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Abstract

Recently, efforts have been made toward the harmonization of transcriptomic data
structures and workflows using the concept of data tidiness, to facilitate modularisation.
We present tidybulk, a modular framework for bulk transcriptional analyses that
introduces a tidy transcriptomic data structure paradigm and analysis grammar. Tidybulk
covers a wide variety of analysis procedures and integrates a large ecosystem of publicly
available analysis algorithms under a common framework. Tidybulk decreases coding
burden, facilitates reproducibility, increases efficiency for expert users, lowers the
learning curve for inexperienced users, and bridges transcriptional data analysis with the
tidyverse. Tidybulk is available at R/Bioconductor bioconductor.org/packages/tidybulk.

Background
High-throughput decoding of RNA genetic material has proved to be a disruptive

tool for the understanding of dynamic biological systems. Bulk and single-cell

RNA sequencing provides a large amount of information about gene transcript

abundance, transcriptional rate, and genetic heterogeneity, as well as allelic infor-

mation and gene fusions. During the last decades, the scientific community has

built a rich ecosystem of algorithms for the exploration and the analysis of tran-

scriptomics data. The R programming language [1] has been a vital part of this

ecosystem, with the repositories CRAN and Bioconductor [2] hosting many of

these algorithms. Despite the use of central repositories, algorithms included in

common analyses workflows are based on a diverse range of input and output data

structures including sample-oriented and transcript-oriented data frames, matrices

and custom S3 and S4 objects. This poses unique challenges for data transform-

ation and data integration along workflows, which are two error-prone processes.

Some efforts have been made to build a robust and standardized data structure

that holds heterogeneous information. For example, SummarizedExperiment [3] in-

tegrates a matrix-like object of transcript abundance, a sample- and a transcript-

oriented metadata data frames.

More recently, the R data analysis community has made a collective endeavor toward

the harmonization of data structures and workflows using the concept of tidiness [4].
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The goals of tidy data frames are the ease of manipulation, modeling, and

visualization and are characterized by having a specific structure where each vari-

able is a column, and each observation is a row. This paradigm is extremely

powerful when analyzing and manipulating biological data, because it directly cap-

tures how biological data measurements relate to experimental design and meta-

data (e.g., technical and clinical properties of transcripts and replicates). The

adoption of a tidy and consistent data frame makes it easier for the community to

develop modular manipulation, visualization, and analysis tools that are endo-

morphic (i.e., they return the same type as their input). For example, the dplyr and

tidyr packages [5, 6] map notions of information manipulation to verbs that act on

tidy data. These verbs can be assembled into a workflow using a pipe operator

(%>%) [7] that effectively streams a data frame through all processes. This inte-

grated and modular framework enables robust, reproducible, error-resistant,

human-readable workflows that can benefit the scientific community. The concept

of tidiness has already been applied to other areas of data analysis in genomics.

The package plyranges [8] introduced a dplyr-like interface for interacting with

some of the most common data structures containing genomic coordinates includ-

ing Ranges and GenomicRanges [9]. For example, it allows the filtering of genes in

genomic intervals. The package organism.dplyr introduced a dplyr-like interface for

annotation packages [10]. It supports the creation of gene annotation databases for

a wide range of organisms. The ggplot grammar of graphics was extended to gen-

omics data by ggbio [11], allowing for example the production of annotated

chromosome tracks. While the current ecosystem covers several aspects of genetic

data manipulation, analysis, and visualization, transcript abundance analysis remains

uncovered. Here we present tidybulk, a modular framework for bulk transcriptional

analyses based on a tidy data structure paradigm and a user-friendly grammar that

underlies a large selection of publicly available tools for transcriptional analyses

[12–29]. The main aim of this study is to bridge the ecosystem of transcriptional

data analysis with the tidy ecosystem (i.e., tidyverse). The procedures covered by

tidybulk include the quantification of transcript abundance from genome mapping,

identification of abundant and variable transcripts, data scaling and adjustment, du-

plicates aggregation, dimensionality reduction, sample-wise and gene-wise redun-

dancy elimination, clustering, differential gene transcriptional abundance and gene

enrichment testing, cellularity deconvolution, and differential tissue composition

testing.

Tidybulk is highly complementary to the existing ecosystem. While plyranges

improves manipulation of genomic coordinate data frames (which are tidy in na-

ture), tidybulk tackles transcriptomic data representation introducing a novel and

tidy structure and provides a framework that spans all stages of analysis using

unified grammar. This framework allows quick-to-produce and flexible workflows.

Specific goals of tidybulk are (i) to decrease the coding barrier and learning curve

for inexperienced users, and generally decrease the coding burden allowing users

to focus on the biological question and data visualization; (ii) to allow the imple-

mentation of modular workflows, giving the possibility to effortlessly try different

methodologies and/or algorithms; and (iii) to eliminate the data integration effort

necessary for data exploration and visualization, and to enable the direct use of
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existing powerful tidy visualization tools. Given its simplicity, tidybulk is an ef-

fective tool for both scientific and educational purposes.

Results and discussion
Data structure

The underlying data structure in tidybulk integrates transcript abundance infor-

mation and sample-wise or transcript-wise annotation in a tidy format. The only

three mandatory columns are sample and transcript identifiers and transcript

abundance. Optional columns include biological and technical prior or newly

calculated information. In the backend, the information needed for each algo-

rithm is extracted from the tidybulk data frame. The tidybulk data frame is

based on the tibble (tbl_df) format [30], which is a modern implementation of

the R data frame, offering robustness and ease of visualization. The main advan-

tages of this data structure are (i) consistent subsetting avoids bug-prone behav-

iors typical of the R native data frame and (ii) the interface with the whole

tidyverse ecosystem, including dplyr, tidyr, purrr, magrittr, and a large number

of modules being developed by the community. The tidybulk object stores out

of sight the key column semantics and raw results for backend algorithms such

as PCA, MDS [31], edgeR [13], limma-voom [29], and DESeq2 [16]. The latter

can be easily extracted for further custom analyses and diagnostics. A tidybulk

data frame (for example, Table 1) can be produced from two sources: (i) a tidy

tibble with sample, transcript, abundance, and optional annotation columns and

(ii) BAM/SAM files using the function tidybulk_SAM_BAM wrapping feature-

Counts [12].

Grammar and API structure

Vocabulary

Standard transcriptomic analysis workflows encompass several common procedures,

such as scaling of transcript abundance (i.e., normalization), aggregation of iso-

forms into genes, adjusting for unwanted variation, dimensionality reduction, clus-

tering, cellularity deconvolution, differential abundance analysis, transcript filtering

based on variability and/or low relative abundance, identification of redundant sam-

ples, and gene enrichment analysis. The tidybulk grammar consistently expresses

all steps of the transcriptomics workflow using self-explanatory function names,

composed of a specific verb and one or two explanatory terms. All functions can

be applied to a tidybulk data frame directly, or any tibble data frame providing the

Table 1 Example of a tidybulk data frame

Sample (fctr) Transcript (fctr) Abundance (int) Annotation ...

S1 CD3G 0 Treated ...

S2 CD3G 100 Treated ...

S3 CD3G 5 Naive ...

S4 CD3G 5240 Naive ...

... ... ... ... ...
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“.sample,” “.transcript,” and “.abundance” arguments as symbolic column names

(Table 2).

Coding paradigm

The tidybulk functions can either add new sample-wise (e.g., reduced dimension-

ality) or transcript-wise (e.g., differential transcription statistics) information to

the tidybulk data frame in new columns, subset the data frame, or return a

standard data frame in case that the function outputs information that is not

sample- nor transcript-wise (e.g., enriched gene signatures). Any function that

Table 2 Grammar of the functions and packages integrated in the current version 1.1.7 [32]

Name Description

Analysis

Function name Description Integrated packages

adjust_abundance Remove known unwanted variation ComBat [33]

aggregate_
duplicates

Summarize the abundance of duplicated transcripts (e.g.,
isoforms)

cluster_elements Identify sample or transcript clusters Kmeans [34], SNN [20]

deconvolve_
cellularity

Identify cell type fraction within each sample Cibersort [23], EPIC [24],
lsfit [35]

identify_abundant Identify abundant transcripts to be used in subsequent
analyses

edgeR [13]

keep_abundant Filter out rare transcripts

keep_variable Filter out non-variable transcripts limma [31]

reduce_
dimensions

Calculate reduced dimensions of transcript abundance limma [31], PCA [35],
Rtsne [21]

remove_
redundancy

Filter out redundant samples or transcripts

scale_abundance Scale (i.e., normalize) the transcript abundance to compensate
for diverse sequencing depth across samples

TMM [14]

test_differential_
abundance

Test the hypothesis of differential abundance of transcripts
across biological/experimental conditions

edgeR [13], DESeq2 [16],
limma-voom [29]

test_gene_
enrichment

Test the hypothesis of rank-based enrichment of transcript
signatures

EGSEA [36]

test_gene_
overrepresentation

Test the hypothesis of gene set enrichment for an unranked
gene list

clusterProfiler [26]

test_differential_
cellularity

Test the hypothesis of differential tissue composition lm [35], coxph [17, 37]

Main utilities

get_bibliography Extract the bibliography for your workflow from any tidybulk
object

impute_missing_
abundance

Impute abundance for missing data points using sample
groupings

pivot_sample Extract non-redundant sample-related information from the
data frame

pivot_transcript Extract non-redundant transcript-related information from the
data frame

tidybulk Create a tidybulk data frame from a standard data frame

tidybulk_SAM_
BAM

Infer transcript abundance from mapped reads and create a
tidybulk data frame

featureCounts [12]
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can return a tidybulk data frame can be used in three modes (setting the “action”

argument). The mode “add” returns a tidybulk data frame with additional infor-

mation joined to the input tidybulk data frame; the mode “get” returns a standard

data frame with non-redundant sample- or transcript-wise information with the

newly calculated information added as new columns, and the mode “only” returns

a standard data frame with only the newly calculated information. The “add”

mode is used to pass the information across the tidybulk functions, while the

mode “get” and “only” are used for independent analysis, manipulation, or

visualization outside the tidybulk stream, interfacing with the tidyverse ecosystem.

A tidybulk data frame can also be manipulated with tidyverse functions (e.g.,

dplyr and tidyr) retaining its attributes. To maintain the flexibility that the back-

end algorithms offer while maintaining the robustness and coding efficiency of

the function abstractions, each tidybulk function accepts ellipsis (i.e., … argument

in R language) that will be passed as additional arguments to the backend func-

tion. For several operations such as dimensionality reduction and differential

transcript abundance analysis, the raw output of the underlying algorithms is

stored in the data frame attributes.

Implementing workflows

Differential gene transcriptional abundance analysis

An important phase of an analysis workflow is data exploration, which involves

visualization and production of summary statistics, in combination with dimen-

sionality reduction, data scaling, and adjustment. The following code example il-

lustrates how to produce a tidybulk data frame and how to perform scaling. The

transcripts that are duplicated are aggregated and the transcript abundance scaled

for sequencing depth is added to the data frame. The default scaling method is

edgeR’s TMM [14] but other options are available. The resulting data frame is

used to plot the transcript abundance densities for raw or scaled abundance

(Fig. 1a) using common tidyverse tools.

# Create a tt object with unique raw and normalised counts 
tt_scaled <-  
    tidybulk(counts, sample, transcript, count) %>% 
    aggregate_duplicates() %>% 
    identify_abundant(factor_of_interest = condition) %>% 
    scale_abundance() 
 
# Plot count densities 
tt_scaled %>% 
    pivot_longer( 
        c(count, count_scaled), 
        values_to="count",  
        names_to="Normalisation" 
    ) %>% 
    ggplot(aes(count + 1, group=sample, color=type)) + 
    facet_grid(~Normalisation) + 
    geom_density() + 
    scale_x_log10() 

 

Sample-wise dimensionality reduction using the multidimensional scaling,

principal component analysis, or t-distributed stochastic neighbor embedding

(MDS, PCA, or tSNE) algorithm [20, 31, 38] can then be performed, as illustrated

in the following code example. The information content of sample-wise data can
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Fig. 1 Results for the differential transcript abundance workflow, at the gene level. a Density plots of
transcript abundance. b Pair plot of the first three reduced dimensions. c Boxplots of the first three reduced
dimensions, before and after removal of unwanted variation. d Scatter plot of count per million against fold
change. Genes highly differentially transcribed are highlighted in red. e Heatmap of the gene transcriptional
abundance for the differentially abundant transcripts, at the gene level. f Boxplot of the transcript
abundance for the top six differentially abundant transcripts at the gene level, for raw, scaled, and
adjusted abundance
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be visualized in three dimensions [39], comparing them against each other (Fig. 1b)

using common tidyverse tools.

The following code example illustrates how to adjust transcript abundance for known

unwanted variation (sequencing type). A formula can be used to define the wanted

(first covariate) and unwanted (second covariate) variation [40], using Combat [33].

The reduced dimensions can be calculated again for the adjusted counts, for

comparative purposes.

Using tidyverse tools, the tidybulk data frame can be reshaped to create informative

comparative plots with little coding burden. The association between biological

variability and reduced dimensions can be compared before and after adjustment

(Fig. 1c). The plot shows as the first reduced dimension was associated with sequencing

technique (technical variability) before adjustment, and with biological category after

adjustment.

The following code illustrates how to test the association of transcript abundance

with the factor of interest. The test can be performed using either edgeR [13], limma-

voom [29], or DESeq2 [16]. The relationship between estimated fold change and mean

transcript abundance can be visualized with a customized MD plot [31] (Fig. 1d), using

common tidyverse tools.
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The following code illustrates how to visualize the result of the hypothesis

testing. Using tidyverse tools, the resulting tidybulk data frame can be reshaped to

visualize the gene transcriptional abundance for the top gene with differential

transcript abundance, across several steps of the workflow (raw, scaled, and

adjusted abundance; Fig. 1f).

Using the tidyHeatmap package [41], the abundance of the transcripts that are most

associated with the factor of interest can be visualized (Fig. 1e).

Identification of transcriptional signature
This workflow showcases the integration of tidybulk and tidyverse tools to select

cell-type-specific marker transcripts. This example workflow is aimed at more ex-

perienced users, as it shows some advanced integration between tidybulk and

tidyverse. The following code example illustrates how to produce a tidybulk data

frame from a tibble data frame including transcript abundance of 148 samples

representing 16 cell types, collected from public repositories including BLUE-

PRINT [42], ENCODE [43], GSE77808 [44], PRJNA339309 [45], GSE122325 [46],

GSE125887 [47], GSE130379 [48], GSE133478 [49], GSE130286 [50], GSE89442

[51], and GSE107011 [52]. Duplicated transcripts are aggregated, and the
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abundance of all samples is scaled to compensate for sequencing depth. As the

source data comes from diverse sources, the integrated dataset is not rectangular

(i.e., same number of sample-transcript pairs). Therefore, we impute the missing

data within each cell type category.

The following code illustrates how to remove redundant samples based on

correlation of the top thousand variable transcripts. The rationale is twofolds.

First, public repositories often include duplicated samples with different

identifiers. Second, we want to avoid that any large study that includes several

samples with low biological variability dominates the selection of marker

transcripts.

The following code example illustrates how to manipulate the tidybulk data frame

with tidyverse tools, to exclude transcripts that are not in all cell types for at least one

sample.

The following code illustrates how to visualize the processed data in a reduced

dimensional space (Fig. 2a), preserving local similarities using t-distributed stochas-

tic neighbor embedding [53]. The use of tSNE facilitates the visualization of many

heterogeneous classes and their internal similarity. This plot can be obtained with

an integration of tidybulk and tidyverse tools.
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The following code illustrates how to identify transcript markers for each cell

type, performing a differential abundance analysis across all the cell type

permutations. The strategy used here is to compare all cell types against each

other and to select the genes with the largest positive change in transcription, with

log fold change larger than two. For each cell-type permutation [54, 55], a set of

Fig. 2 Results for the signature workflow. a Scatter plot of the tSNE reduced dimensions for all samples
using the most variable transcripts. b Scatter plot of the tSNE reduced dimensions for all samples using the
variable marker transcripts. c Boxplot of the first top marker gene for each comparison between monocytes
and all other cell types

Mangiola et al. Genome Biology           (2021) 22:42 Page 10 of 15



top markers will be selected. Briefly, a tidy data frame is created for all permuta-

tions; then, a function that performs the differential analysis is mapped to each of

the permutations. The resulting data frame is filtered for large fold changes and

statistical significance.

The following code exemplifies how to visualize the difference in transcript

abundance of the top monocyte marker against each other cell type.

The following code illustrates how to visualize the tSNE reduced dimensions of all

samples, using the top marker transcripts. Using those markers, the samples belonging

to the same cell type define tighter clusters.

Coding, memory, and time efficiency
The workflow for differential transcript abundance analyses at the gene level was used to

benchmark tidybulk and base R coding standards on two datasets: Pasilla [56] and primary

prostate TCGA [57]. Benchmarking was performed on a Windows machine (12 hyper

threads, 32 Gb of RAM) for (i) number of variable assignments, (ii) number of R code

lines needed, and (iii) seconds elapsed for each step of the workflow (Fig. 3). Using the

tidybulk and tidyverse frameworks, the number of variable assignments needed decreases
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more than tenfold compared to standard coding style, and the number of lines needed

was halved. These two aspects are relevant in interactive programming as both are bug-

prone-related factors. Despite the decrease in code complexity and the higher abstraction

provided by tidybulk, the time efficiency for the analysis of the Pasilla [56] (small) and pri-

mary prostate TCGA [57] (large) datasets is highly comparable with base R coding style

(Fig. 3c; using the option tidybulk_do_validate=FALSE).

A redundant tidy data frame has a larger memory footprint compared to multiple dis-

jointed non-redundant data frames. Compared to SummarizedExperiment, a tibble con-

tainer uses 24% (2.4Mb compared to 3.1Mb) more memory for a small annotated

datasets such Pasilla [56], 49% (230Mb compared to 342Mb) for an unannotated large

datasets such as primary prostate TCGA [57], and 4.4 times more (230Mb compared

to 1.4 Gb) for the annotated alternative. Although large-scale datasets can be easily

handled on modern personal computers, a future direction is to base tidybulk on a tib-

ble abstraction of the SummarizedExperiment object, rather than a tibble data frame it-

self. This will enable improvement of the memory footprint of tidybulk without

compromising its usability and clarity.

Conclusions
The analysis of bulk tissue transcriptomic data is grounded in a mature computational

ecosystem. However, the research community has not converged on a standard repre-

sentation of the data nor a user-friendly vocabulary. This represents a limitation for

workflow modularity and a high entry barrier for new users. Here with tidybulk, we

introduce a tidy representation of transcriptomics data that explicitly conveys the rela-

tion between biological, clinical, and statistical quantities, and can harvest the data ma-

nipulation capabilities of the tidyverse ecosystem. Furthermore, the endomorphic

properties (i.e., that do not change in the input-output stream) of this data structure

enable modularity of the workflow steps. This makes it easy to add or drop analysis

Fig. 3 Benchmark for the differential transcript abundance workflow, comparing tidybulk with a standard
coding style. Time performances are calculated for the Pasilla [56] and primary prostate TCGA [57] datasets
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steps and to test alternative analysis algorithms for each step of the workflow. Our

framework manipulates and analyzes this data using robust wrapper functions for a

wide variety of processes that are common in transcriptome analyses. Similarly to tidy-

verse, these wrappers use a clear and self-explanatory grammar. The bridge between

tidy data representation and compatibility with the tidyverse allows publication-ready

data visualization. Although our framework was developed for end-users, we aim to

create an integration and validation API allowing developers to expand the framework

with more functionality. Due to its simplicity and intuitive grammar, we anticipate that

tidybulk will also be suitable for educational purposes.
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