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Abstract

Most sequencing data analyses start by aligning sequencing reads to a linear reference
genome, but failure to account for genetic variation leads to reference bias and
confounding of results downstream. Other approaches replace the linear reference
with structures like graphs that can include genetic variation, incurring major
computational overhead. We propose the reference flow alignment method that uses
multiple population reference genomes to improve alignment accuracy and reduce
reference bias. Compared to the graph aligner vg, reference flow achieves a similar
level of accuracy and bias avoidance but with 14% of the memory footprint and 5.5
times the speed.

Introduction
Sequencing data analysis often begins with aligning reads to a reference genome, with the
reference represented as a linear string of bases. Linear references such as the primary
GRCh38 assembly [1] work naturally with efficient text indexes and sequence alignment
algorithms. But linearity leads to reference bias: a tendency to miss alignments or report
incorrect alignments for reads containing non-reference alleles. This can ultimately lead
to confounding of scientific results, especially for analyses concerned with hypervariable
regions [2], allele-specific effects [3–6], ancient DNA analysis [7, 8], or epigenenomic sig-
nals [9]. These problems can be more or less adverse depending on the individual under
study, e.g., African-ancestry genomes contain more ALT alleles, and so can be more
severely affected by reference bias [10].
While graph aligners [11–15] can reduce reference bias, linear aligners still perform

better on certain classes of reads [16] and graph-aligner performance is sensitive to the
number of variants considered [17]. Other efforts have focused on elaborating the linear
alignment paradigm to address reference bias. Some studies suggest replacing the typical
linear reference with a “major-allele” version, with each variant set to its most common
allele. This can increase alignment [16–18] and genotyping accuracy [19]. The major-
allele reference is largely compatible with the standard reference (though indels can shift
coordinates) and imposes little or no additional computational overhead.
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We propose a new strategy called “reference flow” that uses a collection of references
chosen so as to cover known genetic variants (Fig. 1). We call the method “reference
flow” because it selects which reads to align to which genomes based on how well the
read aligned previously. In this work, we propose specific reference-flow strategies where
the method proceeds in two passes where the first pass aligns reads to the “initial” ref-
erence and identifies unaligned reads and reads with ambiguous (low mapping-quality)
alignments. The second pass re-aligns these reads to a collection of references that are
chosen to span the genetic space. By merging results from both passes, we can achieve
higher alignment sensitivity and lower reference bias compared to methods that use a
single reference. We implemented methods to align second-pass reads to the set of five
genomes corresponding to the “super populations” studied in the 1000 Genomes Project
[20], as well as to the set of 26 genomes corresponding to themore specific 1000 Genomes
“populations.” This method (a) can use existing, robust linear aligners like Bowtie 2 [21]
or BWA-MEM [22], (b) requires only a small number of pre-established linear refer-
ence genomes, and (c) imposes minimal computational overhead—with no possibility of
exponential blowup—relative to linear aligners.
To contextualize the results, a diploid “personalized reference genome” —the genome

from which reads are simulated—is used as the ideal reference genome for alignment.
By considering the alignments to the diploid personalized reference as a rough upper
bound on how well any method can do, we can express results in terms of the degree to
which amethod closes the gap between the standard linear reference and the personalized
reference. When aligning simulated sequence reads, our “RandFlow-LD” method closed
71.82% of the gap in sensitivity on median compared to using GRCh38. Our method also
reduced reference bias, reducing by 37% the number of strongly biased sites, and lowering
the overall reference to alternate allele (REF-to-ALT) ratio from 1.014 to 1.004. When
aligning real whole-genome sequencing reads from NA12878, our method reduced the
number of strongly biased heterozygous (HET) sites by 13,332 (34%) and lowered the
overall REF-to-ALT ratio from 1.072 to 1.016. It achieves similar gains as the vg graph

Fig. 1 The reference flow workflow: Reads are aligned to reference genome in the first pass. Reads with high
mapping quality alignments are “committed.” Unaligned reads or reads with low mapping quality are
“deferred” and re-aligned to one or more additional references. The process can iterate, with similar logic for
how reads are committed or deferred to another pass. Deferrals could follow the shape of an overall
“reference flow graph.” Once all alignments are complete, alignments are merged. For a read aligning to
more than one reference, only the best is reported, with ties broken arbitrarily. Alignments are translated
(“lifted over”) to the coordinates of a standard reference like GRCh38
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aligner [11] in terms of alignment accuracy and reference bias avoidance while using just
14% of the memory and 18% of the CPU time. RandFlow-LD can use a larger set of 26
population-level references (“RandFlow-LD-26”) to achieve lower reference bias than vg,
while still running twice as fast.

Results
Standard andmajor-allele references

We built a global major-allele reference by modifying the GRCh38 primary reference [1]
to contain the most common allele at each bi-allelic SNV or small indel. Common alleles
were determined using the 1000 Genomes Project GRCh38 call set [20]. We call this the
“global major” reference.We repeated this process but considering only the five subsets of
individuals belonging to the five super populations labeled by the 1000 Genomes Project.
We call these “superpop major” references. Table 1 summarizes the variants included in
each reference. All references were indexed for use with the Bowtie 2 aligner [21].

Simulations for major-allele reference flow

We studied the efficacy of a strategy we call “MajorFlow,” which starts by aligning all
reads to the global major reference. Reads that fail to align or align with low mapping
quality are deferred to a second pass where they are realigned to each of the 5 superpop
major references. For each read, we report the best alignment to any reference. We per-
formed all alignments using Bowtie 2 and default parameters [21], though the method is
not restricted to a particular aligner or set of parameters (the “Reference flow” section).
We performed simulation experiments to compare MajorFlow to baselines that used

Bowtie 2 to align to the GRCh38 primary assembly [1] or to major-allele references. We
usedMason2 [23] to simulate reads from GRCh38 chromosome 21 (the “DNA data simu-
lation” section). Starting from the 1000Genomes Project GRCh38 call set [20, 24], we ran-
domly selected 100 individuals and built personalized, diploid references for each using
phased variant calls (Additional file 1: Table S1). We included single nucleotide variants
(SNVs) and short insertions and deletions (indels).We simulated 1M reads from both hap-
lotypes (2M total) of each individual. Since allelic-balance measurements require deeper
coverage, we also simulated a larger set of 20M reads for 25 of the individuals (Addi-
tional file 1: Table S1). We also assessed the alignment methods using an ideal, diploid
personalized reference genome (the “Building and aligning to the personalized reference”
section). Results using the personalized reference serve as a rough upper bound on what
is achievable with references that lack foreknowledge of donor genotypes [17, 25, 26].

Table 1 Number and types of variants included in each major-allele reference of chromosome 21

Group # samples # SNVs # indels Longest Longest

DEL (bp) INS (bp)

Global 2,548 25,437 4,006 44 29

AFR 671 27,542 4,195 44 52

AMR 348 26,424 4,175 44 29

EAS 515 26,394 4,114 44 52

EUR 522 25,884 4,132 32 29

SAS 492 26,748 4,200 44 29

Superpopulation labels are from the 1000 Genomes Project: AFR (African), AMR (admixed American), EAS (East Asian), EUR
(European), and SAS (South Asian)
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We call this a “rough” upper bound because, while the personalized reference is ideal in
that it contains the correct variants, the accuracy of alignment is also affected by tool-
specific heuristics. A true upper bound would be hard to obtain, so we settle for the rough
upper bound provided by the personalized genome, as in previous work [17, 27].
We measured sensitivity, the fraction of input reads that aligned correctly, as well as the

fraction that aligned incorrectly. We called an alignment correct if its leftmost aligned
base was within ±10 bases of its simulated point of origin (the “Measuring sensitivity”
section). We also measured allelic balance at HET SNVs, where we defined allelic balance
as the number of alignments with the REF allele divided by the number with either the
REF or ALT allele. We also counted the number of strongly biased sites, i.e., those with
allelic balance ≤ 20% or ≥ 80%. Finally, as an aggregate measure of balance, we measured
the overall REF-to-ALT ratio totaled over all HET sites (the “Allelic balancemeasurement”
section).
The MajorFlow method (“MajorFlow” in Fig. 2a) exhibited higher sensitivity than

single-reference methods that used the standard reference (“GRCh38”) or any of the
major-allele references (“Major”). If we consider the increase in sensitivity relative to
the sensitivity gap between the GRCh38 reference and the ideal personalized reference,

Fig. 2 Alignment results using different methods. a Alignment sensitivity for 100 samples selected from the
1000 Genomes Project; 2 million reads are simulated from each sample. b The number of strongly biased
heterozygous sites, and c the overall REF-to-ALT ratio for 25 samples; 20 million reads are simulated for each
sample. The columns are sorted by median alignment sensitivity
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MajorFlow’s median sensitivity improvement closed about 51.34% of the gap. In terms of
number of incorrect alignments, MajorFlow closed 46.81% of the benefit of personaliza-
tion (Additional file 1: Figure S1). MajorFlow also reduced the number of unaligned reads
by 290 (56.5%) compared to using GRCh38 (Additional file 1: Figure S2). MajorFlow’s sen-
sitivity was still higher when we enhanced the major-allele strategy by always matching
the ethnicity of the major-allele reference to that of the simulated sample (“Matched”).
Alignments for reads simulated from the African super population (AFR) had lower sen-
sitivity compared to the others, even when aligned to the AFR superpop-major reference
(Additional file 1: Figure S3). This is consistent with AFR’s greater genetic heterogeneity
due to the out-of-Africa bottleneck. Consistent with past results, there was only a small
difference in mapping sensitivity when using the global-major versus the superpop-major
references, even when the simulated donor’s ethnicity was matched with the reference
(Fig. 2a).
MajorFlow also reduced reference bias relative to the single linear references using the

set of 25 deeper simulations. Overall REF-to-ALT ratio decreased from 1.0145 using the
standard reference to 1.0073 using the global major reference, then further to 1.0064 using
MajorFlow method (Fig. 2c). The median number of strongly biased HET sites dropped
from 70 for GRCh38 to 59 for MajorFlow (Fig. 2c).

Simulations for stochastic reference flow

While MajorFlow outperformed the single-linear-reference strategies, we noticed it was
less effective than the graph-based vg aligner at increasing sensitivity or reducing ref-
erence bias (Fig. 2). We hypothesized this was because the major-allele references used
by MajorFlow were too similar to each other, narrowing the genetic diversity visible to
the method. Specifically, the mean edit distance between all pairs of superpop major ref-
erences was 15,115 bp for chromosome 21, whereas the mean between all pairs of five
individuals randomly drawn from the super populations was 47,966 bp (Additional file 1:
Figure S4).
We designed two alternative methods that draw on super-population-specific variation

while also keeping the second-pass genomes genetically distinct. “RandFlow” generates
a random reference haplotype for each super population by performing an independent
draw at each variant site, choosing the ALT allele with probability equal to its frequency
in the super population. “RandFlow-LD” is similar but additionally maintains some link-
age disequilibrium (LD). RandFlow-LD begins by choosing one haplotype from the super
population uniformly at random. Then, starting at the first (leftmost) polymorphic site
in the haplotype and for the length of a 1000-bp window, it selects alleles matching the
chosen haplotype. At the next polymorphic site beyond the 1000-bp window, the method
chooses a new super-population haplotype uniformly at random and repeats the pro-
cess. In this way, variant selection is still weighted by allele frequency (since haplotypes
are selected uniformly at random) but a degree of LD is also maintained. Both strate-
gies result in greater genetic distances between the second-pass references compared to
MajorFlow, with mean pairwise distances on chromosome 21 being 47,316 for the Rand-
Flow strategy and 46,326 for RandFlow-LD. Further details are in the “Reference flow”
section.
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Using the chromosome-21 simulation data from the previous section, we observed
that RandFlow and RandFlow-LD achieved higher sensitivity, lower numbers of incor-
rect alignments and lower numbers of unaligned reads compared to MajorFlow. If we
consider the increase relative to the sensitivity gap between the GRCh38 reference
and the ideal personalized reference, RandFlow’s and RandFlow-LD’s median sensitiv-
ity improvement closed about 70.91% and 71.82% of the gap respectively (Fig. 2a). The
reduction of incorrect alignment compared to personalization was 66.22% for Rand-
Flow and 67.34% for RandFlow-LD (Additional file 1: Figure S1). The numbers of
unaligned reads were further reduced by 387.5 (75.5%) for RandFlow and 385.5 (75.1%)
for RandFlow-LD compared to GRCh38 (Additional file 1: Figure S2). While RandFlow
slightly underperformed RandFlow-LD in sensitivity and number of incorrect align-
ments, we note that RandFlow does not require that variants be phased and so can
benefit from larger compendia of unphased genotypes available through projects like
gnomAD [28].
Using the set of 25 deeper simulations, RandFlow-LD reduced the median number

of strongly biased HET sites to 44, from a median of 70 using the GRCh38 reference.
RandFlow-LD also reduced the overall REF-to-ALT ratio to 1.0038, an improvement over
GRCh38 (1.0145) and MajorFlow (1.0064) (Additional file 1: Table S2). We repeated the
experiments 14 times with different random seeds and showed that the variation due
to randomness for RandFlow-LD was small compared to the difference in alignment
methods (Additional file 1: Note S2 , Additional file 1: Figures S5, S6, S7).
We further compared the reference flowmethods to vg [11]. vg aligns to a reference that

is shaped as a graph rather than a string. Paths through the graph correspond to different
combinations of REF and ALT alleles. Suchmethods can improve alignment accuracy and
reduce reference bias by adding paths—thereby removing alignment-score penalties—for
ALT alleles. We built a vg index using chromosome 21 of the GRCh38 primary assem-
bly as the base and including all variants from the 1000-Genomes GRCh38 callset having
allele frequency at least 1% and aligned all reads to the graph. There were 192,846 variants
passing the threshold, about twice as many ALT alleles as we considered in our RandFlow
(93,146) and RandFlow-LD (95,319) strategies. We found that RandFlow and RandFlow-
LD had higher sensitivity and fewer incorrectly aligned reads than vg (Fig. 2a, Additional
file 1: Figure S1), but that vg yielded a smaller number of strongly biased sites (30, ver-
sus 44 for RandFlow-LD) and a slightly more balanced overall REF-to-ALT ratio (1.0026,
versus 1.0038 for RandFlow-LD). While neither approach is the clear winner in this com-
parison, the reference flow methods use substantially less time and memory, as discussed
below.
To explore how using more second-pass genomes improves accuracy, we used the same

RandFlow-LDmethod tomake a set of 26 population-specific chromosome 21 sequences.
These correspond to the 26 separate populations studied in the 1000 Genomes Project,
subdividing the 5 super populations and including 168,593 variants in total. The align-
ment sensitivity of this “RandFlow-LD-26” approach was the best of any we evaluated,
closing 84.08% of the gap between the GRCh38 and personalized references. It achieved
lower allelic bias compared to RandFlow-LD, with a median of 39 strongly biased sites
and an overall REF-to-ALT ratio of 1.0024. Though it used a total of 27 references (includ-
ing the first-pass major-allele reference), RandFlow-LD-26 used less CPU time and had a
smaller memory footprint compared to vg (the “Computational efficiency” section).
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Assessing reference bias with real data

We further assessed these methods using a deep whole-genome sequencing dataset from
individual NA12878 (SRR622457) generated by the 1000 Genomes Project [20]. The
dataset consisted of 1.4 billion Illumina HiSeq 2000 101-bp paired-end reads, though we
used only the first end of the pair in these experiments. Since each read’s true point of
origin is unknown, we assess only allelic balance and not sensitivity. We assessed allelic
balance only at sites where NA12878 is HET according to the 1000 Genomes Project
GRCh38 call set, and then stratified the sites according to the Genome-in-a-Bottle v3.3.2
confidence annotation [29]. There were 1,723,317 (83%) HET sites in high-confidence
regions, and 344,945 (17%) in low-confidence regions.We also constructed and aligned to
an ideal, diploid personalized reference using the phased variant calls for NA12878 from
the GRCh38 call set. We assessed only the RandFlow-LD and RandFlow-LD-26 methods
since they outperformed other reference-flow methods in the simulation experiments.
After a first-pass alignment to the global major-allele reference, there were 250M (17.4%)
reads deferred into the second pass.
Consistent with the simulation experiments, we observed that RandFlow-LD and vg

both reduced the number of strongly biased sites in all regions, from 44,810 in the case
of GRCh38, to 34,429 (23% reduction) for RandFlow-LD and 31,784 (29% reduction) for
vg (Fig. 3 and Table 2). Similarly, RandFlow-LD reduced the overall REF-to-ALT ratio

Fig. 3 Histograms of allelic balance using a high-coverage real WGS dataset of individual NA12878
(SRR622457). Experiments are performed using GRCh38 (GRC), global major reference (Major), diploid
personalized genome (Personalized), vg using alleles with frequency ≥ 10% (vg), reference flow using
1000-bp phased blocks with 5 super populations (RandFlow-LD) and reference flow using 1000-bp phased
blocks with 26 populations (RandFlow-LD-26)
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Table 2Measures of allelic balance for NA12878 whole genome sequencing dataset stratified by
Genome-in-a-Bottle v3.3.2 confidence annotation

Method REF-to-ALT Total # biased # biased

ratio # biased toward REF toward ALT

High confidence
GRCh38 1.0407 20,012 18,141 1871
Major 1.0227 19,837 15,415 4422
RandFlow-LD 1.0133 12,239 9512 2727
vg 1.0124 10,518 7971 2547
RandFlow-LD-26 1.0098 9984 7489 2495
Personalized 1.0033 7024 4,600 2424

Low confidence
GRCh38 1.2355 24,798 20,594 4204
Major 1.1230 26,579 20,108 6471
RandFlow-LD 1.0282 22,190 15,891 6299
vg 1.0120 21,266 15,422 5844
RandFlow-LD-26 1.0008 20,333 13,874 6459
Personalized 0.9750 16,266 9299 6967

All regions
GRCh38 1.0718 44,810 38,735 6075
Major 1.0397 46,416 35,523 10,893
RandFlow-LD 1.0160 34,429 25,403 9026
vg 1.0123 31,784 23,393 8391
RandFlow-LD-26 1.0081 30,317 21,363 8954
Personalized 0.9981 23,290 13,899 9391

vg index includes variants with 10% or higher allele frequency in the 1000-Genomes Project GRCh38 call set. The methods are
sorted by REF-to-ALT ratio in all regions

from 1.0719 (GRCh38) to 1.0160 and vg reduced it to 1.0123. Further, RandFlow-LD-
26 reduced the number of strongly biased sites to 30,317 (32% reduction) and REF-to-
ALT ratio to 1.0081, best among the methods using non-personalized references. The
variant-aware methods substantially reduced reference bias compared to a method that
aligned only to the global major reference (“Major”). They also reduced the number of
unaligned reads (Additional file 1: Figure S8). In high-confidence regions, variant-aware
methods reduced the number of strongly biased sites by 39–50% compared to GRCh38
and reduced the REF-to-ALT ratios from 1.041 to about 1.01 (Additional file 1: Figure S9).
In low-confidence regions, we observed 11 – 18% reduction in number of strongly biased
sites, but a greater benefit in REF-to-ALT ratios, from 1.024 to 1.001–1.028 (Additional
file 1: Figure S10). RandFlow-LD-26 reduced bias most among variant-aware approaches.
Notably, the number of strongly biased sites was still as high as 23,290 when aligning

to an ideal personalized reference (Table 2). In part, this is because the 1000 Genomes
Project calls include only a subset of the variation present in the actual NA12878 genome.
This is both because some genomic regions were excluded from the call set because of low
mappability and because the call set does not include larger-scale structural variants that
can have an outside effect on sensitivity and bias. We also noted that the more strongly
biased sites were biased toward REF (13,899) more often than toward ALT (9391) when
aligning to the personalized reference, supporting the argument that variants missing
from the call set are affecting the bias.
To better understand where variant-aware methods reduce bias the most, we studied

the relationship between highly biased HET sites and various categories of repeat families
(Fig. 4) and classes (Additional file 1: Figure S11) annotated by RepeatMasker [30]. Using
alignment to GRCh38, many strongly biased HETs are in L1 (10,288 or 23%) and Alu
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Fig. 4 Number of strongly biased HET sites stratified by RepeatMasker class, after aligning single-end reads
from SRR622457. HET sites are determined using 1000 Genomes Project calls for NA12878, the individual
sequenced in SRR622457. RandFlow methods and vg reduce the number of biased sites substantially for L1,
Alu, and ERV1. RandFlow-LD-26 reduces the number of biased sites most among the methods tested

(11,255 or 25%). RandFlow-LD greatly reduced the number of strongly biased HET sites
in L1 (to 5250 reduced by 49%) and Alu (to 6555 reduced by 42%). A similar reduction
is observed when using vg, but the greatest reductions are achieved by RandFlow-LD-26.
For instance, RandFlow-LD-26 reduces the number of strongly biased sites in L1 from
10,288 to 3,560, a 65% reduction.

Computational efficiency

We constructed a dataset consisting of 10M single-end reads randomly sampled from
the first end of the SRR622457 paired-end dataset. We ran each alignment method and
measured the total size of index files on disk, the peak memory usage, and the CPU
time (Table 3). We measured peak memory usage using the maximum resident set size
reported by the GNU Time utility. We also measured CPU time using GNU Time. We
performed the experiments on a computer with a 2.2 Ghz Intel Xeon CPU (E5-2650
v4) and 515GB memory. We configured all read-alignment jobs to use 16 simultane-
ous threads but otherwise left parameters at their defaults. Though RandFlow-LD and
RandFlow-LD-26 were the only reference-flow approaches we benchmarked here, we
expectMajorFlow and RandFlow to perform similarly to RandFlow-LD since they execute
the same sequence of steps, using the same number of linear reference genomes.

Table 3 Comparison of alignment methods using 10M single-end 101-bp reads from individual
NA12878 (SRR622457)

Method Index size Memory usage CPU time

Bowtie 2-GRCh38 3.9G 3.3G 1.00x (73m)

RandFlow-LD 23.3G 3.3G 2.04x (149m)

RandFlow-LD-26 104.9G 3.3G 5.89x (430m)

vg 25.4G 25.6G 11.26x (822m)

The vg index includes variants with allele frequency ≥ 10% in the 1000-Genomes Project GRCh38 call set. The RandFlow-LD
indexes include the indexes for liftover and Bowtie 2 indexes for the global major-allele reference as well as second-pass
population references. CPU time is compared to a baseline run of Bowtie 2 to the GRCh38 primary assembly
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Compared to an alignment run against the GRCh38 primary assembly, RandFlow-LD
used about 5.97 times as much disk space to store the reference index files, consistent with
the fact that RandFlow-LD uses 1 reference in the first pass and 5 in the second (Table 3).
vg used a similar amount similar size of disk space for its indexes (.xg, .gcsa and
.gcsa.lcp). vg used 7.31 times as much peak memory usage compared to the linear-
based alignment methods, including RandFlow-LD. The baseline approach used less than
9% of the CPU time as vg, while RandFlow-LD used less than 18% of the CPU time as vg.
Overall, RandFlow-LD used only about twice as much CPU time as the baseline. Eighty-
four percent of RandFlow-LD’s runtime overhead was spent in re-alignment, 13% was
spent in liftover, and less than 2% was spent in merging alignments. When extending
RandFlow-LD to RandFlow-LD-26, the CPU time increased to 589% of the baseline and
the index size increased to 104.9 GB. But its speed was 1.9 times that of vg.
We note that RandFlow-LD and RandFlow-LD-26 have similar peak memory foot-

print to the baseline because the reference-flow software runs the alignment jobs serially.
In other words, only one reference genome index is resident in memory at a time.
Because the read aligners themselves are multithreaded, we can do this while using many
simultaneous threads.

Comparison of variant-aware alignment approaches

We further compared the reference flow methods with other graph-based methods,
including the graph aligner HISAT2 [12] (Additional file 1: Figures S12, S13 and S14).
HISAT2was computationally efficient, using 46.5% of the CPU time compared to Bowtie2
with a whole-genome graph containing variants with allele frequency ≥ 10% in the 1000
Genomes Project. Its index size (6.1G) and memory usage (6.5G) were small compared
to vg’s (index size: 25.6G; memory usage: 25.6G) using the same variant set. However,
it performed worse than other methods on mapping sensitivity (92.46%, versus 92.80%
for vg), median number of strongly biased sites (138, versus 30 for vg), and overall REF-
to-ALT ratio (1.0265, versus 1.0026 for vg) when evaluated using simulated reads from
chromosome 21.
To understand the effect of including different numbers of variants in the vg graph, we

tested a few vg graph sizes: a vg graph with no variants (just the linear GRCh38 refer-
ence), a graph with all 1000-Genomes variants having ≥ 10% allele frequency (AF), and
a graph with all ≥ 1% AF variants. For a more direct comparison with RandFlow-LD,
we also made a vg graph that included the union of the variants used in all RandFlow-
LD references (Additional file 1: Note S1, Additional file 1: Table S3). We indexed the
graphs and evaluated alignment performance using the same simulation framework as in
the “Simulations for major-allele reference flow” and “Simulations for stochastic reference
flow” sections. The median mapping sensitivity of the≥ 10% AF graph outperforms other
vg-basedmethods (≥ 10% AF: 92.805%;≥ 1% AF: 92.797%), while the≥ 1% AF graph gave
fewer median strongly biased sites (≥ 10% AF: 40;≥ 1% AF: 30) and lower overall REF-to-
ALT ratio (≥ 10% AF: 1.0051; ≥ 1% AF: 1.0026). When comparing RandFlow-LD with the
vg graph built using the RandFlow-LD variants (vg-RandFlow-LD column in Additional
file 1: Figures S12, S13 and S14), RandFlow-LD is more sensitive (92.82% versus 92.80%
for vg-RandFlow-LD), achieves a more balanced REF-to-ALT ratio (1.0038 versus 1.0069
for vg-RandFlow-LD), and yields a smaller number of highly biased sides (44 versus 50 for
vg-RandFlow-LD).
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Discussion
We proposed and evaluated a family of “reference-flow” alignment methods. These are
based on the idea that reads that fail to align or align poorly to one reference might align
well to another with a different complement of alleles. We first showed that a 2-pass
method using superpopulation major-allele references (MajorFlow) outperformed both
a standard linear reference and individual major-allele references. As a further improve-
ment, we proposed the RandFlow and RandFlow-LD methods that align to “random
individuals” from each super population. These methods performed similarly to vg and
approached the performance achieved using the ideal, personalized reference. The refer-
ence flow methods were much more computationally efficient than vg, running 5.5 times
as fast and using 14% of the memory compared to vg when aligning to a graph containing
all 1000 Genomes variants of frequency 10% or higher.
Our results complement key points from previous studies. Like the FORGe study [17],

we also showed that alignment to a major-allele reference improves alignment accuracy
compared to the standard linear reference. Also like FORGe, we showed that align-
ing to a super-population-matched major-allele reference did not substantially improve
alignment accuracy compared to a global major-allele reference combining all super pop-
ulations. Our results also reinforce that a linear aligner can be extended to incorporate
variants and exhibit similar accuracy to a graph aligner [16, 31].
For compatibility with downstream tools, alignments output by reference-flow meth-

odsmust have their reference coordinates translated back to the standard linear reference.
Notably, this requires only a pairwise alignment from each of the reference-flow refer-
ences to the standard reference. Thus, approaches such as RandFlow and RandFlow-LD
use 5 references in the second pass require 6 pairwise whole-genome alignments: one
from the first-pass major-allele reference to the standard reference and 5 from each
of the second-pass references. This can be advantageous in the situation where the
reference-flow genomes are assemblies with no pre-existing multiple alignment (, VCF
file) describing their relationship. Algorithms for calculating genome-scalemultiple align-
ments are resource intensive [32, 33] and yield a more complex structure compared to
a pairwise alignment. Reference flow’s use of pairwise alignments also helps to solve an
“N+1” problem; adding one additional reference to the second pass requires only that we
index the new genome and obtain an additional whole-genome alignment (or otherwise
infer such an alignment, from a VCF file) to the standard reference. We demonstrated
that we could extend reference flow to 26 1000-Genomes populations, reducing bias still
further while still aligning faster than vg. This flexibility could be important in the com-
ing era where long and ultra-long sequencing reads allow us to build many high quality
human genome assemblies.
While we explored methods involving a single initial reference and a set of second-

pass references based on 1000-Genomes populations or super populations, we can also
consider a wider class of possible architectures. For instance, considering that our method
consistently performs worst on the AFR super population, we could imagine building
a deeper “tree” of AFR-covering references. A read aligning poorly to the second-pass
reference representing the AFR super population could, in a third pass, be aligned to an
array of references for specific populations within AFR. We can imagine more complex
architectures as well, leading to a general notion of a “reference flow graph” where nodes
represent references and directed edges indicate which references might be attempted
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next. Whether a read should be forwarded along an edge would be dictated by a (possibly
edge-specific) rule that uses alignment score, mapping quality, whether the alignment
overlapped some genomic region, or other factors.
Our approach for selecting population-specific genomes involves randomness, chiefly

as a way of “pushing” genomes further apart compared to the major-allele references. An
alternative would be to cast this as a problem of optimizing the references’ “coverage” of
the overall genotype space. Such an optimization approach might improve coverage (and
therefore accuracy) while removing the random element. This might be accomplished
using unsupervised, sequence-driven clustering methods [34, 35], using the “founder
sequence” framework [36, 37], or using some form of submodular optimization [38]. A
more radical idea is to simply index all available individuals, forgoing the need to choose
representatives; this is becoming more practical with the advent of new approaches for
haplotype-aware path indexing [31] and efficient indexing for repetitive texts [39].
Since reference flow is essentially a “wrapper” that can be placed around an existing

aligner, Bowtie 2 could be replaced by a different linear aligner such as BWA-MEM or
even a graph aligner such as vg. It is even possible for different nodes in the graph to use
different alignment tools. Since the wrapper is written using Snakemake [40], it is eas-
ily deployable both in one-sample single-computer scenarios and in scenarios involving
many samples or a collection of networked computers.
In the future, it will be important to benchmark reference-flow methods when larger

structural variants are included in the references. Structural variants have a dispropor-
tionate effect on alignment quality [41, 42]. In principle they are not difficult to include
in the reference flow framework, though our lift over procedure is not currently robust
enough to handle more complex structural variants like inversions or rearranges.

Methods
DNA data simulation

We built diploid consensus genomes for the selected individuals (Additional file 1:
Table S1) using bcftools [43] based on the SNVs and indels specified by the 1000
Genome Project GRCh38 call set [24]. We used Mason2 [23] to simulate paired-end Illu-
mina 100-bp reads, but used only the first end in most experiments. Since variants were
already included in the reference genomes we simulated from, we did not use Mason2’s
variation-adding feature. We enabled Mason2’s features for generating random sequenc-
ing errors and quality values. We simulated reads independently from each haplotype to
generate diploid read sets, keeping information about the haplotype, chromosome, and
offset of origin for downstream evaluations.

Building and aligning to the personalized reference

We built personalized, diploid reference genomes for each of the 100 randomly selected
1000 Genomes individuals [5, 44] (Additional file 1: Table S1). We used phased variant
calls—including SNVs and indels and including sites with more than 2 ALT alleles—from
both haplotypes of the selected individual to build FASTA files containing a personal-
ized diploid reference genome. When aligning to the personalized diploid references, we
aligned all reads separately to both haplotypes. We aligned to the haplotypes separately
so that the mapping qualities could be informative; aligning to both together would have
yielded consistently lowmapping qualities. We then merged the resulting alignments. For
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a read that aligned to both haplotypes, we took the alignment with the higher alignment
score. We broke ties by taking the alignment with higher mapping quality or, if the tie
remained, at random.
For the simulated experiment using chr21, we aligned to each personalized haplotype 5

separate times, providing the aligner with 5 different random seeds. This yielded 10 total
alignments from which we selected the best. This helped to improve the upper bound
somewhat, since the 5 random seeds gave the aligner 5 times as many chances of find-
ing the best alignment even with the censoring effect of alignment heuristics (Additional
file 1: Figure S12).

Measuring sensitivity

In simulation experiments, we keep information about each read’s haplotype, chromo-
some, and offset of origin. We say a read aligns correctly if the alignment’s leftmost
mapped base is within ± 10-bp of the leftmost base at the read’s point of origin. Since we
use Bowtie 2 with default alignment parameters, no “soft clipping” is possible and it does
not affect the definition of correctness. Reads that align outside of the ± 10-bp window
are called incorrect. We define sensitivity as the fraction of reads that aligned correctly.

Allelic balance measurement

We measured allelic balance at each bi-allelic HET SNVs reported in the 1000 Genomes
Project GRCh38 call set. HET SNVs that were contained within a larger deletion variant
were excluded, whether or not the deletion was heterozygous. At each relevant HET, we
considered the “pileup” of alleles at the site induced by overlapping read alignments. Let
aref and aalt denote the number of REF and ALT alleles overlapping the site:

Allelic balance,β = aref
aref + aalt

(1)

We say a site is strongly biased when β ≤ 0.2 or β ≥ 0.8. For a collection of sites, we
calculate the overall REF-to-ALT ratio as total number of REF alleles divided by the total
number of ALT alleles across the sites:

Overall REF-to-ALT ratio =
∑

i∈H aref,i
∑

i∈H aalt,i
(2)

We ignore alleles besides REF and ALT, and we ignore alignments having a gap at the
site. The assumption that on average β should equal 0.5 at HET sites is well founded for
simulated datasets. Real datasets have biases, which might be due to systematic sequenc-
ing errors or fragmentation bias, for example. Biases might also arise from errors in the
set of sites we consider to be HET, e.g., if the variant caller that produced the HET calls
was itself affected by allelic bias.

Reference flow

Preparation The reference-flow methods require that we first build read-alignment
indexes and coordinate-translation indexes for the relevant species and populations. Both
can be generated from a reference genome in FASTA format and a collection of popula-
tion variants in VCF format. The reference-flow software (a) processes the VCF to select
variants to include in the population reference genomes, (b) generates both the first-pass
and the second-pass references based on the reference genome, and (c) builds Bowtie 2
indexes for all references.
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For convenience, we provide pre-built RandFlow-LD genomes and indexes based on the
GRCh38 reference and the 1000 Genomes Project GRCh38 call set (see the “Availability
of data and materials” section).

First pass In the first pass, we align all reads to an initial reference genome. For the
particular reference-flow strategies evaluated here (MajorFlow, RandFlow, RandFlow-LD,
and RandFlow-LD-26), we first aligned to the “global major” reference (the “Simulations
for major-allele reference flow” section). Reads that fail to align or that align with low
mapping quality are “forwarded” to a second pass, whereas reads that align with high
mapping quality are “committed” and are ultimately passed through to the final out-
put. We use a mapping-quality threshold because it is readily available—reported by
most popular read aligners—and because alignments with lowMAPQ are the most likely
to benefit from the second alignment pass. After empirical experiments, we selected a
MAPQ threshold of 10 (Additional file 1: Figures S15 and S16).

Second pass For reads forwarded to the second pass, we realign to a set of references
that include a wider range of genetic variation. In the methods evaluated here other
than RandFlow-LD-26, we use five second-pass references, each corresponding to a
1000 Genomes Project superpopulation: AFR (African), AMR (admixed American), EAS
(East Asian), EUR (European), and SAS (South Asian). For RandFlow-LD-26, we use 26
second-pass references, each corresponding to a population in the 1000Genomes Project.
In the case of the MajorFlow method, the second-pass genomes are simply the major-

allele references corresponding to each of these superpopulations (the “Simulations for
major-allele reference flow” section). In all cases, the second-pass references consist of a
single haplotype.

Stochastic references In the RandFlow, RandFlow-LD, and RandFlow-LD-26 strategies,
second-pass references are designed to represent “random individuals” from the super
populations. For RandFlow, we construct the second-pass references by iterating through
each polymorphic site i and performing an independent random draw to choose the ALT
allele with probability equal to its allele frequency pi in the super population:

GTi =
{
REFi 1 − pi
ALTi pi

In the case of the RandFlow-LD and RandFlow-LD-26 strategies, for a variant site we
select one haplotype in the super population uniformly at random. We then maintain
the linkage disequilibrium (LD) relationship by selecting the genotypes from the same
haplotype for the next 1000-bp region.
While we used the population and super population labels provided by the 1000

Genomes Project here, the reference-flow framework can work with any granularity of
label. Further, neither the MajorFlow nor the RandFlow strategies require that genetic
variants be phased. Those approaches could also work with larger, unphased compendia
of genetic information such as GnomAD [28].

Merging and lifting For reads that aligned to more than one reference, we must choose
a single “best” alignment to include in the ultimate SAM output. We select by choosing
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the alignment with the highest alignment score; roughly, this corresponds to the align-
ment with the fewest mismatches and gaps. If there is a tie for best alignment score, the
alignment with higher mapping quality is selected. If there is a tie in both categories, we
select at random from among the tied alignments.
For maximum compatibility with downstream tools, the SAM output from our

reference-flow methods is with respect to the standard GRCh38 primary assembly. But
since the reference genomes in our method—including the major-allele references—can
have insertions or deletions with respect to the standard reference, wemust translate (“lift
over”) these alignments to standard reference coordinates before outputting them. We
implemented a simple method to lift over alignments that builds a succinct mapping of
coordinates from a genome to the standard reference genome using a VCF file. We use
the mapping to adjust the POS and CIGAR fields of a SAM file so as to be compatible with
the standard reference. The time and memory used to lift the alignments were included
in the benchmarking measurements discussed in the “Computational efficiency” section.
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