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Abstract

BlastFrost is a highly efficient method for querying 100,000s of genome assemblies,
building on Bifrost, a dynamic data structure for compacted and colored de Bruijn
graphs. BlastFrost queries a Bifrost data structure for sequences of interest and extracts
local subgraphs, enabling the identification of the presence or absence of individual
genes or single nucleotide sequence variants. We show two examples using Salmonella
genomes: finding within minutes the presence of genes in the SPI-2 pathogenicity
island in a collection of 926 genomes and identifying single nucleotide polymorphisms
associated with fluoroquinolone resistance in three genes among 190,209 genomes.
BlastFrost is available at https://github.com/nluhmann/BlastFrost/tree/master/data.

Introduction
Recent advances in DNA sequencing technologies have reduced sequencing costs and
hands-on time, and whole-genome sequencing of bacterial pathogens is being routinely
performed by public health organizations. The resulting sequence reads and genome
assemblies are deposited in the public domain [1–3], enabling comparative analyses
of 100,000s of genomes [4, 5] from individual bacterial genera for evolutionary or
epidemiological investigations.
New sequencing data are now routinely uploaded to public databases such as the

Sequence Read Archives (SRA [6]), which provide ready access to extensive collections of
sequencing data for many bacterial genera. Sequences from specific bacterial pathogens
are also available as curated collections of genomic assemblies bundled with their meta-
data together with dedicated tools for population genomic analyses. Such databases
include for example PubMLST [7] and EnteroBase [3].
The analysis of genomic sequences by phylogenetic approaches can yield insights into

evolutionary distances for 1000s of bacterial genomes. However, large comparative stud-
ies based on sequencing data are limited by computing resources and calculation speed
[5]. Even the seemingly simple task of identifying all bacterial strains within a collection
that contains a specific antimicrobial resistance gene or other genes of interest is a com-
putational challenge for the large data sets that are currently available. The most popular
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methods for sequence comparison are BLAST [8] and its successors. However, these
alignment-basedmethods do not scale well for queries of the presence or absence of genes
in large data sets. As a result, as recently reviewed by Marchet et al. [9], the alignment
step is replaced in some recent software by a k-mer approach [10], in which sets of short
sub-sequences of fixed length k are compared between a query and a sequence database.
These approaches were implemented because k-mers can directly identify diverse genetic
modifications such as single nucleotide polymorphisms (SNPs), insertions or deletions
from short read sequences, and do not require assembled genomes or an explicit reference
genome.
One recent k-mer-based method, BIGSI, employs a data structure that stores a Bloom

filter [11] of k-mers for each genome in a database, and can subsequently index and search
very large databases of bacterial and viral sequences [12]. BIGSI queries are very efficient,
but the European Nucleotide Archive (ENA) was already so large in 2016 that creating
a BIGSI index took months. Furthermore, BIGSI was designed for dealing with geneti-
cally diverse collections of data, and other methods and different data structures might be
more efficient for creating a query index of sequence data from closely related genomes.
A potentially faster approach for the construction of indices would be to index sets of
k-mers in a de Bruijn graph [13], where shared k-mers are automatically collapsed into
single nodes. Collapsing k-mers that are shared between closely related genomes would
decrease both the storage space for the index and the search space for subsequent queries.
Recent implementations of such an approach include Mantis [14], Rainbowfish [15], and
VARI-Merge [16]. They build joint de Bruijn graphs for multiple genomes, coloring nodes
by their source genomes (colored de Bruijn graphs [17]), and can traverse both the shared
paths in the graph which represent conserved regions as well as diverging paths which
represent variable regions. However, the implementations of these methods do not scale
well enough to efficiently handle a modern, large sequence collection [18]. For example,
VARI-Merge was benchmarked on a data set of 16,000 Salmonella genomes [16], but the
Salmonella database in EnteroBase already contains > 250, 000 genomes.
The recent development of Bifrost [18] introduced a memory efficient, dynamic data

structure for indexing either colored or non-colored compacted de Bruijn graphs. It
presents a broad range of functions that support querying both sequences and colors,
annotating individual vertices, and editing Bifrost graphs while preserving their com-
paction. The implementation of Bifrost facilitates its ability to rapidly build joint graphs
of 100,000s of genomes and permits incremental updates of these large graphs with addi-
tional data. However, Bifrost only implements basic k-mer querying. Here, we introduce
BlastFrost, a method implemented in C++ for similarity searches in Bifrost graphs by
rapid k-mer matching. BlastFrost uses the underlying Bifrost graph structure to extract
subgraphs defined by a query, and can thereby efficiently extract sequence variants of the
query from a data base of 100,000s of bacterial genomes. Here, we show that BlastFrost
performs better than Blast and BIGSI with closely related genomes, and illustrate its fea-
tures by case studies on the identification of genomic islands and of individual mutations
in antimicrobial resistance genes.

Results
Uncompacted de Bruijn graphs of genomic sequences are a popular graph data structure
consisting of nodes representing sequences of k-mers within the input genomes. Edges in
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the graph represent fixed overlaps of length k − 1 between neighboring nodes and can
therefore be implicit. Bifrost [18] indexes bacterial genomes in a time and memory effi-
cient implementation of a compacted and colored de Bruijn graph. Here, maximal paths
of multiple sequential, non-branching nodes are compacted into single nodes (unitigs) by
collapsing the overlaps. In addition, each node is assigned a set of colors representing all
input genomes containing the corresponding k-mers of the unitig. We henceforth refer to
this particular form of compacted and colored de Bruijn graphs as Bifrost graphs.
BlastFrost relies on Bifrost graphs. As depicted in Fig. 1, we implemented a k-mer search

function in BlastFrost which can identify the presence or absence of a query sequence
in any of the genomes in a Bifrost graph. The results of that search can be used for sub-
graph extraction (Fig. 1 bottom) of query matches in order to identify all variants of the
query sequence in the Bifrost graph. The following paragraphs provide an overview of the
method. Algorithmic details can be found in Supplemental Material.

BlastFrost query search

The input for BlastFrost consists of a Bifrost graph file in GFA format plus an index of the
colors of each k-mer in each unitig, pre-computed for a certain k value. We henceforth
refer to the genomes indexed in the graph as colors. The input parameters to BlastFrost
also include a link to a FASTA file containing one or more query sequences.
For each query sequence, BlastFrost calculates a set of overlapping k-mers, using the

same value of k that was used to build the Bifrost graph. This set is then used to search
for the query sequence in all genomes in the graph, relying on specific functions from the
Bifrost API that determine the presence of each k-mer and its colors in the Bifrost graph.
Each query results in a binary sequence for each color of 1s and 0s representing k-mer
hits and misses. The k-mer-based search in the graph explicitly assumes that overlapping
k-mers of the same color are also contiguous in the underlying genome, which speeds up
computation. BlastFrost speeds up computations even further by taking advantage of the
fact that Bifrost graphs are compacted into unitigs which encode non-branching nodes as
single nodes, and assumes that the color set of a unitig is the same as the individual color
sets of each k-mer in that unitig.
A single nucleotide substitution between a query and a color will result in k mismatch-

ing k-mers, assuming that the size of k was large enough to avoid random hits in the
genomes. The resulting binary sequence would then contain a stretch of k 0’s in the binary
hit sequence for that query. Deletions are also characterized by runs of 0’s that are poten-
tially smaller than k, while insertions and multiple substitutions can lead to longer runs of
0’s in the hit sequence. In order to evaluate the significance of k-mer hits between a query
and a specific color, we adopted the BLAST approach for computing an E value [19] based
on an estimated alignment score, derived from the lengths of 0 runs in the k-mer hits.
To increase the sensitivity of the k-mer-based query, BlastFrost allows additional query-

ing of all k-mers related to a query k-mer by a Hamming distance smaller than or equal to
an input parameter d. We refer to this set of additional k-mers as k-mer neighborhoods
(Fig. 1). In the following evaluation, we present the necessity for this increased sensitivity,
as well as some of the resulting trade-offs.

BlastFrost subgraph extraction

The raw results on k-mer hits from a Bifrost graph are not immediately informative on the
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Fig. 1 Overview of the flow and algorithms used by BlastFrost. BlastFrost is a command line program whose
inputs consist of pre-computed files generated by Bifrost that specify the graph and colors plus a
user-defined FASTA file of query sequences. BlastFrost searches a k-mer neighborhood for the parameters k
(k-mer length) and d (Hamming distance) and estimates an alignment score and p value for each query
sequence. The presence or absence of hits are recorded in a tab-delimited file containing the query ID, color
ID, and binary presence/absence data. When run with the input parameter −e, BlastFrost uses these data to
extract subgraphs, and appends their path sequences to the output file

genomic locations of the query hits, the numbers of copies of those query sequences in
each genome, or on syntenic relationships. For any specific query, each binary sequence
of k-mer hits represents a potentially incomplete path of nodes for each color in the graph
interrupted by nucleotide changes that were not included in the k-mers that are shared
between the query and the genome. BlastFrost can account for these potential gaps by
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extending the k-mer hit results, and produce a subgraph for each successful k-mer query.
Starting from the first unitig in the original k-mer hit list for a specific color, BlastFrost
greedily completes a path by traversing non-branching paths of the same color within
the graph, i.e., each unitig initially found in the k-mer search is tested for all successor
unitigs with the same color. The subgraph is then used to reconstruct the corresponding
sub-sequence of each color from the path in the Bifrost graph.
To avoid completing the same paths more than once, BlastFrost clusters colors shar-

ing k-mer hits, completes all their paths simultaneously, and removes colors from those
clusters that are absent in intervening unitigs. For each path and its accompanying colors,
BlastFrost output the genome sequence in addition to the binary sequence mentioned
above. These data allow ready identification of variant positions that distinguish the query
from the extracted path sequences.

Evaluation and benchmarks

Precision and sensitivity of identifying the presence or absence of all genes in a pan-genome

We used the whole-genomeMLST (wgMLST) scheme for the genus Salmonella in Enter-
oBase [3, 20] to test the accuracy of BlastFrost for detecting sequence variants of a large
number of query sequences in a large number of related genomes. That wgMLST scheme
consists of 21,065 single copy orthologs which had been derived from a pan-genome
of 537 representative genomes of Salmonella with PEPPAN [20, 21]. EnteroBase iden-
tifies diverse sequence variants of those loci in each assembled genome by combining
BLASTN [8] nucleotide andUBLAST [22] amino acid queries, and also scores the absence
of significant hits for each genome. Thus, this data set is ideal for testing the efficiency
of the detection of presence and absence of multiple genes because both the presence
and absence as well as the genome-specific sequence are known for all 21,065 loci in all
Salmonella genomes in EnteroBase.
Bifrost created a graph of 926 representative Salmonella genomes from EnteroBase [20]

in less than 24 min and required less than 5 GB of memory. The graph occupies 2.3 GB of
disk space, and it contains more than 33 million unitigs.
We ran BlastFrost (parameter d = 1 to support inexact searches) on this graph

with 21,065 query sequences, consisting of one representative allele for each locus, and
extracted all allelic variants from the corresponding subgraphs.
To calculate precision and sensitivity, we scored extracted sequences that covered at

least 90% of the query sequence in a pairwise alignment as being correct. We bin query
hits by the nucleotide identity between the query and the EnteroBase allele, or the
nucleotide identity between the query and the search result if an allele is not stored in
EnteroBase. We also performed similar analyses with the programs Megablast, which is
the default version used by Blast [8], the classical version of BLASTN, and BIGSI [12]
with the parameter t = 0.4 to support inexact searches. Initial comparisons showed
that the precision of all of these methods was very low for genes of less than 200-bp
length (Fig. 2a), except for BIGSI which had extremely high precision, and the following
description is restricted to genes that were larger than 200 bp. The precision with Blast-
Frost was at least 95% for alignments with at least 90% nucleotide identity. MegaBlast
had somewhat lower precision for genes of less than 400 bp, whereas BLASTN retained
very high precision at all levels. We also examined the nature of the false-positive hits
by BlastFrost according to our criteria of correct hits to determine whether these were
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Fig. 2 Comparisons of BlastFrost (subgraph extraction mode, d = 1), Megablast, Blastn, and BIGSI (cutoff
t = 0.4) for 21,065 queries consisting of the reference alleles for all wgMLST loci in the EnteroBase Salmonella
database against 926 representative Salmonella genomes [20]. a Precision: proportion of all query hits which
corresponded to sequence variants (alleles) in EnteroBase with > 90% sequence coverage. b Sensitivity:
proportion of alleles in EnteroBase which were recovered by the respective methods. c Distribution of
numbers of wgMLST loci by sequence length. d Runtime and disk storage space for all four methods

potentially truly absent in the corresponding genomes. Indeed, all false positives, includ-
ing genes of < 200 bp length, were found in those genomes with BLASTN, indicating
that false positives may have been scored because EnteroBase scoring excludes repetitive
DNA elements, including overlapping or duplicated sequences, whereas BlastFrost finds
all sequences, including such repetitive DNA. Sensitivity with BlastFrost was 100% down
to 94% nucleotide identity and then dropped to> 94% at 90% identity (Fig. 2b). Megablast
and BLASTN yielded almost perfect sensitivity throughout. BIGSI failed dramatically
with nucleotide identities below 95%, because it only identified a limited number of hits
in total despite a low cutoff parameter t, explaining its superb precision values. In sum-
mary, BlastFrost correctly identified all sequence variants down to 90% sequence identity
with a gene length of > 200 bp.
The runtime of Megablast and BIGSI was much faster than that of BlastFrost while the

runtime of BLASTN was threefold slower (Fig. 2d). BlastFrost also required the least disk
space for the genome indices of all these programs (Fig. 2e).

Benchmarking

The initial results in Fig. 2 indicate that BlastFrost was slower than Megablast and
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BIGSI. We therefore compared the time and memory requirements between these differ-
ent methods and minimap2 [23], another widely used software tool, in greater detail to
explore their relative strengths.
We compared the times needed by BlastFrost and Bifrost to Megablast for indexing

10, 000 − 50, 000 Salmonella genome assemblies and querying them with multiple indi-
vidual genes (Fig. 3). The indexing step in BLAST is close to an order of magnitude faster
than graph construction by Bifrost (Fig. 3a). However, after loading the graph, BlastFrost
is more than tenfold faster than MegaBlast at searching the constructed graph for the
presence of 6500 AMR genes (Fig. 3b) because of the extensive indexing information
within the Bifrost graph. The Bifrost graph also needs much less disk space than a BLAST
database (Fig. 3c). Megablast is clearly faster than BiFrost plus BlastFrost for a single
phase of creating an index 10,000 genomes plus a single round of querying up to 50,000
genes (Fig. 3d). Under conditions where a genome database grows continuously and gene
queries are conducted repeatedly, Bifrost plus BlastFrost would be much quicker because

Fig. 3 Comparison of runtime and space requirements for Bifrost, BlastFrost, and Blast with 10, 000 − 50, 000
randomly selected Salmonella genome assemblies. a Indexing time needed by Bifrost and makeblastdb
(blast) on 10, 000− 50, 000 randomly selected genome assemblies. b Query time for 6500 AMR genes against
the previously indexed genome assemblies. c Disk space occupied by indexed assemblies. d Query time for
5000 − 50, 000 genes against an index of 10,000 genome assemblies
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Bifrost can rapidly and continuously expand its pre-constructed graph to include addi-
tional genomes whereas BLAST needs to calculate a complete index for each additional
genome.
We also investigated calling the presence or absence of core genes with BlastFrost and

BIGSI [12] on a data set of 736 genomes from representative strains of Yersinia pestis,
whose genomic diversity is very limited [3]. Creating indices of the 736 genomes was
much faster with Bifrost than with BIGSI (Supplemental Material). The query time and
maximum RAM usage were measured with BlastFrost and BIGSI for 200− 1600 random
core gene sequences. BlastFrost was timed in an inexact search for k-mer hits with up
to one nucleotide mismatch (parameter d = 1). For BIGSI, we timed an exact search
function as well as an inexact search function for query hits containing at least 70% of the
query sequence k-mers (parameter t = 0.7). The (inexact) BlastFrost query yielded the
same hits as the inexact BIGSI search, but BIGSI was much slower. BlastFrost searches
were slightly faster than the exact BIGSI searches (Fig. 4a) and used much less RAM for
less than 1200 queries.

Fig. 4 Comparison of BlastFrost to BIGSI (a, b) and minimap2 (c, d). a, b Runtime and memory required for
querying 736 genomes of Yersinia pestis [3] as a function of numbers of queries for BlastFrost with k-mer
neighborhood d = 1 in comparison to both exact and inexact BIGSI queries. c Runtime for subsets of 926
Salmonella genomes [20] as a function of numbers of draft genomes for BlastFrost with k-mer neighborhood
d = 1 in comparison to minimap2. d Time required by BlastFrost to extract a subgraph by number of hits for
a 100 gene query
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Finally, we timed subgraph extraction compared between BlastFrost and minimap2
[23], which is the currently most efficient mapping tool for both short reads as well as
chromosome-scale alignments. The average speed needed to extract 100 genes from the
wgMLST Salmonella scheme described above from was measured across subsets of the
926 representative Salmonella genomes. The measurement showed BlastFrost is much
faster than minimap2 (Fig. 4c). The time needed for BlastFrost to extract a subgraph is
dependent on the number of hits for that query (Fig. 4d), but it achieves a slightly sub-
linear growth in time requirement because identical genome segments can be found in
multiple genomes within a bacterial genus.

Applications

We took advantage of the large genomics databases available in EnteroBase to demon-
strate the abilities of BlastFrost to find variably present genomic elements and to identify
single nucleotide variants of individual genes. For genomic elements, we searched the
926 representative genomes of Salmonella for known genes in the SPI-2 Salmonella
pathogenicity island [24–26]. For nucleotide variants, we screened the entire EnteroBase
Salmonella database for specific substitutions in three genes that are associated with
fluoroquinolone resistance in Salmonella [27].

Genomic islands

Genomic islands consist of clustered genes from the accessory genome that can be
acquired by bacteria through horizontal gene transfer, or which are lost due to gene dele-
tion [28, 29]. Pathogenicity islands are a distinct sub-class of genomic islands, which can
range in size from 10 to 200 kb, and encode genes which can contribute to the virulence
of the bacteria [26, 30]. SPI-2 is such an island which seems to have been acquired by
Salmonella after the divergence of S. bongori and S. enterica from their common ancestor.
Subsequently, S. enterica split into multiple so-called subspecies [20, 31].
The 44 genes in SPI-2 from S. enterica serovar Typhimurium strain LT2 were queried

against the Bifrost graph of the 926 representative Salmonella genomes described above.
Figure 5 shows their distribution according to an exact search (BlastFrost parameter d =
0, dark green) and an inexact search (BlastFrost parameter d = 2, light green). The inexact
search indicated that most of the SPI-2 genes are present in all of the Salmonella sub-
species and that they were all absent, as expected [30], in Salmonella bongori. However,
some genes were absent from many or most of the genomes from individual subspecies,
or their sequences were too divergent to be detected. This figure also emphasizes the
importance of inexact querying because although most SPI-2 genes were identified by the
exact search in subspecies I, II, and VI, the inexact search greatly increased the number
of SPI-2 genes identified in the other subspecies.
BlastFrost took 111 s to load the Bifrost graph of 926 Salmonella genomes into memory

and took a further 540 s to search for all SPI-2 genes with the inexact BlastFrost search,
for a total of under 11 min.

Nucleotide variants

The subgraph extraction functionality of BlastFrost can also extract known variants of
genes involved in antimicrobial resistance or other phenotypes. We downloaded 160,000
Salmonella draft assemblies from EnteroBase and created an initial Bifrost graph of those
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Fig. 5 BlastFrost presence/absence analysis for 44 genes of the Salmonella SPI-2 pathogenicity island among
926 representative Salmonella genomes [20]. The outermost circle consists of one segment for each genome
from Salmonella bongori and multiple subspecies of Salmonella enterica, color coded by species/subspecies
(key; external text). The internal concentric circles correspond to each of the genes within SPI-2 (figure
legend). Dark green: hits identified by both exact (d = 0) and inexact (d = 2) searches; light green: hits
identified only by the inexact search; white: no hits. Graphical representation was done with Anvi’o [41]

genomes. This took 4 days and 15 h computation time and required 147 GB of memory.
During the course of the investigations in this manuscript, we subsequently updated the
Bifrost graph in several iterations, resulting in a final graph containing 190,209 genomes.
Updating the Bifrost graph update with 100 additional genomes took about 2.5 h, includ-
ing the time to load the graph back intomemory. The disk size of the final graph of 190,209
genomes is 158.5 GB and it contains 32,692,889 unitigs. We then queried this graph with
BlastFrost for a single representative gene sequence from each of the genes gyrA, gyrB, and
parE. These genes were chosen because they possess quinolone resistance-determining
regions (QRDR) in which individual nucleotide variants can cause reduced susceptibility
to fluoroquinolones [27]. The queries resulted in one subgraph per gene, whose sequences
were aligned, and scanned for the known nucleotide variants.
Our results showed that 20,490 genomes from multiple serovars (Fig. 6a) contained

these QRDR nucleotide variants. Those serovars included common causes of human
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Fig. 6 Genetic and serovar associations of 20,490 Salmonella genomes containing QRDR variants of genes
gyrA, gyrB, and parE that are associated with fluoroquinolone resistance [27]. a Neighbor-joining tree based
on cgMLST distances (visualized in GrapeTree [5]), colored by the Salmonella serovar in EnteroBase [3] based
on SISTR1 [42] analyses of draft genomes. b Distribution of mutated genes by serovar for the ten most
frequent serovars in a. c, d Percentage of individual nucleotide mutations, and their combinations for
frequent (c) and for rare (d) mutations

disease, such as Enteritidis, Typhi, and Typhimurium, as well as multiple others that are
common in domesticated animals but can cause food-borne gastroenteritis in humans
(Fig. 5b). Most of the genomes identified in these BlastFrost queries contain a single
nucleotide variant in gyrA (89.7%) (Fig. 6c). Variants in gyrB (1.8%) and parE (0.26%) were
also found but they were less common and were normally present together with gyrA
mutations in the same genomes (Fig. 6c,d).
Most of the Salmonella genomes from EnteroBase did not contain these QRDR muta-

tions. The relative proportions of genomes with and without those QRDR mutations
are illustrated for common serovars in Fig. 7. Serovars Paratyphi A or Typhi showed
the greatest proportions of strains with resistance mutations. Interestingly, almost all
fluoroquinolone-resistant strains of serovar Kentucky belong to only one of the two
genetic clusters that are associated with this polyphyletic serovar [20, 32].
BlastFrost took 25 min to load the Bifrost graph into memory and 3.5 h to extract all

subgraphs using 8 threads. It used a maximum of 160 GB RAM for these analyses.

Discussion and conclusions
BlastFrost implements a highly efficient algorithm for querying de Bruijn graphs, and
thereby complements the very computationally efficient Bifrost [18], which calculates
compacted and colored graphs that scales to 100,000s of closely related bacterial genomes.
Practical applications of the combination of these two methods are also greatly facili-
tated by the existence of structured sequence databases of closely related bacteria such as
EnteroBase [3]. EnteroBase includes genomic assemblies of 100,000s of bacterial strains
together with genotypes based on legacy or core genome MLST, which facilitate the
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Fig. 7 Proportion of Salmonella genomes containing QRDR mutations (black) among all genomes in the 25
most frequent HC900 clusters (colored) in EnteroBase [3]. HC900 clusters consist of hierarchical single-linkage
clusters with maximal internal cgMLST distances of 900 alleles, which correlate well with Salmonella serovars.
Nodes in the figure are colored and labeled by their majority serovar https://enterobase.readthedocs.io/en/
latest/HierCC_lookup.html). The neighbor-joining tree of all genomes in these clusters is based on 7-gene
MLST distances and was visualized in GrapeTree [5]. For each cluster, the figure legend indicates the number
of genomes with and without the QRDR mutation, and its percentage

visualization of genetic relationships among the query hits. The combination of Bifrost,
BlastFrost, and EnteroBase has the potential to rapidly reveal numerous features of
genomic diversity that were previously not readily accessible.
All MLST schemes are inherently limited, because they are based on a fixed selection

of genes that were present in an initial, representative set of genomes. However, many
bacterial genera are associated with open pan-genomes [33], whose content continues to
increase with each additional genome that is sequenced [21], and such novel sequences
are not routinely appended to the MLST schemes. Therefore, it is important to empha-
size that BlastFrost and Bifrost are not dependent on MLST or on genomic annotations,
but can handle any collection of closely related genomic assemblies. BlastFrost can sum-
marize diversity within large, variable regions such as genomic islands. It can also identify

https://enterobase.readthedocs.io/en/latest/HierCC_lookup.html
https://enterobase.readthedocs.io/en/latest/HierCC_lookup.html
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variants of any sequence of interest and subsequently rapidly analyze them to identify
single nucleotide polymorphisms.
We note that in theory, we can only guarantee that all query k-mers found in the graph

for a specific color are really present in the underlying genome. If BlastFrost is used to
query sequences containing repeats longer than the value of k, this could lead to false
sequences returned due to the underlying data structure used. Hence, k should be chosen
large enough to avoid false-positive sequences [34].
We compared the speed andmemory requirements for large genomic data sets between

BlastFrost/Bifrost, Megablast, classical BLASTN, and the current state of the art tools
BIGSI and minimap2. Computing a Bifrost graph is a costly indexing step that runs much
slower than creating a BLAST database. However, BlastFrost can run queries much more
quickly than BLAST, which compensates for the extra time needed to create an index if
that index is used repeatedly for a large number of queries. As a use case, BlastFrost would
be suitable as a web service in support of large databases such as EnteroBase, because it
would provide fast search functionalities and could even support comparisons of all genes
from numerous whole genomes against a large pan-genome. BlastFrost is not suitable for
indexing and querying diverse sequence collections such as RefSeq or SRA, unlike either
BIGSI or BLAST. However, for closely related genomes, such as those within a single
bacterial genus, BlastFrost is considerably faster than BIGSI and requires less memory
for up to 1400 sequence queries. Similarly, BlastFrost is much faster than minimap2 for
closely related genomes and also requires less memory. These computational efficiencies
did not sacrifice accuracy. BlastFrost has high precision and sensitivity for sequences that
are at least 90% identical and over 200 bp in length.
BlastFrost enables the identification of genomic islands or individual nucleotides asso-

ciated with antimicrobial resistance genes because of the explicit graph data structure in
Bifrost which supports graph traversal and extraction of sequences that extend beyond the
k-mers that were used for querying. Given a Bifrost graph, genomic islands or nucleotide
variants can be identified within 100,000s of genomes in minutes. The Bifrost API freely
supports annotation of nodes in the graph, including annotating unitigs with additional
data. In future extensions, BlastFrost should be able to extract the local synteny from
graphs whose unitigs are annotated with genome coordinates and/or gene annotations.
Such information could also be used to reconstruct genomic rearrangements.
BlastFrost is not a general replacement for calling SNPs because its precision suffers

with increasing genetic diversity and reduced sequence length. However, it might have
the potential for incorporation into approaches to detection of antimicrobial resistance
in combinations of databases of AMR genes such as CARD [35] or AMRfinder [36] with
genomic sequence collections such as EnteroBase.
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