-correction. More details are given in Additional file 1.
As shown in Fig. 1, Ratatosk decreases on average the number of supplementary align-

ments by 16.22% and the ratio of ambiguous bases by 25.15% compared to the raw reads.
On the other hand, FMLRC increases the number of supplementary alignments by a fac-
tor 7.56 and increases the ratio of ambiguous bases by a factor 2.62. This suggests that
Ratatosk can correct soft-clipped bases and chimeric reads while FMLRC is susceptible

Fig. 1 Number of supplementary alignments and ratio of ambiguous bases for the Icelandic trios and the
HG002 data sets
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to over-correction. This could be partially explained by the orthogonal approach of each
respective tool regarding their default k-mer length. On one hand, FMLRC uses short
k-mers to increase the number of anchors at the expense of graph contiguity. On the other
hand, Ratatosk uses longer k-mers but an inexact anchoring to maintain a good trade-off
between the number of anchors and graph contiguity.
Subsampling was performed on the ONT reads of the Ashkenazim trio as reported in

Additional file 1. Each raw data set was subsampled at 10x, 20x, and 30x ONT coverage.
The subsampled ONT reads were thereafter corrected with Ratatosk using Illumina reads
subsampled at 30x coverage. Even at 10x coverage, Ratatosk corrected reads maintain a
similar error rate and ratio of aligned reads as with the full coverage data sets.

Variant calling

There is a limited number of tools that can perform small variant calling on corrected
LRS reads. Clair [37] and DeepVariant [38] are machine learning based and can train a
model given a training set of input reads. We used Clair for our evaluations as Deep-
Variant could not be trained on raw ONT reads due to time and memory requirements.
Longshot [39] was not used as it does not call indels while Medaka [40] uses an error
model specific to the raw ONT reads and hence, could not be applied to corrected data.
A model was trained with Clair on the raw, FMLRC, and Ratatosk ONT reads from the
Ashkenazim trio using the truth set v4.2 of variants less than 50 bases long in the high
confidence regions [41]. The different models generated for each type of input long reads
were then used to call small variants on all genomes and variant calls were subsequently
evaluated using rtg-tools [42]. Specifically, the HG003 models were used to call small
variants on HG002 and HG004 while the HG002 models were used to call small variants
on HG003 and the 4 Icelandic trios. While HG002 and HG003 present a risk of over-
fitting as the individuals are related, we show in the following that their variant calling
accuracy is similar to the one of HG004 which was called with a model trained on an
unrelated individual.
Given a variant truth set, rtg-tools automatically computes an optimal quality score

threshold for the variant calls. Table 4a shows the variant calls accuracy for the Ashke-
nazim trio for which low quality variants below the optimal threshold are filtered out
(thresholds are provided in Additional file 1). On the other hand, Table 4b illustrates a
standard setting for which all variants with the FILTER field set to PASS in the VCF files
are used. With quality score filtering, SNP calls are nearly 99% accurate for the raw and
Ratatosk reads with a slight accuracy decrease in the SNPs called from the FMLRC reads.
This demonstrates that SNPs are accurately represented in the raw reads and Ratatosk
captures well the SNP candidates in the correction. However, indels are poorly repre-
sented in the raw reads and Ratatosk increases the indel calls accuracy by up to 37.56%
compared to the raw reads. When no filtering is applied, the difference of indel calls accu-
racy between raw and corrected reads is staggering. Indeed, the indel calls accuracy of raw
reads shrinks to 20.02% because a larger number of false positive indels are called com-
pared to the filtered calls. Indel call accuracy from the FMLRC reads decreases to 73.23%
while indels called from the Ratatosk reads decline only to 90.80% accuracy. Variant call-
ing performed on the subsampled data sets in Additional file 1, indicates that only as low
as 20x ONT and 30x Illumina coverages are required to maintain similar performance as
with full coverage.
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Table 4 Small variant calls accuracy (in %) for the ONT reads from the Ashkenazim trio in the high
confidence regions. Best results are highlighted

SNPs Indels

Precision Recall F1 Precision Recall F1

(a) Variants with quality scores below a threshold automatically computed by rtg-tools are filtered out
HG002 Raw 98.87 97.93 98.25 81.83 39.26 53.06

FMLRC 96.42 96.31 96.37 89.96 80.55 85.00
Ratatosk 97.84 99.10 98.47 92.10 89.19 90.62

HG003 Raw 99.16 98.85 99.00 84.00 47.62 60.78
FMLRC 97.73 97.56 97.64 92.78 85.38 88.93
Ratatosk 98.94 99.42 99.18 94.04 92.14 93.08

HG004 Raw 99.19 98.73 98.96 83.67 45.50 58.94
FMLRC 97.22 97.44 97.33 90.11 84.52 87.23
Ratatosk 98.56 99.46 99.01 92.65 91.38 92.01

(b) All variants with the FILTER field set to PASS in the VCF files are used
HG002 Raw 85.32 99.69 91.94 11.60 72.96 20.02

FMLRC 78.08 99.57 87.52 60.20 93.47 73.23
Ratatosk 90.22 99.82 94.78 86.07 96.09 90.80

HG003 Raw 95.15 99.74 97.39 15.44 77.19 25.73
FMLRC 86.73 99.58 92.72 69.99 93.26 79.97
Ratatosk 95.94 99.80 97.83 88.38 95.83 91.95

HG004 Raw 93.34 99.80 96.47 14.83 75.98 24.81
FMLRC 84.08 99.68 91.21 66.87 94.60 78.35
Ratatosk 93.05 99.87 96.34 87.77 96.69 92.02

No variant truth set is available for the Icelandic trios so Mendelian inheritance con-
cordance was measured by rtg-tools instead, as shown in Table 5. Overall, small variants
calls from Ratatosk reads are the most consistent with the calls from each parents and
both parents across most trios.

Assembly

The raw and Ratatosk corrected ONT reads of HG002 were assembled using Flye 2.8.1
[17]. We compared the Flye assemblies to a recent assembly made from PacBio HiFi
reads with HiCanu [43, 44] and the reference assembly Ash1 v1.7 [45, 46] made from Illu-
mina, ONT, and PacBio HiFi reads assembled with MaSuRCA [47]. The Flye and HiCanu
assemblies were post-process with purge_dups [48] to exclude allelic contigs from the
assemblies. All assemblies were evaluated with QUAST 5.0.2 [49] andMerqury [50]. Mis-
assemblies reported by QUAST were filtered to exclude errors in known SVs [51] and
segmental duplication sites as well as centromeric, telomeric, and gap regions using a
script from HELEN [52]. The quality value represents a log-scaled probability of error for

Table 5Mendelian concordance (in %) of small variants called on the ONT reads of 4 children from
Icelandic trios with respect to the variant calls from their father (F), mother (M), and both parents
(F+M). All variants with the FILTER field set to PASS in the VCF files are used by rtg-tools. Best
results are highlighted

Raw FMLRC Ratatosk

F M F+M F M F+M F M F+M

I1 99.24 99.28 95.86 99.18 99.21 97.11 99.42 99.42 98.06

I2 99.28 99.22 96.22 99.24 99.22 97.33 99.45 99.44 97.82

I3 99.31 99.33 96.14 99.05 99.13 96.91 98.86 98.25 96.05

I4 99.19 99.38 96.76 99.19 99.33 97.33 99.46 99.50 98.28
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the consensus basecalls while the k-mer completeness measures the proportion of k-mers
shared between the assembly and an accurate SRS data set from the same individual.
As shown in Table 6, the Flye assembly of the Ratatosk reads is competitive with

other high quality LRS assemblies. In particular, the Ratatosk/Flye assembly displays a
similar k-mer completeness, contig N50, number of contigs and number of misassem-
blies as the HiFi/HiCanu assembly. However, the Ratatosk/Flye assembly has the largest
NA50 and the lowest rates of mismatches and indels while the HiFi/HiCanu assembly
shows the best quality value due to the high accuracy of HiFi reads. While all assemblies
have a similar k-mer completeness, the Ash1 reference assembly has the best reference
genome GRCh38 coverage. However, 1.96% of the Ash1 assembly is derived from the
reference genome GRCh38. Overall, these results demonstrate that the correction per-
formed by Ratatosk is suited for producing highly contiguous assemblies of quality with
very few errors. A natural extension of this work is haplotype-aware assembly [53] and
variant calling from highly contiguous haplotigs [54].

Conclusion
We present Ratatosk, a hybrid error correction tool for noisy genomic long reads
designed for accurate variant calling and assembly. Ratatosk uses short and long reads to
color paths in a compacted de Bruijn graph in order to highlight existing paths for the
correction. The graph is also annotated with candidate SNPs to disentangle small varia-
tions between haplotypes. An inexact anchoring procedure is employed to improve the
correction in highly erroneous regions of the long reads. Finally, an optional reference-
guided preprocessing of the input data is proposed to improve the error rate and scale
Ratatosk to a large number of compute nodes. We demonstrate on 5 human genome
trios that Ratatosk decreases the error rate 6-fold on average compared to the raw
reads with a median error rate as low as 0.22%. SNPs calls on Ratatosk corrected reads
are nearly 99% accurate and indel calls accuracy is up to 37% higher compared to
the raw reads. Furthermore, variants calls obtained from 4 corrected trios are highly
concordant. Finally, we show that Ratatosk corrected data enable highly contiguous
assemblies with fewer errors compared to other assemblies made from accurate long
reads. Future work includes running time improvements, phasing and population based
correction.

Table 6 HG002 assembly statistics for the Flye and HiCanu assemblies as well as the Ash1 reference
assembly. Misassemblies are filtered to exclude errors in known SVs and segmental duplication sites
as well as centromeric, telomeric, and gap regions. All metrics are computed by QUAST except k-mer
completeness and quality value which are computed by Merqury. Best results are highlighted

ONT Flye ONT+Ratatosk Flye PacBio HiFi HiCanu Ash1

Reference coverage (%) 94.90 95.85 96.71 98.50

k-mer completeness (%) 95.79 97.27 97.45 97.67

Quality value 33.97 47.90 55.17 41.341

N50 (Mbp) 37.98 45.05 44.67 34.30

NA50 (Mbp) 20.83 25.46 19.78 16.48

# contigs 972 430 422 2,412

# misassemblies 68 75 84 188

# mismatches / 100 kbp 121.71 112.66 178.36 161.09

# indels / 100 kbp 109.67 26.66 26.84 27.00
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Methods
The “Definitions” section details the concepts and data structures that will be used
throughout this paper. The “Graph construction and preprocessing” section describes
how the main index is built and preprocessed for correction. The “First correction pass”
and “Second correction pass” sections overview the methods used during the first and
second correction passes, respectively.

Definitions

A string s is a sequence of symbols drawn from an alphabetA. The length of s is denoted
by |s|. A substring of s is a string in s with a start position i, a length l and is denoted
by s(i, l). Let A be the DNA alphabet A = {A,C,G,T} for which (A,T) and (C,G) are
complementing pairs. The reverse-complemented string s is the reverse sequence of com-
plemented symbols in s. The canonical string ŝ is the lexicographically smallest of s and
its reverse-complement s. A de Bruijn graph (dBG) is a bi-directed graph G = (V ,E) in
which each vertex v ∈ V represents a k-mer and its reverse-complement. Only the canon-
ical k-mer of each vertex is stored in G. A directed edge e ∈ E from vertex v to vertex v′

representing k-mers x and x′, respectively, exists if and only if x(2, k − 1) = x′(1, k − 1).
Each edge e is labeled with the orientation of the k-mers x and x′ they connect:

{
x, x′},{

x, x′
}
,
{
x, x′} or

{
x, x′

}
. Each k-mer x has |A| possible successors x(2, k − 1) � a and |A|

possible predecessors a � x(1, k − 1) in G with a ∈ A and � as the concatenation oper-
ator. The number of k-mers in G is denoted |G|. A path in the graph is a sequence of
connected vertices P = (v1, . . . , vm). Path P is said to be non-branching if it is composed
of vertices having an in- and out-degree of one with exception of the head vertex v1
which can have more than one incoming edge and the tail vertex vm which can have
more than one outgoing edge. A non-branching path is maximal if it cannot be extended
in the graph without branching. A compacted de Bruijn graph (cdBG) merges all maxi-
mal non-branching paths P from the dBG into single vertices, called unitigs, representing
substrings of length |P| + k − 1. A simplified dBG and its compacted representation are
illustrated in Fig. 2a and b. A colored de Bruijn graph is a graph G = (V ,E,C) in which
(V ,E) is a dBG and C is a set of colors such that each vertex v ∈ V maps to a subset of C.
We extend the definition of a cdBG to a compacted and colored de Bruijn Graph (ccdBG)
where (V ,E) is a cDBG, so the vertices represent unitigs, and each k-mer of a unitig maps
to a subset of C.

Graph construction and preprocessing

Ratatosk takes as input a set S of paired SRS reads and a set L of LRS reads. A cdBG is
built from S to correct the reads in L using two correction passes as shown in Fig. 3.

Fig. 2 A de Bruijn graph in a and its compacted counterpart in b using 3-mers. For simplicity, the de Bruijn
graph is directed and reverse-complements are not considered
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Fig. 3 Ratatosk performs two passes of correction, each using a different k-mer size for the graph construction
and a different type of reads for the graph coloring. LRS reads are shown in blue and SRS reads in green

Graph construction

Using different k-mer lengths in the graph built from S has been shown to improve the
correction of L [28–30]: A short k-mer is ideal for finding matches between LRS reads
and the graph while unitigs built with long k-mers have a better contiguity. In order to
combine the advantages of short and long k-mers, Ratatosk uses two k-mer lengths k1
and k2 with k2 ≥ 2k1.
First, a cdBG G2 is built with the long k2-mers of S using the Bifrost graph engine [55].

By default, all k2-mers occurring exactly once in S are assumed to contain a sequencing
error and are discarded from the graph construction. Subsequently, a cdBG G1 is built
from the short k1-mers of the unitigs in G2. Graph G1 is used for the first correction pass
while graph G2 is later used in the second correction pass (Fig. 3, the “Second correction
pass” section).

Graph coloring

Graph G1 is turned into a ccdBG by coloring its unitigs with the read pairs from S with
which they share at least one k1-mer, as shown in Fig. 4. Coloring unitigs with read pairs
is similar to partitions in the guided de Bruijn graph [56] and links in the Linked de Bruijn
graph [57]. Given |S|

2 SRS read pairs in input, each pair is identified by a color identifier
ranging from 1 to |S|

2 . Graph coloring is known to bememory consuming [55] and caution
must be exercised to not overflow the memory for input high coverage data sets. For this
purpose, Ratatosk enables a memory efficient graph coloring by using two techniques and
a graph pruning based on k-mer coverage described in Additional file 1.
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Fig. 4 Graph coloring with three colors. Each color represents a read sharing at least one k-mer with a unitig

Candidate SNP annotation

While most de novo detection methods for SNPs, indels and SVs are based on the anal-
ysis of graph bubbles [58–61], Ratatosk uses instead a simple but fast string matching
method to annotate vertices in the graph containing one or more candidate SNPs. For
each k1-mer x in unitigs, the graph is queried for all k1-mers having a Hamming distance
of 1 with x. Let x = u(p, k1) and x′ = u′ (p′, k1

)
be k1-mers from unitigs u and u′, respec-

tively, that differ by exactly one substitution at position i < k1. Unitigs u and u′ are then
annotated at position p+ i and p′ + i, respectively, with a IUPAC symbol representing the
substitution. For example, symbol R would be assigned to position 3 in unitigs GCGATT
and GCA of Fig. 4 to represent an A/G substitution.

First correction pass

The following section describes how LRS reads are anchored to the ccdBG and the
methods used to correct non-anchored regions of the LRS reads.

Read anchoring

We define solid and weak k-mers similarly as defined in LoRDEC and introduce the
definition of near solid k-mers:

• Solid k-mer: exact length k substring match between a long read and a unitig from
the graph.

• Near solid k-mer: inexact length k substring match between a long read and a unitig
from the graph with one base substitution or indel.

• Weak k-mer: length k substring of a long read which is neither a solid k-mer nor a
near solid k-mer.

We define two types of regions in a long read:

• Solid region: a region of a long read composed only of solid k-mers.
• Non-solid region: a region of a long read composed of weak or near solid k-mers.

A solid or near solid k-mer is also called a match. A match between long read r at
position pr and unitig u at position pu is denoted m = 〈

pr , r, pu,u
〉
. A match m is unique

if it is the only match at position pr in r. A k-mer has at most one solid match in G1 but
can have multiple near solid matches in G1. Note that solid and non-solid regions can
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overlap by k−1 bases. All non-solid regions are surrounded by two solid regions with the
exception of non-solid regions at the start and end of LRS reads.

Delimiting non-solid regions

Each read r ∈ L is corrected independently, allowing multiple threads to correct
LRS reads in parallel. The graph is queried for each k1-mer of r, resulting in a list of solid
matchesMs and a list of near solid matchesMn, both sorted by ascending match position
pr in r. Only unique near solid matches (UNSM) are kept in Mn to prevent anchoring r
on a SNP or indel from an incorrect allele. Furthermore, a k1-mer which is both a solid
match and a near solid match is considered solid and its near solid matches are discarded
from Mn.
Non-solid regions of r are detected by finding all pairs of successive solid matches

ms,mt ∈ Ms for which psr �= ptr − 1 with the exception of non-solid regions at the extrem-
ities of r. The first match ms of the pair is referred to as the source match and the second
matchmt of the pair is referred to as the target match. The length of the non-solid region
to correct is then l = ptr − psr + k1. It includes r

(
psr , k1

)
which is the last solid k1-mer

from the source solid region and r(ptr , k1) which is the first solid k1-mer from the target
solid region as illustrated in Fig. 5. If a read starts with a non-solid region, that region
has no source match and hence starts on the first position of the read. Similarly, if a read
ends with a non-solid region, that region has no target match and hence ends on the last
position of the read.

Traversing the graph

In order to correct a non-solid region, Ratatosk attempts to extract one path in the graph
connecting unitig us of the source match to unitig ut of the target match. Since the length
l of the non-solid region to correct is known, we assume that the corrected path between
us and ut has minimum sequence length lmin = l

1+F bases andmaximum sequence length
lmax = l · (1 + F) bases where F is an upper-bound of the error rate in the long read (see
Additional file 1). Ratatosk uses two greedy techniques to guide the traversal in the graph
and prune the search space, as shown in Fig. 6.

Fig. 5 Example of a long read r anchored on a ccdBG. A section of r is shown at the bottom with two solid
regions (non-dashed boxes at the extremities) surrounding a non-solid region (dashed line box at the center).
The grey areas of the solid regions show the source and target matches between the long read and the
graph. The grey area of the non-solid region shows a near solid match. For simplicity, colors are not shown
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Fig. 6 In a, the union of colors is computed within the solid regions around the non-solid region to correct
and the USNMs. This union will partially guide the graph traversal, along with the sequence similarity of the
paths to the non-solid region. In b, a first subgraph (highlighted in red) of all paths starting at unitig us with
Pmax = 2 unitigs is explored for correction. The lower path is extended using the same method (shown in
green) and a path connecting to un is found

First, rather than exploring all paths between unitigs us and ut , Ratatosk only explores
paths traversing UNSMs in the non-solid region to correct. These matches provide
an anchoring in the non-solid regions as they are near exact k1-mer matches between
the graph and the read to correct. Hence, paths between us and ut which do not
traverse the UNSMs are pruned because they are not good candidates for the correc-
tion. Let mn be the near solid match from Mn with the smallest position pnr such that
psr + k1 ≤ pnr ≤ ptr − k1. Ratatosk first attempts to extract one path connecting unitig us
to unitig un ∈ mn with a BFS traversal that only explores paths with maximum sequence
length

(
pnr − psr + k1

) · (1 + F) bases. The extracted path is then extended from un to the
next UNSM in Mn. The process of extending the last unitig of a path to the next UNSM
inMn is repeated until there are no more UNSMs to consider inMn or no path extension
is possible. Finally, the graph traversal attempts to extend the path to the target unitig ut .
Note that in the absence of UNSM in the non-solid region to correct, all paths connecting
us and ut with minimum sequence length lmin and maximum sequence length lmax are
traversed.
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Second, even using UNSMs to prune the search space during traversal, the subgraph
between two unitigs un and un′ from UNSMs can be very large. This is particularly true
for LRS reads with a high error rate, resulting in long non-solid regions with few or no
UNSMs. In order to prune the search space between un and un′, a greedy graph traver-
sal is used to extract one path connecting the two unitigs. Unitig un is first extended by
visiting all paths of length Pmax vertices with a BFS traversal. Each traversed path is given
a probability sP of being the correct path to extend and only the path with the greatest
probability is extended. The path chosen for extension maximizes its sequence similarity
with the non-solid region to correct. Furthermore, as colors highlight paths in the graph
representing SRS reads, the path chosen for extension also maximizes its color similarity
with the surrounding solid regions. Hence, before correcting a non-solid region, Ratatosk
first computes the unionC of all colors setsCu from the solid matches and UNSMs within
an interval corresponding to the non-solid region start and end positions extended of
B bases on each side, i.e. ,

C =
⋃

u∈m
Cu,∀m ∈ Ms,Mn with psr − B ≤ pr ≤ ptr + B (1)

During the BFS traversal, a path probability sP is computed for each traversed path based
on the number of colors the path shares with C and the sequence similarity of the path to
the region to correct. Specifically, given a path P composed of Pmax unitigs and its color
set Cp = ∪

u∈PCu, the color matching probability of P is sc = |Cp∩C|
|C| and the sequence

matching probability sq is derived from the normalized edit distance of P to the non-
solid region to correct using an infix alignment computed by the edlib tool [62]. Both
probabilities are then conflated:

sP = sc · sq
sc · sq + (1 − sc) · (1 − sq)

(2)

The path with the greatest probability sP is extended by starting a new graph traversal
from its last unitig. The extension continues until unitig un′ is reached or no path can be
extracted as a result of a tip in the graph or extending over

(
pn′
r − pnr + k

)
· (1 + F) bases.

To enable a faster traversal, a local minimum number of colors TC is computed from the
surrounding solid regions and the unitigs of UNSMs. Each traversed unitig u of a path P
must be colored by at least TC colors of C such that:

TC = D · min
u∈m|Cu|,∀m ∈ Ms,Mn with psr − B ≤ pr ≤ ptr + B (3)

andD being a fixed lower bound factor (see Additional file 1). If the color set of a traversed
unitig has less than TC colors, its path is not explored any further nor it is considered for
extension.
A path extension connecting unitig uu to unitig uv might end prematurely for multiple

reasons: all possible extensions end on a tip of the graph because of incomplete SRS data
or insufficient color coverage in the traversed subgraph. In such a case, the extended
path is completed with a gap corresponding to the non-solid subsequence to correct and
the path extension resumes from unitig uv. An example of path extension with a gap is
illustrated in Fig. 7.
Finally, non-solid regions located on long read extremities have only one surrounding

solid region. The non-solid region at the start of a long read is corrected using a backward
graph traversal from ut and the one at the end of a long read is corrected with a forward
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Fig. 7 Example of a gap in a path. Path P is first extended until unitig un , then a gap corresponding to a
subsequence from the uncorrected read is inserted in P and the extension of P resumes from unitig un′

graph traversal from us. Because each of these graph traversals has no target match, any
path with length l base such that lmin ≤ l ≤ lmax is returned as a candidate for correction.

Forward and backward corrections

A candidate path for correction is incomplete if it contains a gap or if it does not connect
to the unitig of a target match. If no path or only an incomplete path has been extracted,
Ratatosk corrects the non-solid region backward, i.e., from the target match to the source
match. Indeed, the forward graph traversal might have stopped prematurely for multi-
ple reasons, one of which being that the color guidance led incorrectly to a tip in the
graph. However, traversing the graph backward might lead to a different path. If both for-
ward and backward paths are incomplete, Ratatosk merges both paths by aligning their
sequences to the non-solid region using the Needleman–Wunsch algorithm (global align-
ment). The merged sequence is created by traversing the alignment of both forward and
backward corrections at the same time and selecting subsequences in each corrections. In
the case of candidate paths starting or ending a long read, all candidate paths are aligned
to the non-solid region using a local alignment that does not penalize gaps at the end. The
candidate path with the smallest edit distance is chosen for the correction.

Candidate SNP correction

Heuristics used to traverse the graph as presented in the “Traversing the graph” section
might incorrectly extend a path and lead to the erroneous correction of a non-solid region
using SNPs from incorrect alleles. Once a path has been selected to correct a non-solid
region, all the positions in this path matching candidate SNPs and their IUPAC symbols
are known from the unitigs. Let s be the non-solid region and s′ its corrected counterpart.
Sequence s′ is aligned to s and a CIGAR string is generated from the alignment. Ratatosk
iterates over matching positions of the CIGAR string (symbolM) denotedm = 〈

s, p, s′, p′〉.
Note that m indicates that base s(p, 1) is either a match or a mismatch with base s′

(
p′, 1

)

but is not part of an insertion or deletion in the alignment. Let Msnp be the set of all
matches m = 〈

s, p, s′, p′〉 for which s′
(
p′, 1

)
has an assigned IUPAC symbol in the graph

indicating a candidate SNP. For each match m = 〈
s, p, s′, p′ ∈ Msnp

〉
, base b = s(p, 1) is

compared to the IUPAC symbol associated to b′ = s′
(
p′, 1

)
. If b is one of the possible

bases represented by the IUPAC symbol, then b′ is corrected with b. This method enables
a conservative correction of SNPs in the corrected non-solid regions by using only bases
from the uncorrected non-solid regions which are compatible with the candidate SNPs
from the graph. However, this method only corrects SNPs in the matching or mismatch-
ing regions of the alignment and discards candidate SNPs located within insertions of s′.
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To overcome this issue, a matchm ∈ Msnp is said strongly compatible if s′
(
p′, 1

) = s(p, 1)
prior to SNP correction. A strongly compatible SNP indicates that Ratatosk is confident
in the subpath that was selected to correct the region around that candidate SNP. As the
strongly compatible SNP at position p′ is from unitig u′ ∈ m, all bases which are candidate
SNPs in u′ are used to correct SNPs in the inserted positions of the alignment (symbol I
in the CIGAR string) around position p′.

Second correction pass

In the first correction pass, Ratatosk corrected each LRS read independently from the
other reads in L. In a second correction pass, Ratatosk takes advantage of the set of
corrected LRS reads as a whole. Indeed, reads corrected during the first pass might be suf-
ficiently error-free to correct the remaining non-solid regions. Furthermore, LRS reads
are at least an order of magnitude longer than SRS reads and do not need to be paired,
hence offering more information to which paths to traverse in the graph. In the follow-
ing, we describe the second correction pass, highlighting the differences with the first
correction pass.
Let L′ be the set of corrected LRS reads obtained from the first correction

pass. First, graph G2 built from the k2-mers of S (the “Graph construction”
section) is loaded in memory. Compared to G1, unitigs of G2 have a better contiguity
and some of the highly branching subgraphs of G1 corresponding to repetitive regions
are untangled in G2. Graph coloring and candidate SNP annotation using L′ are per-
formed as described in the “Graph coloring” and “Candidate SNP annotation” sections,
respectively. Because the reads in L′ are long and still erroneous in the uncorrected
regions, they are not expected to be similar and Ratatosk does not perform similar reads
removal.
Reads of L′ are then anchored on the graph and non-solid regions are corrected as

described in the “First correction pass” section. Parameter B in Eq. 1 corresponds to the
size of a buffer around a non-solid region where the union of unitig colors from solid and
UNSMs is computed. In the first correction pass, solid regions are expected to be short
and sparse because of the high error rate of LRS reads. Hence, Bwas large enough to span
two SRS reads from the same pair and the gap that intersperse them in order to capture
as many colors as possible. Corrected LRS reads have no gap and are much longer than
SRS reads, so it is expected that solid regions are much more abundant and contiguous
than during the first correction pass. Distance B is therefore much smaller for the second
pass (see Additional file 1) which saves computation time. Furthermore, solid regions are
required to be at least B > k2 bases long in the second pass to increase the contiguity of
solid regions and provide a better anchoring on the graph.
During path selection described in the “Traversing the graph” section, BFS traversals

explored all paths of Pmax unitigs and a path probability was assigned to each one of them
before selecting one path for extension. Traversing a fixed number of unitigs avoids a com-
binatorial growth of the number of explored paths, especially in complex subgraphs with
short cycles that are characteristic of STRs. However, as unitigs can have any length ≥ k1,
it has the disadvantage that the path probability might be computed for paths of Pmax
unitigs with different sequence lengths. Instead, the graph traversal in the second
correction pass explores paths with a minimum sequence length of B bases rather than a
minimum number of unitigs.
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Once a path P has at least B bases in its sequence, its color matching probability sc and
sequence matching probability sq are computed and conflated into a path probability sP.
The construction of color set C used in the color matching probability sc is shown in
Eq. 4 and only uses the intersection of colors from each side of the non-solid region, i.e. ,
Cs and Ct , rather than the union (Eq. 1) in order to remove erroneous colors which do
not belong to this region:

C = Cs
⋃

Ct

Cs =
⋂

u∈m
Cu,∀m ∈ Ms with psr′ − B ≤ pr′ ≤ psr′

Ct =
⋂

u∈m
Cu,∀m ∈ Ms with ptr′ ≤ pr′ ≤ ptr′ + B

(4)

Reference-guided correction

While Ratatosk is a reference-free method, we propose an optional reference-guided pre-
processing of the reads which is beneficial in several ways. This pipeline first maps the
input SRS and LRS reads to a reference genome and then clusters the reads into bins
corresponding to 5Mbp long regions of the reference. Each bin of SRS and LRS reads is
subsequently corrected independently. The benefit is three-fold:

• Graphs G1 and G2 built from an SRS bin are much smaller and contiguous than for
the entire SRS data set, hence reducing the probability of selecting an incorrect path
during graph traversal.

• Computation time is reduced as the search space in each bin is much smaller than for
the entire SRS data set.

• Each bin is corrected independently so the workload can be distributed in parallel
over many nodes of an HPC.

However, a reference-guided preprocessing also introduces some challenges. First, it is
common that reference genomes contain gaps. For example, the human genome reference
GRCh38.p13 has about 161Mbp of N bases. Second, SRS reads overlapping large inser-
tion events are expected to be unmapped. Finally, SRS reads with poor mapping qualities
map ambiguously to the reference and might be incorrectly binned.
To overcome these issues, Ratatosk detects reads from the unmapped SRS reads set Su

which are likely missing in each bin. Let Sb and Lb be the subset of SRS and LRS reads
of a bin b, respectively. To begin with, cdBGs GS

b and GL
b are built from the k1-mers

occurring twice or more in Sb and Lb, respectively. Once GL
b is built, its unitigs are anno-

tated with their mean k1-mer coverage. At first,GL
b contains many more k1-mers thanGS

b
because many erroneous k1-mers from Lb occur twice or more in the bin. To prune these
erroneous k1-mers from GL

b , unitigs having low coverages are removed iteratively until∣∣GL
b
∣∣ ≈ ∣∣GS

b
∣∣. Subsequently, all unmapped reads r ∈ Su are queried: If r contains many

k1-mers occurring in GL
b but not in GS

b , r is suspected to be missing from the bin and is
added to Sb.
We outline the binning and correction pipeline proposed, as illustrated in Fig. 8, in

the following. First, all reads from S and L are binned into regions of 5Mbp according
to their mapping to the reference genome. Low mapping quality (< 30) and unmapped
LRS reads are set aside in a bin for ambiguous long reads. Once all reads have been binned,
a local correction is performed in parallel for all non-ambiguous bins and the output
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Fig. 8 Reference-guided preprocessing of the input SRS reads (green) and LRS reads (blue). Reads are first
binned and each bin is corrected independently. Unmapped or low mapping quality LRS reads are corrected
using all SRS reads and all corrected LRS bins. Red arrows indicate input read sets which assist with the
correction but are not corrected themselves

corrected LRS reads are merged. Note that each bin correction has access to Su (top red
arrows in Fig. 8) to retrieve the missing unmapped SRS reads from the bin. Finally, the
bin of ambiguous LRS reads is corrected globally using S . This correction is assisted by
the previously corrected non-ambiguous LRS reads to enhance graph coloring during the
second round of correction (bottom red arrow in Fig. 8).
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