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Abstract

Background: Long-read sequencing of full-length cDNAs enables the detection of
structures of aberrant splicing isoforms in cancer cells. These isoforms are
occasionally translated, presented by HLA molecules, and recognized as neoantigens.
This study used a long-read sequencer (MinION) to construct a comprehensive
catalog of aberrant splicing isoforms in non-small-cell lung cancers, by which novel
isoforms and potential neoantigens are identified.

Results: Full-length cDNA sequencing is performed using 22 cell lines, and a total of
2021 novel splicing isoforms are identified. The protein expression of some of these
isoforms is then validated by proteome analysis. Ablations of a nonsense-mediated
mRNA decay (NMD) factor, UPF1, and a splicing factor, SF3B1, are found to increase
the proportion of aberrant transcripts. NetMHC evaluation of the binding affinities to
each type of HLA molecule reveals that some of the isoforms potentially generate
neoantigen candidates. We also identify aberrant splicing isoforms in seven non-
small-cell lung cancer specimens. An enzyme-linked immune absorbent spot assay
indicates that approximately half the peptide candidates have the potential to
activate T cell responses through their interaction with HLA molecules. Finally, we
estimate the number of isoforms in The Cancer Genome Atlas (TCGA) datasets by
referring to the constructed catalog and found that disruption of NMD factors is
significantly correlated with the number of splicing isoforms found in the TCGA-Lung
Adenocarcinoma data collection.

Conclusions: Our results indicate that long-read sequencing of full-length cDNAs is
essential for the precise identification of aberrant transcript structures in cancer cells.
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Background
In cancer cells, transcript regulations are disrupted at various steps, resulting in the ac-

cumulation of substantial numbers of aberrant transcripts [1]. In normal cells, these ab-

errant transcripts, even if transcribed, are subsequently degraded by the mRNA quality

control system in a process known as nonsense-mediated mRNA decay (NMD). NMD

factors scan each transcript and subject mRNA-harboring premature translation ter-

mination codons (PTCs) to degradation [2]. However, the NMD regulation mechanism

is also frequently disrupted in cancer cells [3–5], allowing the aberrant transcripts to

escape degradation. Therefore, accumulations of aberrant transcripts are frequently ob-

served in cancer cells. For example, UPF1, a highly conserved core NMD factor, is fre-

quently mutated in pancreatic adenosquamous carcinoma [4]. Disruption of the UPF1

function causes the accumulation of aberrant transcripts in the tumor [6, 7]. The rela-

tionship between NMD and tumor immunity has been reported [8] and considered to

be a therapeutic target for cancers in some conditions [9].

Aberrations are also caused by impaired gene expression of splicing-related factors

[10]. Indeed, the relationship between the aberrations and disrupted splicing regulation

has been reported for various cancer types. U2AF1 and SF3B1, the core components of

spliceosomes, are frequently mutated in cases of myelodysplastic syndrome (MDS) [11,

12] and several types of solid tumor [13, 14]. BUD31 was reported as an MYC-synthetic

lethal gene in mammary epithelial cells and was found to disrupt processing in precur-

sor mRNA [15]. Further, some specific aberrant isoforms directly contribute to tumori-

genesis and malignancy [16]. Thus, splicing factors have also been identified as

therapeutic targets for cancer [17, 18].

Recently, it has been suggested that putative functionally neutral aberrant transcripts

have the potential to serve as novel molecular markers for immune check point inhibi-

tor (ICI) therapy, which uses ICIs such as nivolumab, pembrolizumab, and atezolizu-

mab. For current ICI treatment, the tumor mutational burden (TMB), which is

determined by the total number of nonsynonymous point mutations, has been fre-

quently considered to be a biomarker to identify patients with expected effects [19–21].

These nonsynonymous mutations alter amino acids and produce novel cancer-specific

neoantigens, some of which are subsequently expressed in the HLA molecule and rec-

ognized by T cell receptors, which activates cytotoxic T cells to kill the cancer cells.

[22, 23] The assumption is that the higher the expression of neoantigens in cancer cells,

the greater the potential for the cancer cell to be attacked by immune cells following

ICI treatment.

Currently, massive parallel sequencing techniques, such as whole-exome sequencing

and panel sequencing, have been employed to measure TMB in various conditions. Sev-

eral studies have reported that the TMB correlates with the efficacy of ICI treatment,

especially in melanoma patients [24]. However, it has been gradually revealed that the

TMB may not be a perfect marker of ICIs in many types of cancer [25–27]. Recent

studies have reported that transcripts that harbor frameshift mutations and aberrant

splicing patterns also produce antigenic peptides under the presumed condition of dis-

rupted NMD [28–31]. Under such circumstances, the aberrant transcripts may have no

less important potential as biomarkers for ICIs.

To consider all the effects of mutations and aberrant isoforms, proper peptide se-

quences from full-length transcript structures are needed. However, it is difficult to
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precisely identify the complete structure and aberration patterns of a transcript from

the fragmented reads produced by short-read RNA sequencing technology. Recently,

long-read sequencing technology has enabled us to obtain full-length transcriptome

profiles. Particularly, MinION, a nanopore-type sequencer from Oxford Nanopore

Technologies, can produce full-length cDNA data, covering the entire transcript at suf-

ficient sequencing depth. Recent papers have also shown that the long-read sequencing

achieves approximately 90% accuracy [32], which is sufficient for the precise extraction

of splicing patterns.

In this study, in combination with the long-read and short-read sequencing technolo-

gies, we attempt to construct a catalog of full-length transcript structures in a series of

lung cancer cells. Based on this catalog, we examined whether the deduced full-length

protein sequences with mutations and/or frameshift aberrations can serve as predictive

markers for ICIs in addition to TMB. For this purpose, we started with a cell line panel

of lung adenocarcinoma as the model. We then applied the developed method to clin-

ical samples from Japanese non-small cell lung cancer (NSCLC) patients.

Results
Cataloging full-length transcript isoforms of lung cancer cell lines

MinION full-length DNA sequencing was performed for 22 NSCLC cell lines (Add-

itional file 1: Table S1), in which characteristic genomic driver mutation patterns and

transcriptomic profiles of lung cancers were collectively represented. The schematic

representation of the analytical pipeline constructed for this study is shown in

Additional file 12: Fig. S1A. An average of 3.5 million reads at an average read length

of 1.6 kb were generated from each cell line (Additional file 12: Figs. S1B, S2 and

Additional file 2: Table S2). The obtained full-length cDNA reads were mapped to the

human genome by Minimap2 as previously reported [33]. To overcome the inaccuracy

of MinION sequencing [32], low-quality and ambiguously aligned reads were filtered

out (Additional file 2: Table S2). All splicing junctions were confirmed using the Illu-

mina short-read RNA sequencing dataset of the same cell lines. The obtained splicing

patterns were further compared to the current transcript models of the Reference Se-

quence (RefSeq) database (see “Materials and methods” for further details on the pro-

cedure for the identification and characterization of splicing junctions). Among the

reads mapped to RefSeq transcripts, more than 50% of reads successfully covered full-

length transcripts of up to 8000 genes (Additional file 12: Fig. S1C). For each gene, the

number of reads per million (RPM) of MinION and transcripts per million (TPM) cal-

culated from short-read sequencing were strongly correlated (Additional file 12: Fig.

S1D and Fig. S3).

We identified the complete exon-intron structures of transcript isoforms and classi-

fied them into the following types: unannotated exon, exon skipping, exon shuffling, in-

tron retention, alternative first exon, alternative last exon, alternative 5′ splice site, and

alternative 3′ splice site (Fig. 1a and Additional file 3: Table S3). As a result, we identi-

fied 3474 non-RefSeq isoforms from all the cell lines and named them putative “aber-

rant splicing isoforms,” hereinafter referred to as “isoforms.” Of these, 2021 isoforms

harbored at least one splicing event that was not represented in the RefSeq or the

GENCODE datasets (Fig. 1b). We also identified novel combinations of these splicing
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Fig. 1 Identification of aberrant splicing isoforms in cell lines. a Classification of aberrant splicing events.
Pink boxes represent constitutively spliced exons. Red and dotted-line boxes represent alternatively spliced
exons. b The number of isoforms classified for each splicing event shown in a. Light gray bars indicate
isoforms represented in GENCODE and other-colored bars indicate unannotated isoforms. c The proportion
of splicing events in unannotated isoforms. The color key is shown in a. d The number of splicing isoforms
and the proportion of each splicing event in cell lines. The color key is shown in a. e The full-length
structure of the splicing isoform of CTSV in ABC-1. Some MinION reads show a combination pattern of
intron retention, alternative last exon, and alternative 5′ splice site. f The full-length structure of splicing
isoforms of HNRNPA2B1 in PC-3. Some MinION reads indicate extensive alternative splicing within its 3′ UTR.
g The number of isoform patterns per gene in the cell lines. h A comparison of the number of isoforms in
VMRC-LCD derived from our pipeline and from the TALON pipeline (99% of the isoforms we detected were
included in the TALON results)
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events on a single full-length transcript, which would have been difficult to detect via

the fragmented reads of short-read sequencing data. Collectively, these patterns

accounted for 13.6% of the unannotated isoforms (Fig. 1c).

The patterns and numbers for each of the NSCLC cell lines represent characteristic

aberrant splicing events (Fig. 1d and Additional file 3: Table S3). The number of iso-

forms ranged from 323 to 725. The compositions of isoform patterns differed among

the cell lines. For example, intron retention and alternative last exon composed the lar-

gest proportions of isoforms in RERF-LC-Ad2, while unannotated exon and exon skip-

ping were characteristics in H1819. These results suggest the diversity of aberrant

splicing isoform patterns even in cell lines. An example of a novel complicated combin-

ation isoform of splicing events is shown in Fig. 1e. CTSV in ABC-1 cells expressed

two isoforms, one of which included the combination of alternative last exon and in-

tron retention that occurred between exons 2 and 3.

Genes with multiple isoforms were also observed. For example, HNRNPA2B1 showed

four isoforms that contained alternative splicing events within 3′ UTR of PC-3 cells

(Fig. 1f). This extensive accumulation of splicing events in the 3′ UTR of HNRNPA2B1

was also observed in a previous study that performed a UPF1 knockdown experiment

in HeLa cells [34]. We identified 663 genes with multiple isoforms in total (Fig. 1g).

These results reflect the great potential of long-read sequencing to comprehensively de-

tect novel and complicated isoforms.

To validate of our computational pipeline, we compared the isoform patterns in

VMRC-LCD cells detected by our pipeline and by the TALON software. The

TALON software, which was launched by the ENCODE project [35], identifies

novel isoforms using long-read sequencing datasets. As a result, 708 of 725

isoforms (98%) detected in our pipeline were also detected in TALON, and 676 of

them (93%) successfully passed TALON’s filtering conditions (Fig. 1h). The 17

isoforms that could not be detected by TALON were supported by reads whose

junctions were altered by the long-read error correction tool TranscriptClean [36],

a part pf TALON pipeline. Although 21,745 isoforms were detected only in

TALON, 99% were covered by reads that were filtered out by our previous filtering

conditions (attributed to ambiguous alignments or low expression levels, data not

shown). Our filtering conditions aimed to avoid false-positive detection and to keep

higher expressed transcripts, which can be translated as neoantigens; therefore, our

pipeline extracted more conservative isoform patterns than the isoform patterns ex-

tracted by the TALON pipeline.

To confirm the effect of repetitive element loci, which can lead to misalignment of

the reads, we evaluated 5508 splice junctions detected in 22 cell lines. We extracted ±

50 bp regions around the splice sites and searched repetitive regions using RepeatMas-

ker. As a result, 94.9% of these splicing sites did not overlap repetitive sequences (Add-

itional File 12: Fig. S1E). This result suggests that novel splice sites were not

particularly associated with the repetitive sequences.

Some gene-fusion events were reported to function as driver genes contributing

to tumorigenicity in many cancers [37, 38]. To address this issue, we firstly manu-

ally inspected the presence or absence of the previously reported frequently “fused”

genes. We successfully identified the EML4-ALK fusion transcript, as a driver fu-

sion event, in H2228 (Additional file 12: Figs. S4A). In addition, we identified the

Oka et al. Genome Biology            (2021) 22:9 Page 5 of 30



ERGIC2-CHRNA6 transcript in H1437 (Additional file 12: Figs. S4B). This is a fu-

sion event causing the frameshift, invoking a drastic amino acid change, thus may

serve as an important source of a novel neoantigen. For these fusions, it is true

that our previous studies have suggested their presences by the short-read sequen-

cing [1, 39]. However, we firstly identified their complete transcript forms by using

the MinION long reads in this study. Particularly interestingly for the ERGIC2-

CHRNA6 fusion gene, we identified four alternative splice isoforms, consisting of

an unannotated exon and an alternative last exon.

Characterization of the detected isoforms

We further characterized the novel isoforms and found that 45% of the isoforms were

shared among the cell lines, although 1894 isoforms were uniquely detected in each cell

line (Fig. 2a). A total of 1354 genes harbored aberrant splicing isoforms in two or more

cell lines (Fig. 2b and Additional file 12: Fig. S5).

To characterize isoform-enriched genes, we compared lengths, the number of exons,

and expression levels of genes with/without isoforms. Genes harboring at least one iso-

form showed significantly shorter lengths and consisted of a smaller number of exons

compared to those of genes without isoforms (Additional file 12: Figs. S6, S7, and S9);

however, expression levels were found to be significantly higher in genes that harbored

isoforms (Additional file 12: Figs. S8 and S9). We also found that isoform variety was

associated with gene length and expression level. Several cell lines showed significant

differences in gene length and expression level between genes with one isoform and

those with two or more isoforms. For example, in VMRC-LCD, isoform-enriched genes

tend to have shorter length and higher expression than genes with only one isoform

(Fig. 2c–e).

To examine the relation between the expression levels and the detection prob-

ability, we subsampled sequencing reads of VMRC-LCD cells to 1/2, 1/5, 1/10,

1/50, and 1/100 (n = 100) and calculated the detection probability for each iso-

form. We divided these isoforms into three classes, High, Middle, and Low, for

each of the three categories as below: (1) TPM of the gene (total gene expres-

sion), which was calculated from the short-read RNA sequencing data (Add-

itional file 12 Fig. S9B); (2) isoform-reads ratio (isoform frequency within the

gene): [the number of MinION reads covering the isoform pattern] / [the total

number of MinION reads assigned to the gene] (Additional file 12 Fig. S9C); (3)

isoform-reads (absolute count of the isoform): the number of MinION reads

covering the isoform pattern (Additional file 12 Fig. S9D). As a result, we found

that three classes of the isoforms showed similar detection probability in the

categories of “TPM” and “isoform-reads ratio,” suggesting that the isoform de-

tection was somewhat independent of these categories. On the other hand, “iso-

form-reads” showed significant differences among the classes for the detection

probabilities, suggesting the low level isoforms were, indeed, difficult to be de-

tected at low sequencing depth. However, at the sequencing depth conducted in

this study, each case seems to have reached to a plateau to some extent. Also

note that, on average, 360,000 mRNA molecules are estimated to exist in a sin-

gle lung cancer cell [40]. Thus, one copy of mRNA per cell corresponds to 3
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Fig. 2 Characterization of isoform-enriched genes in cell lines. a The number of cell lines that expressed
isoforms in common. b The number of cell lines that expressed genes with isoforms in common. c–e The
distribution of lengths (c), exons (d), and expression level (e) of genes with isoforms in VMRC-LCD. Isoform-
enriched genes showed tendencies of shorter length, fewer exons, and higher expression. **P < 0.01
and ***P < 0.001 (Kruskal–Wallis test and Dunn–Bonferroni’s post hoc test). f The results of the gene ontology
enrichment analysis for genes with at least one isoform among cell lines. g Comparisons of the distribution of
the number of isoforms in cell lines with or without the driver mutations EGFR, KRAS, and NRAS. *P < 0.05
(Welch’s t-test). h Comparison of the number of isoforms and TMB for each cell line. No significant correlation
was observed (r = 0.30)
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TPM. The minimum TPM of the gene for which at least one isoform was de-

tected was 6 TPM in VMRC-LCD. These facts suggest that we were able to

identify the isoforms to the very low expression level within a cell.

We also conducted a gene ontology analysis using genes with at least one iso-

form and found that RNA-binding proteins involved in the translation pathway

were significantly enriched (Fig. 2f and Additional file 12: Fig. S10). This result is

consistent with a previous study of clinical specimens of MDS [41]. The study re-

ported that aberrant splicing events in patients with mutations of SF3B1, U2AF1,

and SRSF2 were enriched in mRNA metabolic processes, including translation [41].

Expressions of some of the ribosomal protein genes and splicing-related genes are

generally regulated via alternative splicing events and thus may be vulnerable to al-

ternative splicing [42, 43]. In general, ribosomal protein genes were found to be

shorter and to have higher expression levels than other genes [44]. This feature

may contribute to the tendency of isoform-enriched genes to have the shorter gene

length and higher expression levels (Fig. 2c–e) that were observed in this study.

No significant association was found between the number of aberrant splicing

isoforms and EGFR, KRAS, or NRAS driver mutations in the cell lines (Fig. 2g).

Significantly, we found that the number of aberrant splicing isoforms showed

poor correlation with the genomic TMB, which is a source of neoantigens and

one of the known markers for ICI efficacy (r = 0.30, Fig. 2h). The aberrant spli-

cing isoforms detected in this study also have the potential to be translated and

presented as neoantigens; therefore, we expect further analysis of these splicing

patterns to provide an independent measure to define cancer cells in addition to

TMB.

Biological validation of the aberrant splicing isoforms

Next, we investigated the potential causes of aberrant splicing isoforms in cancer cells.

As we were able to analyze the isoforms as a form of full-length transcript, we counted

aberrant isoforms containing PTCs, which would have been targeted by NMD. We

found that ~ 30% of the aberrant isoforms contained PTCs (Fig. 3a and Additional file

3: Table S3). Indeed, when we examined the case of VMRC-LCD, which showed the

highest number of aberrant splicing isoforms, we found this cell line harbored a splice

site mutation in UPF1, which is a key NMD factor (Additional file 12: Fig. S11A). To

more directly validate the possible cause of the accumulation of aberrant isoforms, we

conducted an siRNA knockdown experiment for UPF1 in A549 (Fig. 3b). We similarly

analyzed the obtained full-length cDNA MinION reads in combination with the Illu-

mina short-read RNA sequencing data. As expected, the proportion of NMD-targeted

isoforms was significantly increased by the UPF1 knockdown (Fig. 3c). For example, an

intron-retained isoform in the SURF2 gene was detected only in the UPF1 knockdown

cells despite this isoform containing a PTC and being potentially targeted by NMD

(Fig. 3d). To validate the expression of this isoform specifically in UPF1-depleted cells,

we perform RT-PCR with primers flanking the isoform-specific junction (Add-

itional file 12: Fig. S11C). The alternative 5′ splice site in exon 2 of SURF2 showed a

two- to three-fold increase in response to the UPF1 knockdown experiment (Fig. 3e).
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Fig. 3 (See legend on next page.)
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This increase was also detected as size differences among PCR products (Add-

itional file 12: Fig. S11D).

In the previous study, four p-UPF1-binding motifs (CCUGGGG, CCUGGGA, CCUG-

GAA, and CCUGAGA) were reported [45]. We searched them in the 3′UTR of the iso-

forms that were detected only in the UPF1 knockdown in A549 cells. As a result, 34 of

the 91 isoforms included the p-UPF1 motifs. We also evaluated the motif enrichment

in UPF1-depleted A549 cells using the MEME Suite [46] and found that possible GC-

rich motifs were enriched in the 3′UTR of isoforms. Further studies would be necessary

to confirm whether they can be actually bound by p-UPF1 (Additional file 12: Fig.

S12A).

SF3B1 is a well-known splicing factor that is mutated in several diseases and causes

the increase of aberrant splicing isoforms [47, 48]. We assessed the effect of impair-

ment of splicing by SF3B1 knockdown to investigate whether aberrations of splicing

factors influence isoform generation (Additional file 12: Fig. S10B). We found a signifi-

cant increase in the proportion of exon skipping, which was concordant with the previ-

ous report using an SF3B1 inhibitor [47] (Fig. 3f). For example, exons 3 and 6 of

PSMD7 were altered in the knockdown condition (Fig. 3g). The expressions of exon-

skipping isoforms of PSMD7 were significantly increased, and RefSeq types were de-

creased conversely in SF3B1-depleted A549 cells (Fig. 3h, Additional file 12: Fig. S10E

and S10F). To confirm consensus sequence in the proximal regions of the splice sites,

we collected exon-skipping isoforms detected only in the SF3B1 knockdown in A549

cells. For this analysis, we considered ± 10 bp regions surrounding regions of novel spli-

cing junctions and skipped exons. Although the canonical splice consensus sequences

of GT/AG were found in almost all the isoforms similar to the total RefSeq transcripts,

no other distinct feature related to the SF3B1 knockdown event was detected (Add-

itional file 12: Figs. S12C and D). In addition, the genes with exon-skipping isoforms

showed significant enrichment in the translation and ubiquitin-proteasome pathways

(Additional file 12: Fig. S13). Similar enrichment of ubiquitin-proteasome pathways has

been previously reported in a SF3B1 knockdown experiment using myeloid cell lines

[49]. Interruption of these factors, therefore, may alter at least some of the aberrant

splicing isoforms and may contribute to their accumulation in lung cancer cells.

(See figure on previous page.)
Fig. 3 Causes of aberrant transcripts in cancer cells. a The number of PTC-containing splicing isoforms in
each cell line are shown in gray. Arrows represent somatic mutations of NMD factors in each cell line. b
The relative UPF1 and SF3B1 mRNA levels normalized to GAPDH levels in A549 cells at 72 h post-transfection
(analyzed by RT-PCR). Error bars represent the standard error of the mean (SEM). c The proportion of PTC-
containing isoforms after knockdown experiments in A549. The UPF1-depleted sample showed a significant
increase in the proportion of PTC-containing isoforms. ***P < 0.001 (Fisher’s exact test). d The full-length
structure of splicing isoforms of SURF2 in UPF1-depleted A549. Some MinION reads showed an alternative 5′
splice site in exon 2 containing a PTC. e The relative SURF2 mRNA levels of the RefSeq type and isoform in
UPF1-depleted A549 cells. Each expression level was detected with primers flanking exon 2 and was
normalized with a common region level shown in Additional file 12: Fig. S10C. Error bars represent the SEM.
f The proportion of exon-skipping isoforms after knockdown experiments in A549. SF3B1- and UPF1-
depleted samples showed significant increases in the proportion of exon-skipping isoforms. ***P < 0.001,
*P < 0.05 (Fisher’s exact test). g The full-length structure of splicing isoforms of PSMD7 in SF3B1-depleted
A549. Some MinION reads showed a combination of skipping events at exons 3 and 6. h The relative
PSMD7 mRNA levels of the RefSeq type and isoform in SF3B1-depleted A549 cells. Each expression level was
detected with primers flanking exons 3 and 6, then was normalized with a common region level (shown in
Additional file 12: Fig. S10E). Error bars represent the SEM
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K700E is one of the most common hotspot mutations located in the HEAT-repeat

domain of SF3B1 [48, 50]. As shown in a previous study, the K700E hotspot mutation

downregulates intron retention and upregulates alternative 3′ splice site events [51].

Except for exon skipping, the most affected splicing was intron retention (Add-

itional file 12: Fig. S12B). This result was as expected, since it is considered to be a

gain-of-function variant [50] and our knockdown assay of SF3B1 should produce the

opposite results. Alternative 3′ splice site events were not significantly affected, which

was not always consistent with the previous results, suggesting other cellular contexts

also play a role (Additional file 12: Fig. S12B).

Aberrant transcripts as potential templates for producing neoantigens

Accumulated aberrant splicing isoforms in tumors have been reported as possible

sources of neoantigens [29–31]. To investigate whether the detected isoforms can be

represented as neoantigens, we attempted to evaluate the potential antigenicity of the

aberrant peptides encoded by these aberrant splicing isoforms. For this purpose, we es-

timated the binding affinity between peptides and HLA molecules using the standard

method of NetMHC (Additional file 12: Fig. S14A). We conducted whole-genome se-

quencing (WGS) as well as sequence-based HLA typing for each cell line. Four-digit

HLA types and the presence or absence of somatic mutations for each cell line was

confidently determined (Additional file 12: Fig. S14B, Additional file 1: Table S1 and

Additional file 4: Table S4). For the peptide side, based on the somatic mutations de-

tected by the WGS, we deduced the altered peptide sequences of the isoforms by con-

sidering full-length transcript structures for all possible 9-mer peptides. Indeed, the

aberrant splicing isoforms frequently and drastically altered the protein sequences by

causing frameshift or early termination of translation (Additional file 12: Fig. S14C).

Since these peptides were not represented in RefSeq or GENCODE databases, they may

be peptides that have never been exposed to immune cells under normal conditions in

healthy individuals. These neoantigens accounted for the greatest proportion of total

potential neoantigens in most of the cell lines (Fig. 4a) Aberrant splicing isoforms and

frameshift mutations contributed to the production of more of these novel peptides

than missense or in-frame mutations (Fig. 4b). As expected, the number of neoantigens

that were predicted as the “strong binder” by NetMHC was also greater both in splicing

isoforms and frameshift mutations (Fig. 4c). In a comparison of the highest NetMHC

scores of peptides from each isoform, the peptides that were derived from those aber-

rant isoforms showed higher score distribution than peptides of the missense and in-

frame mutations that would be usually identified using the TMB detection approach

(Fig. 4d).

To experimentally validate whether the aberrant isoforms were translated into pro-

teins, we employed a shotgun proteomics approach using liquid chromatography

coupled with tandem mass spectrometry (LC/MS/MS) for 11 NSCLC cell lines (A427,

A549, H1650, H2228, II-18, PC-9, RERF-LC-Ad1, RERF-LC-Ad2, RERF-LC-KJ, RERF-

LC-MS, and VMRC-LCD). For peptide identification using the Mascot search engine,

we customized peptide sequence database based on MinION data for each cell line. As

previously noted [52], short-read RNA sequencing showed a higher coverage of genes

than LC/MS/MS proteomics due to its sequencing capacity (Fig. 4e and
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Fig. 4 Neoantigens derived from each isoform or mutation type in cell lines. a The number of neoantigen
candidates in each cell line. b The distribution of the number of novel peptides derived from tumor-specific
regions of each isoform or mutation type. c The distribution of the number of neoantigen candidates from
b. d The distribution of the maximum NetMHC score for each isoform or mutation type. ***P < 0.001 and
**P < 0.01 (Kruskal–Wallis test and Dunn–Bonferroni’s post hoc test). e A correlation between the gene
expression levels calculated by short-read RNA sequencing (TPM) and the number of peptides detected by
proteome analysis for each gene in RERF-LC-Ad1 (r = 0.52). Both values + 1 were log2-transformed. Red
points represent the KRT7 gene with the isoform whose peptides were detected by proteome, the green
area shows 0-TPM genes, and the blue area shows 0-peptide genes. f A comparison of genes detected by
RNA sequencing (TPM≥ 1) and by proteome (≥ 1 peptide) in RERF-LC-Ad1. Genes (4021/4064, 99%)
detected by proteome were covered by RNA sequencing. g, h The full-length structure of the splicing
isoform of KRT7 (g) and the magnified inset of the alternative 5′ splice site region (h). The detected peptide
of “DRLEEGCLK” was derived from exon 4 in the aberrant isoform

Oka et al. Genome Biology            (2021) 22:9 Page 12 of 30



Additional file 12: Fig. S15). The number of peptides per gene detected by LC/MS/MS

proteomics and TPM calculated by RNA sequencing data correlated (r = 0.52, Fig. 4e)

and most of the genes detected by LC/MS/MS proteomics were also covered by RNA

sequencing (Fig. 4f). We successfully detected 7 peptides translated from aberrant spli-

cing isoform-specific regions (Table 1 and Additional file 12: Fig. S16). For example,

the peptide derived from the isoform with alternative 5′ splicing in exon 3 of KRT7

existed in RERF-LC-Ad1 (Fig. 4g). This isoform was not found in the GENCODE data-

base, but the isoform-specific junction was observed in ENST00000547613 (KRT7-204

in Additional file 12: Fig. S17) which was considered as processed transcript without an

open reading frame. The expression was also confirmed in H1437, H2126, and II-18 by

MinION (Table 1). Furthermore, this isoform had the potential to produce several

neoantigens predicted by NetMHC (Additional file 5: Table S5). These results suggest

that at least some aberrant splicing isoforms were truly translated into peptides and

could play a role in producing neoantigens in cancer.

Aberrant splicing isoforms in lung cancer specimens

To examine whether aberrant splicing isoforms also exist in cancer cells in vivo, we

next analyzed clinical lung cancer specimens (Additional file 6: Table S6). We applied

the same analytical scheme used for the cell line analysis of clinical samples (Add-

itional file 7: Table S7 and Additional file 8: S8). Using this method, we were again able

to identify aberrant splicing isoforms in each patient (Fig. 5a). We selected the isoforms

that were expressed at least twofold higher in the tumor samples than in the non-

cancer counterparts (Fig. 5b) and identified 982 cancer-enriched splicing isoforms

Table 1 Peptide sequences derived from isoforms detected by proteome analysis

Detected
peptide

Peptide-
detected cell
lines (proteome
analysis)

Isoform-detected cell lines
(MinION)

Gene
symbol

Type GENCODE

NLPSNPLE
FNPDVLK

H1650, II-18,
RERF-LC-KJ

A427, ABC-1, H1437, H1648,
H1650, H1819, H2126, H2228,
H2347, II-18, PC-9, RERF-LC-KJ,
VMRC-LCD

ESYT2 Unannotated
exon

ENST00000275418

NLPSNPLE
FNPDVLKK

H1650, II-18, PC-
9

A427, ABC-1, H1437, H1648,
H1650, H1819, H2126, H2228,
H2347, II-18, PC-9, RERF-LC-KJ,
VMRC-LCD

ESYT2 Unannotated
exon

ENST00000275418

TLGEIDAQ
HIQGVQET
ATDPR

H1650 H1650, H2228, H2347, II-18,
RERF-LC-OK

FAM126A Unannotated
exon

ENST00000409923

DRLEEG
CLK

RERF-LC-Ad1 H1437, H2126, II-18, RERF-LC-Ad1 KRT7 Alternative 5′
splice site

novel

EVPMVV
VPPVGAK

A549, H2228 A549, H1437, H1819, H2228,
H322

RRBP1 Alternative
last exon

ENST00000398782

HLDA
HTAAHS
QSPR

RERF-LC-Ad2 H322, RERF-LC-Ad2 SUN1 Combination
(shuffling,
unannotated
exon)

Novel

RHLDAH
TAAHSQ
SPR

RERF-LC-Ad2 H322, RERF-LC-Ad2 SUN1 Combination
(shuffling,
unannotated
exon)

Novel
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Fig. 5 Tumor-specific isoforms and neoantigen candidates in clinical samples. a The number of splicing
isoforms and the proportion of each splicing event (upper panel), and genes included in the NMD complex
(lower panel) for each specimen. Cases 3 and 4 show more isoforms and harbor damaging mutations in
NMD factors. b A comparison between the isoform expressions of non-tumor and tumor tissues in case 2.
Red points represent tumor-specific isoforms (TPM in tumor tissue ≥ 10 and a fold change of TPM≥ 2). The
green area shows isoforms with 0 TPM in normal tissue and the blue area shows fold change of TPM≥ 2
isoforms. c Correlation between the number of isoforms and the TMB for each specimen. No significant
correlation was observed (r = − 0.46). d The full-length structure of splicing isoforms of SMOC2 in case 3.
Unannotated exons were detected between exon 7 and exon 8. e The number of neoantigen candidates in
each specimen. f The distribution of the maximum NetMHC score for each isoform or mutation type. *P <
0.05 (Kruskal–Wallis test and Dunn–Bonferroni’s post hoc test)
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Fig. 6 Biological validation of the antigenicity of neoantigen candidates in clinical samples. a Experimental
scheme of immunization. HLA-A24 Tg mice were vaccinated with neoantigen candidate peptides three
times (at days 0, 7, and 14). One week after the last immunization, mice were euthanized and isolated
splenocytes were used for IFN-γ ELISpot assay. b The results of the ELISpot assay. c Statistical analysis of the
results of ELISpot. Dark gray and light gray bars indicate independent mice experiments. *P < 0.05 (Student’s
t test) and signal-to-noise ratio > 5. Error bars represent the SEM
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among all the clinical samples. Of these, 448 isoforms were not represented in ei-

ther RefSeq or GENCODE (Additional file 12: Fig. S18A). There were no signifi-

cant correlations between the number of aberrant isoforms and the TMB (Fig. 5c).

As an example of the detected isoforms, novel alternative first exons in SMOC2

are represented in Fig. 5d and were expressed only in the tumor of case 3. Similar

to the results from the cell line analysis, we could identify several unique

Table 2 Peptide sequences tested using ELISpot assay

Peptide
sequence

gene NetMHC
score

Isoform-detected
samples

Isoform/
frameshift

GENCODE isoform type

TYMA
GSEAW

NDST1 0.0327 Case 6 Frameshift Frameshift Frameshift

VWPTAW
ASL

NDST1 0.1467 Case 6 Frameshift Frameshift Frameshift

RYCRGV
MLL

ARL8B 0.2162 Case 4 Frameshift Frameshift Frameshift

SFTDISIYL SENP2 0.3557 Case 5 Frameshift Frameshift Frameshift

KFSPEPSQ
F

CEAC
AM6

0.0565 Case 4 Isoform Novel Alternative
last exon

SFPLVFLF
F

CEAC
AM6

0.0857 Case 4 Isoform Novel Alternative
last exon

NYFNLG
MVV

ERO1A 0.4236 Case 2 Isoform Novel Alternative
last exon

TYTTIKINF HOOK2 0.0185 ABC-1, H1437, H1648,
H1650, H2126, H322, II-18,
PC-3, PC-9, RERF-LC-Ad1,
RERF-LC-Ad2, RERF-LC-KJ,
RERF-LC-OK, Case 6, Case 7,
VMRC-LCD

Isoform ENST00000589134 Alternative
last exon

AWPKHL
DLM

MCEE 0.3848 ABC-1, H2126, H322, II-18,
PC-3, RERF-LC-KJ, Case 1,
Case 7

Isoform Novel Alternative 5′
splice site

VYFTSD
FKV

PKM 0.2639 ABC-1, H1299, H1437,
H1648, H2126, H2347,
H322, II-18, RERF-LC-Ad1,
RERF-LC-Ad2, Case 4,
VMRC-LCD

Isoform Novel Alternative
last exon

SFLGFSILL PKM 0.3814 ABC-1, H1299, H1437,
H1648, H2126, H2347,
H322, II-18, RERF-LC-Ad1,
RERF-LC-Ad2, Case 4,
VMRC-LCD

Isoform Novel Alternative
last exon

QYSLAT
AFL

SCGB3A2 0.2403 Case 6 Isoform Novel Unannotated
exon

SYFETIAA
L

SELENBP1 0.0848 Case1, Case 4, Case 6 Isoform ENST00000493560 Intron
retention

RFQPHG
DGW

TMC4 0.2835 H322, RERF-LC-Ad2, Case 1 Isoform Novel Alternative
last exon

TWLTSG
PHL

TMEM45A 0.2974 Case4, Case7 Isoform Novel Combination
(unannotated
exons)

FLLPAPFP
F

TUFM 0.3991 A427, ABC-1, H1299, RERF-
LC-Ad1, RERF-LC-Ad2, Case
1, VMRC-LCD

Isoform Novel Intron
retention

KYEEVA
QLY

UQCRB 0.447 H1819, Case 2, Case 3 Isoform ENST00000519322 Alternative
last exon
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combination patterns of independent splicing events, and these patterns accounted

for 14.5% of these unannotated isoforms (Additional file 12: Fig. S18B). Potential

NMD-targeted isoforms that remained in the cancer cells were also identified,

which suggests that the NMD mechanism is disrupted in the corresponding can-

cers (Additional file 12: Fig. S18C). Notably, in cases 3 and 4, the largest number

of potential NMD-targeted isoforms were identified to harbor either frameshift or

nonsense mutations in the key NMD factors, UPF3B and SMG8 (Fig. 5a).

Similar to the method used for analysis of the cell line datasets, NetMHC ana-

lysis was conducted to identify peptides that could be potential neoantigens. For

this, we identified somatic mutations and HLA types in each patient using the gen-

omic sequencing data of the clinical samples (Additional file 12: Fig. S18D, Add-

itional file 6: Table S6 and Additional file 9: Table S9). We detected 101–255

neoantigen candidates per case (Fig. 5e). We found that peptides derived from the

splicing isoforms showed higher distribution scores compared to the peptides de-

rived from missense mutations (Fig. 5f). Indeed, they accounted for the majority of

total neoantigen candidate peptides in most samples (Fig. 5e). These results sup-

port the fact that aberrant splicing events in clinical samples can be detected by

MinION and have great potential to produce more neoantigen candidate peptides

than do missense mutations.

Fig. 7 Clinical relevance of our aberrant isoform catalogs in TCGA. a–d The number of isoforms calculated from
the TCGA short-read RNA sequencing dataset (left panel), somatic mutation patterns of genes included in the
NMD factors (right panel), and heatmaps showing the GSVA enrichment scores of the gene sets of the gene
ontology biological process in lung adenocarcinoma (a), lung squamous cell carcinoma (b), colon
adenocarcinoma (c), and pancreatic adenocarcinoma (d). Blue bars in the left panels represent specimens with
damaging mutations in the NMD factors and green lines represent the median of isoforms. The P value was
calculated using the one-tailed Mann–Whitney U test for testing the positive association of NMD factor mutations
with a higher number of isoforms
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Evaluation of the potential neoantigens derived from aberrant splicing isoforms in

clinical samples

To evaluate the antigenicity of peptides that were identified from the aberrant splicing

isoforms and frameshift mutations, we immunized HLA-A24 transgenic mice with the

candidate peptides according to the scheme shown in Fig. 6a. We chose 17 candidate

peptides based on the NetMHC scores for HLA-A:24:02 (Table 2 and Additional file 12:

Fig. S19). We confirmed that the peptide sequences showed no similarity with those of

human or mouse protein databases by BLAST-P, but non-cancer-specific regions,

which were similar to those of RefSeq transcripts, were represented in both human and

mouse. One week after the last vaccination, we isolated splenocytes from mice and sub-

jected the isolates to an enzyme-linked immune absorbent spot (ELISpot) assay. By

doing so, we attempted to detect neoantigen-specific spleen lymphocyte responses. The

ELISpot results showed that 8 out of 17 peptides induced significantly high IFN-γ pro-

duction (n = 2) compared to the PBS and adjuvant-alone groups (Fig. 6b, c). These re-

sults demonstrate that peptides derived from splicing isoforms and frameshift

mutations could activate the T cell response through interaction with HLAs.

Re-evaluation of the TCGA short-read sequencing data from the viewpoint of potential

neoantigen candidates

Finally, to further utilize our aberrant isoform catalog based on MinION sequencing

data, we re-evaluated the whole-exome sequencing and short-read RNA sequencing

datasets of 436 lung adenocarcinoma (LUAD) and 46 matched normal samples regis-

tered in The Cancer Genome Atlas (TCGA). We mapped their RNA sequencing data

to our isoform catalog. We then counted the reads which were aligned to the isoform-

specific regions according to our catalog (Additional file 12: Fig. S20A, see detail in

“Materials and methods”). To eliminate the isoforms in non-tumor lung tissues, we also

constructed an isoform panel of normal samples. We selected isoforms that expressed

at least two-fold higher in tumor samples compared with those in the panel of normal.

In addition, we removed isoforms whose junctions were expressed in the lung tissues

samples stored in the Genotype-Tissue Expression (GTEx) project database [53] and

counted the number of isoforms for each specimen (see “Materials and methods” for

additional details on the procedure). Among the novel splice junctions, which were not

represented in either RefSeq or GENCODE, only 12.5% were represented in the lung

specimens of GTEx, and 52% were novel junctions even in all tissues taken together in

GTEx (Additional file 12: Fig. S20B). As a result, we found 13 specimens harboring

damaging mutations on the NMD factors of frameshift, nonsense, and splice site muta-

tions (Fig. 7a, upper right panel), and these cases showed significantly higher distribu-

tions of the number of isoform distributions compared to the others (Fig. 7a, upper left

panel). We further expanded this analytical scheme to other cancer types, such as lung

squamous cell carcinoma (LUSC), colon adenocarcinoma (COAD), and pancreatic

adenocarcinoma (PAAD). We determined that some of the isoforms were commonly

expressed (Fig. 7b–d). The number of isoforms did not correlate with the TMB or can-

cer stage in any types of cancer (Additional file 12: Figs. S20C and D). We also found

that the damaging profile of NMD factors was not always consistent with the number

of isoforms, depending on cancer subtypes (Fig. 7b–d). NMD efficiency differed
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depending on the PTC position in isoforms [54] and tissues [55]. Moreover, the impact

of NMD in individual cancer types has been partly indicated by recent studies [56, 57].

By expanding our analysis scheme to a pan-cancer approach, these aberrant splicing

isoforms would facilitate a new field to search neoantigen targets and provide insights

into NMD in a variety of cancer types.

For more detailed characterizations of each sample, we applied a gene set variation

analysis (GSVA) [58] and calculated the correlation between the number of isoforms

and the GSVA enrichment scores. Notably, we found positive correlations between the

number of isoforms and the splicing-related signature scores in all cancer types

(Fig. 7a–d, lower panel). These results suggest that the upregulation of splicing-related

genes may contribute to the increase in the number of aberrant isoforms. Otherwise,

there was no significant relationship between the number of isoforms and the specific

immune cell signatures for each cancer type (Additional file 12: Figs. S20E) [59, 60].

Since the clinical specimens we analyzed did not have any immune status information,

such as the proportion of tumor-infiltrating lymphocytes or the ICI response, further

study is necessary to conclude the effects of these aberrant isoforms on immune system

response to tumors.

Discussion
In this study, we examined the full-length transcript structures of aberrant splicing iso-

forms by using long-read sequencing data. We constructed a catalog of such isoforms

for the NSCLCs. To address the inaccurate sequencing of MinION, we used short-read

sequencing data to identify the exact splicing junctions. This approach revealed a sub-

stantial number of novel aberrant transcripts and some of these isoforms were detected

as peptides by the proteome analysis. Furthermore, an ELISpot assay demonstrated that

at least some of these isoforms, having strong antigenicity, had the potential of becom-

ing neoantigens. These results clearly show the capability of long-read sequencing to

search for novel isoforms and neoantigens that may be overlooked by the current

short-read sequencing approaches.

In the clinical setting, the TMB, which is determined by the total number of nonsy-

nonymous mutations, is considered to be a predictor of the effectiveness of immuno-

therapy for cancer. However, the prediction accuracy is not sufficient for many types of

cancer. The current study shows that aberrant splicing isoform and frameshift muta-

tions have a significant potential for producing a larger number of neoantigens. Mul-

tiple previous reports suggest that this potential may have an influence on shaping the

tumor immune landscape of the patients in addition to the genomic TMB [28–30].

When transcriptomes cannot be directly examined in a given clinical setting, the NMD

status and other splicing factors may provide important information. Indeed, previous

reports have indicated that the number of frameshift mutations that are predicted not

to trigger NMD is higher in responders to immunotherapy and that factor combined

with the TMB improves the accuracy of prediction for immunotherapy responders [61].

We mainly focused on NSCLC in this study. However, we were able to identify potential

aberrant isoforms for other types of cancer by considering our full-length catalog. Obvi-

ously, when as more cancer types are added to the catalog, the sensitivity and selectivity

of the detection will further increase. Also note that, since GTEx is based on short-read

RNA sequencing datasets, the representation of the junctions in GTEx do not necessarily

Oka et al. Genome Biology            (2021) 22:9 Page 19 of 30



indicate the existence of the isoform in their full-length forms in normal tissues. To calcu-

late and extract truly cancer-specific isoform patterns, we should generate a larger dataset

of long-read isoforms for normal tissues in future study. Further in-depth analyses would

elucidate the possibility that these transcriptomic features provide a complementary indi-

cator for predicting the effectiveness of immunotherapy, in addition to genomic features.

Conclusions
n this study, we indicated that the long-read sequencing of full-length cDNAs in

tumors is essential to precisely identify aberrant transcript structures that have

been overlooked by short-read sequencing. The aberrant splicing isoforms showed

a significant potential for producing a larger number of neoantigens in tumors.

These novel transcriptomic features obtained from the long-read sequencing

would be helpful for estimating the tumor immune landscapes, which could po-

tentially improve the accuracy of prediction of responders to immunotherapy

when used in combination with the current indicators that only use genomic

mutations.

Material and methods
Cell lines

Twenty two lung adenocarcinoma cell lines (A427, A549, ABC-1, H1299, H1437,

H1648, H1650, H1819, H2126, H2228, H2347, H322, II-18, PC-14, PC-3, PC-9, RERF-

LC-Ad1, RERF-LC-Ad2, RERF-LC-MS, RERF-LC-OK, RERF-LC-KJ, and VMRC-LCD,

Additional file 1: Table S1) were cultured as previously described [1]. Raw sequence

data were obtained from the DNA Data Bank of Japan (DDBJ) with accession numbers

DRA001859 (whole-genome sequencing), DRA001846 (short-read RNA sequencing)

[1], and DRA008295 (long-read RNA sequencing of RERF-LC-KJ, RERF-LC-MS, and

PC-9, 62].

Clinical samples

Clinical samples were obtained with the appropriate informed consent from the Na-

tional Cancer Center Japan. Surgical specimens from seven patients were pathologically

checked. All seven patients were previously diagnosed with primary lung cancer, in-

cluding four cases of lung squamous cell carcinomas and three cases of lung adenocar-

cinomas. Fresh frozen surgical specimens were used to extract DNA and RNA as

described below.

Full-length RNA sequencing using MinION

Total RNA was isolated and purified using an RNeasy Mini Kit (Qiagen). Library prep-

aration for full-length transcriptome analysis using MinION (Oxford Nanopore Tech-

nologies) was performed as previously described [32]. In brief, 1.5 μg of the full-length-

cDNA library was applied for 1D2 sequencing according to the manufacturer’s protocol

with some modifications using the 1D2 sequencing kit, SQK-LSK308, and R9.5 flow

cell, FLO-MIN107 (Oxford Nanopore Technologies).
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Conventional short-read RNA sequencing

For A549 used for knockdown assays, total RNA was isolated and purified using an

RNeasy Mini Kit (Qiagen). Libraries were prepared using a TruSeq Stranded mRNA

kit. Then RNA sequencing was conducted using the NovaSeq 6000 platform (Illumina)

with 150 bp paired-end reads according to the manufacturer’s protocol.

For clinical samples, total RNA was extracted by an RNeasy Mini Kit and re-purified

with an RNeasy MinElute Cleanup Kit (Qiagen) for some cases. Library preparation

was performed using a TruSeq Stranded mRNA kit. Sequencing was performed using

the HiSeq 2500 platform (Illumina) with 75 bp paired-end reads.

Conventional short-read DNA sequencing

Genomic DNA was extracted using a DNeasy Blood & Tissue kit (Qiagen). In total,

150 ng aliquots of genomic DNA from paired cancerous and non-cancerous sam-

ples were fragmented by a Covaris-E220 evolution instrument (Covaris) to provide

DNA fragments with a base pair peak at 150 to 200 bp. The DNA fragments were

end-repaired and ligated with paired-end adaptors (SureSelect XT Library Prep Kit,

Agilent Technologies). The resulting DNA library was purified using an Agencourt

AMPure XP Reagent (Beckman Coulter) and amplified by PCR (9 cycles). In total,

750 ng aliquots of the adaptor-ligated libraries were hybridized for 16–24 h at 65 °C

with biotinylated oligo RNA bait, SureSelect Human All Exon V5 (Agilent Tech-

nologies). The hybridized genomic DNA was subjected to ten cycles of PCR re-

amplification. Following the manufacturer’s standard protocols, the whole-exome

DNA library was sequenced on the Illumina HiSeq 2500 platform (Illumina) with

75 bp paired-end reads.

Analysis of long-read sequencing data

Base calling of the FAST5 data from MinION was performed using Albacore 2.2.7

and Guppy v3.3.0, then was converted into FASTQ files. Only 1D reads for the fol-

lowing analyses [62]. Reads were aligned to the reference human genome, GRCh38,

using Minimap2 (v2.2.14) [33]. To eliminate pseudogene mapping and low-quality

reads, aligned reads that met any of the following five conditions were discarded:

(1) secondary or supplementary aligned flag; (2) mapping identity, defined as the

percentage of matched bases to the sum of matched bases, substitutions, insertions,

and deletions, lower than 0.8; (3) unmapped length of reads within splice junctions

longer than 10 bp; (4) exon length shorter than 25 bp; (5) overlapping the pseudo-

gene region of GENCODE v27. After these filtering steps, introns shorter than 50

bp were corrected as exons and extracted reads were assigned to a single gene for

further analysis. Seqtk (https://github.com/lh3/seqtk) was used for subsampling

reads in the fastq file.

Analysis of short-read RNA sequencing

Raw reads were trimmed with quality < 20 and adaptor filtered using Trimmomatic

(v0.32) [63]. rRNA sequences were removed by Bowtie2 (v 2.3.5.1) [64]. Cleaned up

reads were aligned to the reference human genome, GRCh38, and transcripts per mil-

lion (TPM) was calculated using STAR (v2.6.1d) [65] and RSEM (v1.3.1) [66].
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Analysis of short-read DNA sequencing

Raw reads with a quality < 20 were trimmed and adaptor filtered using Trimmo-

matic (v0.32) then were aligned to reference human genome GRCh38 by BWA-

mem (v0.7.17) [67]. We preprocessed the BAM files including marking duplicates

and base recalibration steps using GATK (v4.0.10.1) [68]. For variant calling, we

used HaplotypeCaller (GATK) for lung cancer cell line samples and filtered low

confidence SNPs using the recommended hard filter settings: QD < 2.0, FS > 60.0,

MQ < 40.0, MQRankSum − 12.5, ReadPosRankSum < − 8.0. The following filters

were also applied to remove low confidence indels: QD < 2.0, FS > 200.0, ReadPos-

RankSum < − 20.0. Mutect2 and FilterMutectCalls were used for clinical samples

with default parameters and tumor-normal mode. We filtered out variants with al-

lele depth < 5 and annotated them with Variant Effect Predictor (VEP, v95) [69].

To extract somatic variants from cell line sample data, we eliminated variants that

were registered in dbSNP (v151) unless they were also present at least 5 samples

in COSMIC (v90) from the dataset.

Computational analysis for detection of transcript isoforms from MinION data

We compared all junctions in MinION reads with the RefSeq transcripts (downloaded

from the UCSC Genome Browser and Blat software (University of California Santa

Cruz) in July 2017, allowing for a margin of 20 bp gaps. Then, we removed reads that

were identical to RefSeq model transcripts (Type A) or were truncations of RefSeq

model transcripts (Type B).

Type A satisfied three conditions: (1) It ignored the difference between the five-prime

and the three-prime end; (2) it had the same number of exons; (3) the junctions from

the read were the same as those of the RefSeq model transcripts.

Type B included the remaining reads that satisfied the following three conditions: (1)

The putative truncated end of the read was located within the exon; (2) the number of

exons was different; (3) the junctions from the read were the same as those of the

RefSeq model transcripts.

Considering the inaccuracy of MinION reads, we compared the remaining reads

to the short-read sequencing junction sets detected in at least five reads using

STAR. If a junction in the read was not identical to that of an RefSeq transcript

and was confirmed with short-read sequencing, we classified the read as an iso-

form. We compared all junctions in the MinION reads with those of the RefSeq

transcripts.

After merging isoforms that contained the same junctions, the isoforms were filtered

using the following condition: MinION read coverage ≥ total MinION reads/100,000.

Then, we create a GTF file of the isoforms and RefSeq transcripts for each sample.

Using the GTF file as a reference, we mapped the reads from the short-read sequencing

and calculated the TPM. To remove low confidence isoforms, the following filters were

applied: TPM ≥ 10, isoform read counts/total read counts assigned to the same gene >

10%. Finally, we classified isoforms by the following nine types: alternative 5′ splice site,

alternative 3′ splice site, alternative first exon, alternative last exon, intron retention,

exon shuffling, intron retention, unannotated exon, and the corresponding combination

patterns (Fig. 1a).
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Detection of transcript isoforms using TALON

After aligning the reads, TranscriptClean (v2.0.2) [36] was performed for error correc-

tion of the SAM file using the junction file that was obtained from the short-read RNA

sequencing by STAR. TALON (v5.0.0) [35] was executed using the parameter setting

--cov 0.5. We counted isoform patterns that harbored the same splice junctions ignor-

ing strand.

siRNA knockdown in A549

Reverse siRNA transfections were performed using Lipofectamine RNAiMAX

(Thermo Fisher Scientific) and siRNA sets (Additional file 10: Table S10). siRNA

for UPF1 was kindly provided by Dr. R. Onoguchi-Mizutani and Dr. N. Akimitsu

from The University of Tokyo [45]. We applied 75 pmol of siRNA for UPF1 knock-

down and mixed two different siRNAs (12.5 pmol each) for SF3B1. Lipofectamine

RNAiMAX (7.5 μl) and each siRNA were diluted in 400 μl of OptiMEM, then incu-

bated for 20 min at room temperature. We seeded 1.2 × 105 cells of A549 in

antibiotic-free DMEM into each well of a 6-well plate. After incubation, we added

400 μl of the RNAiMAX and siRNA mixture to each well. After 24 h, we replen-

ished the medium and re-added the RNAiMAX and siRNA mixture. Cells were

collected 48 h after the last transfection.

RT-PCR assay and bioanalyzer

Total RNA was isolated using an RNeasy Mini Kit (Qiagen), and cDNA synthesis was

performed using a SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing (Takara

Bio) as previously described [32]. RT-PCR was performed using Power SYBR Green

Master Mix (Thermo Fisher Scientific) and the LightCycler 96 system (Roche). The

data were normalized to the expression of GAPDH or common exonic regions of each

gene using the 2−ΔΔCt method. We quantified and compared each PCR product size

using a bioanalyzer (Agilent Technologies). Primers were designed using Primer3 Plus

[70] and are listed in Additional file 11: Table S11. The RT-PCR experiments were con-

ducted in triplicate.

Identification of repetitive elements in splice sites

RepeatMasker (v4.1.0) [71] was performed to detect repetitive elements with the “-spe-

cies human” option. We extracted ±50 bp regions around the splice sites and counted

sequences with > 80% to repetitive elements.

Motif enrichment analysis

To find splice site consensus motifs, we collected exon-skipping isoforms in SF3B1- de-

pleted A549 cells. We extracted ± 50 bp regions around the splice sites or skipping

exons and generated sequence logos using WebLogo (v2.8.2) [72]. Motif enrichment

analysis was performed by using MEME Suite (v5.1.1) [46] with the maximum width of

motifs set to ten. The sequences of 3′UTR in aberrant splicing isoforms in UPF1-de-

pleted A549 cells were extracted as the input for the analysis. 3′UTR sequences of all

RefSeq transcripts were used to generate the background model based on the hidden

Markov model.
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Computational analysis for the detection of antigenic peptides

All possible 9-mer peptides were computed considering the variants and isoform pat-

terns. We filtered out peptides listed in GENCODE v31 or RefSeq to extract cancer-

specific aberrant peptides. HLA class I loci (HLA-A, B, and C) were typed at four-digit

resolution using OptiType (v1.3.1) [73]. Binding affinities between peptides and HLA

alleles were predicted using NetMHCpan4.0 [74], and strong binders were defined as

having %rank < 0.5.

Materials for LC/MS/MS proteomics

Ammonium bicarbonate, sodium deoxycholate (SDC), sodium N-lauroylsarcosinate (SLS),

tris (hydroxymethyl) aminomethane (Tris), dithiothreitol (DTT), iodoacetamide (IAA), lysyl

endopeptidase (Lys-C), ethyl acetate, acetonitrile (ACN), acetic acid, and trifluoroacetic acid

(TFA) were obtained from FUJIFILMWako. Protease inhibitor cocktail and phosphatase in-

hibitor cocktail 2 and 3 were obtained from Sigma-Aldrich. Trypsin was obtained from Pro-

mega. Empore disks for StageTips were obtained from GL Sciences.

Sample preparation for LC/MS/MS proteomics

Protein digestion was performed according to the phase transfer surfactant (PTS)

protocol [75]. Briefly, cell lysates were lysed in a PTS buffer (12 mM SDC, 12 mM SLS,

1% protease inhibitor, and 1% phosphatase inhibitors 2 and 3 in 100 mM Tris-HCl, pH

9.0). Proteins were reduced with 10 mM DTT and alkylated with 50mM IAA. After

five-fold dilution with 50mM ammonium bicarbonate, Lys-C and trypsin were added

at a 1:100 (w/w) protease-to-protein ratio, followed by incubation overnight at 37 °C.

Then an equal volume of ethyl acetate was added, and the solution was acidified with

TFA. After removing the organic phase, the samples were dried by SpeedVac and

reconstituted in 5% ACN and 0.1% TFA. The peptides were fractionated into eight frac-

tions with SCX-StageTips and desalted using SDB-XC StageTips [76, 77].

LC/MS/MS analyses

The peptides were analyzed by Orbitrap Fusion Lumos mass spectrometry (Thermo Fisher

Scientific) coupled with an UltiMate 3000 RSLCnano (Thermo Fisher Scientific) pump and

an HTC-PAL autosampler (CTC Analytics). Self-pulled needle columns (150mm length,

100 μm ID, 6 μm needle opening) packed with ReproSil-Pur C18-AQ (3 μm, Dr. Maisch)

were used as analytical columns. The injection volume was 5 μl and the flow rate was 500

nl/min. The mobile phases consisted of 0.5% acetic acid (A) and 0.5% acetic acid in 80%

ACN (B). The gradient program was as follows: 5–40% B (65min), 40–99% B (5min), 99%

B (10min), 99–5% B (0.1min), and 5% B (29.9min). Both MS1 and MS2 scans were ob-

tained with Orbitrap. The MS1 survey scan was performed at 120,000 resolution in the scan

range of m/z 300–1500 with an AGC target value of 4e5. The MS2 scan was performed at a

resolution of 15,000 with an AGC target value of 5e4, and the scan cycle was 3 s. Dynamic

exclusion was set to 30 s, and the normalized collision energy for HCD was 38%.

Identification and quantification of peptides and proteins

Peak lists were generated from the raw MS/MS spectra using MaxQuant ver.1.6.2.10 [78].

Then the resulting mgf files were searched against our peptide sequence database based

Oka et al. Genome Biology            (2021) 22:9 Page 24 of 30



on MinION data using the Mascot search engine (Matrix Science) with a precursor mass

tolerance of 5 ppm and a fragment ion mass tolerance of 20 ppm. Carbamidomethylation

on cysteine was set as fixed modifications. Oxidation on methionine was set as a variable

modification. Up to one missed cleavage was allowed for trypsin and Lys-C digestion. The

results were filtered at a 1% peptide-level false discovery rate (FDR).

Mice

HLA-A24 transgenic (A24Tg) mice were kindly provided by Institute Pasteur [79]

(Paris, France), and bred in Sankyo-Lab Service. Young adult (7- to 20-week-old) mice

were maintained under specific pathogen-free conditions in our animal facility and

were used for all experiments.

Peptide vaccination and ELISpot assays

A24Tg mice were immunized subcutaneously three times (at days 0, 7, and 14) with 50 μg

peptides pooled from 5 predicted peptides, and with 8 μg poly-ICLC (Hiltonol,

ONCOVIR) used as the adjuvant. One week after the last vaccination, the A24Tg mice

were euthanized and splenocytes were harvested. To detect peptide-specific immune re-

sponse, IFN-γ ELISpot assays were performed using a BD ELISPOT kit for Mouse IFN-γ

(BD Bioscience) according to the manufacturer’s protocols. 2 × 106 splenocytes were incu-

bated with 10 μg of each peptide for 20 h at 37 °C and 5% CO2. A peptide (QYDPVAALF)

derived from cytomegalovirus pp65 was used as a positive control. All analyses were per-

formed in triplicate for two mice. The spots were automatically counted by the Eliphoto

system (Minerva Tech). The immune response was considered to be positive when the P

value for replicates was < 0.05 and the ratio of spot counts for wells vs. the negative con-

trols was > 5.

Computational analysis of GTEx data

The exon-exon junction read count matrix was downloaded from the GTEx Portal

(https://gtexportal.org/home/) [53]. We extracted junction sets detected from at least

20 reads for each sample, then collected junctions that were expressed as “normal junc-

tions” in each tissue in more than 50% of specimens.

Computational analysis of TCGA data

BAM files for short-read RNA sequencing mapped by STAR and VCF files for somatic

mutations detected by the MuTect2 algorithm in the TCGA were downloaded from

the National Cancer Institute Genomic Data Commons data portal (https://portal.gdc.

cancer.gov/) [80].

We built genome index files for STAR using the reference human genome and our con-

structed isoform catalog. BAM files were converted into FASTQ files and remapped using

the index. We extracted isoforms covered by at least 20 reads that were mapped to

isoform-specific exons or junctions. The panel of normal samples was constructed using

the max RPM of each isoform expressed in at least five matched normal samples. Finally,

we identified tumor-specific isoforms that expressed at least twofold higher than in the

panel of normal samples and not represented in normal junction datasets of GTEx.
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VCF files were filtered using the filtering conditions of TCGA, annotated using VEP,

and converted into MAF files by vcf2maf (https://github.com/mskcc/vcf2maf) for

visualization with Maftools [81].

Statistics

Statistical analysis was performed using Python3.6.5 and R3.5.0 software. For a nonpara-

metric multiple comparison of the distributions, we used the nonparametric Kruskal–

Wallis test followed by Dunn’s post hoc test adjusted with Bonferroni correction. Fisher’s

exact tests were performed for gene ontology enrichment analysis and to compare the

proportion of isoforms in knockdown experiments. Welch’s t-test was used to compare

the number of isoforms with driver mutation. Student’s t test was used for ELISpot assay

and the two-tailed Mann–Whitney U test was used for the TCGA analysis.

Gene ontology analysis

The Cytoscape Bingo plugin was used with gene ontology annotations [82]. To remove

redundancies, we took account of gene ontology terms with > 50 and < 1000 genes.

The P value was adjusted by Benjamini and Hochberg FDR correction. The result of

the enrichment analysis was visualized using a REVIGO treemap [83].

Gene set variation analysis

For single-sample gene set enrichment, we used the gene set variation analysis [58]

(GSVA) program to derive the absolute enrichment scores for gene signatures using

the following datasets: (1) the C5 gene ontology biological process subset of the Mo-

lecular Signature Database version 7.2 [84], and (2) gene sets representing immune cell

populations reported in several previous publications [59, 60]. We applied log2TPM

values calculated using RSEM for GSVA with the options “min.size = 10” and

“max.size = 1000.” Spearman’s rank correlation coefficient was calculated for the

number of isoforms and GSVA scores.
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