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Abstract

To meet increasing global food demand, breeders and scientists aim to improve the
yield and quality of major food crops. Plant diseases threaten food security and are
expected to increase because of climate change. CRISPR genome-editing technology
opens new opportunities to engineer disease resistance traits. With precise genome
engineering and transgene-free applications, CRISPR is expected to resolve the major
challenges to crop improvement. Here, we discuss the latest developments in CRISPR
technologies for engineering resistance to viruses, bacteria, fungi, and pests. We
conclude by highlighting current concerns and gaps in technology, as well as
outstanding questions for future research.

Introduction
Global population is growing at an alarming rate and is expected to increase by one

quarter in the next 30 years, to reach 10 billion [1, 2]. Meanwhile, agricultural land area

per capita, defined as the sum of arable land, permanent cropland, permanent

meadows, and pastures, is declining every year [3]. Climate change is making the situ-

ation even more grim, with global temperatures expected to rise 2 °C by the year 2050.

In Europe, for example, a recent study estimated that, as compared to the year 2000,

summer and winter temperatures would increase by 3.5 °C and 4.7 °C, respectively, by

that time [4]. This temperature shift will significantly affect the patterns of pathogen

infection, making crop diseases more severe and less predictable [5]. Rising

temperature is not the only threat to agriculture from climate change, as rising sea

levels also exacerbate the scarcity of arable land; one such event has already caused

massive locust swarms that severely damaged crops across East Africa, Asia, and the

Middle East in 2020 [6]. With population increasing while agricultural land area

decreases and crops experience constant threats from climate change, a vital route

toward maintaining food security is the development of climate-resilient crops.

To cope with these challenges, scientists and plant breeders have been consistently

working to develop new crop varieties that are not only high yielding, but also resistant
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to relevant abiotic stresses such as drought, salinity, and flooding, and biotic stresses

such as insects and pathogens. As a result, the average crop yield per hectare of agricul-

tural land has increased significantly since the Green Revolution of the 1950s and

1960s [3, 7]. The developing world has witnessed an extraordinary period of growth in

food crop productivity during the past few decades, despite increasing land scarcity and

rising land values. While populations more than doubled, cereal crop production tri-

pled during this period, with only a 30% increase in the area of land under cultivation.

This pattern underscores the importance of improved crop varieties in meeting rising

food demands in the past. It must be noted here that the productivity boost during the

Green Revolution was due not only to improved crop varieties but also to strong in-

vestment in crop research, infrastructure, and market development and appropriate

policy support, highlighting the importance of these processes for the future [7]. Never-

theless, it can be concluded that improved food crop varieties will make it possible to

address the challenges of food scarcity and mitigate the effect of climate change on

agriculture.

Production of engineered crops via new plant breeding technologies
Crop varieties have conventionally been developed by farmers and crop breeders using

basic techniques such as the selection of plants with desirable characteristic for propa-

gation. Modern plant breeding techniques added marker-assisted selection and genetic

modification to the crop improvement toolkit. These methods have been reviewed else-

where [8, 9]. Briefly, a genetically modified (GM) crop variety is developed by (1) identi-

fication of a piece of DNA that confers the trait of interest, for example, a gene

responsible for virus resistance; (2) cloning of the DNA into the carrier or vector plas-

mid; (3) delivery of the DNA to the target plant; and (4) generation of modified plants

with the desired trait, e.g., virus resistance. GM crop production has been controversial

mainly because of fear-based agricultural policies driven by limited public understand-

ing, ineffective information sharing by scientists, and inaccurate portrayals by NGOs

and anti-GM lobbyists [10]. Apart from social and economic concerns such as owner-

ship, stewardship, product regulation, and market development, one major concern

related to GM crops is the extensive use of certain agrochemicals (such as glyphosate)

in conjunction with herbicide-tolerant GM crop varieties and the retention of

antibiotic-resistance genes from the production pipeline in the GM variety. These con-

cerns have led to the enactment of strict regulations for GM crops, which not only

make the end products expensive but also slow the delivery of new varieties to farmers,

making it more difficult for breeders to produce varieties suited to current threats to

crops.

While society remains divided over the use of GM crops, new plant breeding tech-

nologies (NPBTs) have recently emerged as alternative approaches to speed up the

introduction of improved traits. NPBTs include precision genome-modification plat-

forms such as the clustered regularly interspaced short palindromic repeat (CRISPR)/

CRISPR-associated protein (Cas) and transcription activator-like effector nuclease

(TALEN) methodologies [11]. In addition to genome editing, NPBTs include techno-

logical advances that shorten the breeding cycles and accelerate crop research, such as

speed breeding [12, 13] and next-generation genotyping [14] and phenotyping plat-

forms [15]. For some important crops that have a flowering behavior difficult for
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breeding (such as cassava, Manihot esculenta) or are sterile (such as banana, Musa acumi-

nata), genome editing provides an efficient and robust breeding approach, given the alter-

native breeding approaches are either significantly inefficient or not applicable [16].

Genome-editing NPBTs differ from conventional GM methods in various ways. For

example, TALENs and CRISPR-Cas can be used for precise genetic manipulation with-

out introducing exogenous DNA such as antibiotic-resistant genes, thus eliminating the

fear that foreign DNA may be present in the final product [17]. Whereas classical GM

crop production requires the insertion of foreign DNA (transfer DNA, or T-DNA, from

Agrobacterium species), some genome-editing protocols do not require T-DNA inser-

tion, such as CRISPR via a ribonucleoprotein (RNP) complex or via virus-based DNA

replicons to induce precisely targeted edits in the crop plant DNA [18–20]. Further

elaborations of this methodology, including protoplast delivery of preassembled CRIS

PR-Cas RNPs, transient expression of programmable nucleases through agroinfiltration,

and site-specific integration of a CRISPR array in other chromosomal locations

followed by removal via segregation, have paved the way toward developing transgene-

free CRISPR plants [17, 21, 22].

These recent developments in NPBTs make it possible for new food products to reach

the market quickly at affordable prices. Recent examples of such products include

browning-resistant mushrooms [23], high-amylopectin waxy corn (Zea mays) [24], and

false flax (Camelina sativa) with enhanced omega-3 oil [25]—all of which were developed

using CRISPR and approved by the US Department of Agriculture (USDA) in record time.

In summary, the latest developments in NPBTs make them excellent tools with which to

produce the crops of the future, by making it possible to address concerns related to GM

crops and because of their precision, robustness, and timely regulation.

CRISPR-mediated genome editing: the evolution of site-specific nucleases
Genome editing uses site-specific nucleases (SSNs), which can be designed to bind and

cleave a specific nucleic acid sequence, introducing double-stranded breaks (DSBs) at

or near the target site [26]. There are four major classes of SSNs: meganucleases, zinc-

finger nucleases (ZFNs), TALENs, and Cas proteins [26, 27]. These SSNs have signifi-

cant potential for plant breeding, as they provide multifaceted mechanisms to modulate

host genome structure and function, including gene knock-out, knock-in, and stacking,

targeted mutagenesis, and modulation of translation. SSNs offer significant economic

advantages and save time compared to conventional plant breeding approaches, which

can take up to 10 years for variety development [28].

Notably, the CRISPR/Cas system has emerged as the leading, ground-breaking SSN

and, although its utility for plant genome editing was first demonstrated only in 2013

[29–31], its applications in plants have increased rapidly compared to other NPBTs.

Research using CRISPR has introduced important agricultural traits including heat,

cold, and herbicide tolerance; viral, bacterial, and fungal resistance; and increased grain

size and weight into many economically important crops, such as rice (Oryza sativa),

wheat (Triticum aestivum), maize (Z. mays), tomato (Solanum lycopersicum), potato

(Solanum tuberosum), tobacco (Nicotiana tabacum), cotton (Gossypium spp.), soybean

(Glycine max), and brassicas [28]. Importantly, several groups have recently accom-

plished those genome alterations using transgene-free systems.
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The working principle of CRISPR-Cas9 has been well explained in several recent re-

views [28, 32]. Briefly, CRISPR-Cas9 is a type ΙΙ adaptive immune system, identified ini-

tially in Streptococcus pyogenes, that provides prokaryotes with defenses against

invading phages [33]. This system, the simplest CRISPR type, relies on the induction of

site-specific DSBs in the DNA of the invading virus. These DSBs consequently induce a

cellular DNA-repair mechanism either via non-homologous end-joining (NHEJ), which

leads to imprecise repair, or via homology-directed repair (HDR), which leads to pre-

cise repair. Repair introduces insertions or deletions (indels) in the invader virus DNA

and leads to a dysfunctional virus, providing natural defense to the bacteria against

viruses.

In an engineered system, a CRISPR locus transcribes a short CRISPR RNA (crRNA)

that hybridizes to a complementary sequence on the targeted genome (protospacer) ad-

jacent to the protospacer-associated motif site (PAM). In the case of S. pyogenes, the

PAM is a trinucleotide sequence, canonically 5′-NGG-3′, that is essential for Cas9 to

selectively recognize and bind targeted viral DNA [34]. Next, a trans-activating RNA

(tracrRNA) binds the crRNA to process the mature guide RNA (gRNA) and pair up

with the endonuclease Cas9 and RNase III to form the Cas9 complex. Once the gRNA

binds the complementary target site, it guides the Cas9 nuclease to generate a DSB

three nucleotides upstream of the PAM site on the target nucleic acid [35]. CRISPR-

Cas9 thus has the potential to induce precise, site-specific genome editing through the

delivery of synthetic single guide (sg) RNAs designed to guide Cas9-mediated cleavage

at targeted sites [32].

With the advances in CRISPR-Cas, substantial, ongoing work is using this technique

to improve crops through metabolic engineering and regulation of host genes. Several

new CRISPR systems, such as Cas12 [36], Cas13a [37, 38], Cas13b [39], and fCas9 [40],

are currently in the pipeline. These advances have led to the development of new

genome-editing applications that include deactivated Cas9 (dCas9) [41, 42], RNA-

processing Cas9 (RCas9) [37, 43], and Cas9 fusion proteins such as Cas9-cytidine de-

aminase fusion [44], offering scientists a wide range of CRISPR-based applications.

Approaches to design disease-resistant plants with CRISPR technologies
Recent advances in CRISPR technology have enabled scientists to develop a broad

range of CRISPR variants with different applications, including the modifications de-

scribed above. In this section, we focus on the CRISPR applications that have been suc-

cessfully used to engineer disease-resistant plants.

Gene disruption via indels in coding sequences

This is the most common application of the CRISPR-Cas9 system. It takes advantage of

the error-prone behavior of the cellular NHEJ DNA-repair machinery. The result is an

insertion or deletion (indel) of one or more nucleotides at the sgRNA-guided site,

which introduces a frameshift mutation and disrupts gene production (Fig. 1). This

technology has been used in several crops, including essential cereals such as rice and

wheat, to introduce traits of interest [28]. In the context of disease resistance, this tech-

nology has been used to engineer resistance by disrupting a plant susceptibility (S)

gene, which alters the plant-pathogen interaction, leading to reduced pathogen fitness
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on the host plant [45]. A remarkable example of this application was the use of CRIS

PR-Cas9 to introduce indels affecting eukaryotic translation initiation factor 4E proteins

(eIF4Es), which successfully induced resistance against multiple RNA viruses in Arabi-

dopsis and cucumber (Cucumis sativus) [46, 47].

Gene disruption via indels in promoter regions

A similar approach can be used to introduce indels in the promoter region instead of

the coding region of a plant gene. CRISPR-mediated promoter editing can be applied

in two ways: to disrupt the promoter sequence, with the aim of blocking gene

Fig. 1 Application of CRISPR/Cas-based technologies for engineering disease-resistant plants. CRISPR
technology, most widely with the Cas9, can be applied to achieve precise genome editing of the plant
genome to develop resistance against various pathogens. CRISPR/Cas9 can be used to disrupt plant
susceptibility (S) genes by targeting coding regions to knock out these genes, or to alter sequences of
promoter regions (for example, pathogen promoter’s effector-binding site), precluding pathogen effector
binding to the promoter and thus disrupting plant susceptibility. In addition, the ability of performing Cas9-
mediated multiplex targeting can facilitate the chromosomal deletion of S gene clusters, generating long-
term resistance to the target pathogen. Homology-directed repair (HDR) mediated by Cas9 can be used to
introduce resistance (R) genes against pathogens in cases where the plant-pathogen interaction (and S
genes) is not well studied. To develop pathogen resistance without disrupting or replacing whole genes,
base-editors or Cas9 technology (via synthetic directed evolution under the biotic selective pressure) can be
applied to achieve specific mutations (biomimicking) or evolution of genes resistant to pathogens of
interest. Apart from utilizing CRISPR technologies for plant genome engineering to develop disease-
resistant plants, the native function of CRISPR can be mimicked to directly target and interfere with the
genomes of pathogens of interest without affecting plant genome. For example, CRISPR can interfere with
DNA genomes of pathogens, such as DNA viruses, through DNA-targeting CRISPR systems, including Cas9.
CRISPR systems can also be used to target and disrupt pathogen’s RNA genomes (or RNA transcript of
pathogens with DNA genomes) through RNA-targeting CRISPR systems, such as Cas13 and FnCas9

Zaidi et al. Genome Biology          (2020) 21:289 Page 5 of 19



expression entirely, or to disrupt an effector-binding site, with the aim of disrupting

plant susceptibility by preventing a pathogen effector binding to the promoter. The lat-

ter approach has been used to modify the promoter of the rice sugar transporter gene

OsSWEET14, breaking the connection with the effector from a bacterial blight patho-

gen and thus leading to blight resistance (Fig. 1) [48–51]. In addition to promoter edit-

ing, CRISPR has been demonstrated to alter the gene regulation by targeting upstream

open reading frame (ORF) regions and editing cis-regulatory elements [52].

Gene deletion via multiplex sgRNAs

In CRISPR systems, multiple sgRNAs can be used to introduce multiple DSBs at

precise locations in the target genome. For instance, two sgRNAs binding before the

start codon and after the stop codon of the gene of interest will produce DSBs at the

respective locations. These DSBs then result in the removal of the DNA fragment con-

taining the gene of interest, before the cellular repair NHEJ machinery repairs the

DSBs. Because sgRNAs can be designed at any genomic region containing an appropri-

ate PAM trinucleotide sequence, this approach can be and has been used to delete large

chromosomal fragments as well as individual genes [53, 54]. This is further facilitated

by the development of a rationally designed Cas9, SpCas9-NG, that can recognize NG

PAMs, a relaxed stringency compared with the typical NGG PAMs [55]. In the context

of engineered pathogen resistance, gene clusters make this approach particularly useful.

In S gene clusters, where multiple S genes reside in adjacent chromosomal locations

[56], deleting the chromosomal fragment is likely to generate long-term resistance to

the target pathogen (Fig. 1).

Gene insertion via homology-directed repair

The aforementioned CRISPR techniques can be used to generate disease resistance

through alteration of S gene(s). However, all plant proteins, including the products of S

genes, are important and mostly multifunctional; disrupting these proteins thus comes

with costs to plant health and/or productivity. There are alternate approaches, such as

the aforementioned cis-regulatory element and promoter editing, to alter the gene ex-

pression instead of gene disruption, but it is often necessary to utilize resistance (R)

genes against pathogens in cases where the plant-pathogen interaction is not well stud-

ied, and the S genes have not been extensively explored. In such cases, the CRISPR

toolkit can be used for R gene insertion.

CRISPR-mediated gene insertion works via an alternative route that operates after

Cas9 has produced the sgRNA-dictated DSB; this route utilizes the cellular HDR, rather

than NHEJ, machinery. A delivery fragment, containing an R gene surrounded by se-

quence homologous to the DSB ends, is supplemented with Cas9 and the sgRNAs. This

cassette guides the HDR-mediated insertion of the R gene between the two DSB sites

(Fig. 1). This strategy has been used to introduce one or more genes at precise genomic

locations [57]. However, the efficiency of HDR in plants is very low [58], and although

new strategies to improve this are under development, currently, this makes gene inser-

tion in plants challenging to implement [59].

In addition to generating disease resistance, CRISPR-mediated gene insertion can be

used to study important S gene functions. To demonstrate this, Wang et al. used HDR
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in rice to incorporate green fluorescent protein (GFP) fused in frame with the glutathi-

one S-transferase loci [60]. This application has the potential to be used in studying S

gene functions, such as protein localization and the spatiotemporal regulation of S gene

expression. Host proteins playing key roles in pathogenicity can be tagged with GFP

directly in the genome in order to study their expression and localization during infec-

tion. However, such protein modifications can alter their expression and localization,

demonstrating the limitations of this approach.

Biomimicking via promoter, allele, or gene replacement

The concerns surrounding the introduction of foreign DNA into crop products mean that

the use of CRISPR for gene insertion is likely to be subjected to lengthy regulatory pro-

cesses and potentially consumer rejection. To overcome this challenge, CRISPR offers an

alternative approach that works on the principle of biomimicking. It has been known for

decades that native species and wild relatives of cultivated crops constitute a rich gene

pool, especially for resistance against biotic and abiotic stresses [61]. Several recent studies

have identified many R genes in the wild relatives of cultivated species and demonstrated

the successful transfer of resistance via the identification of an R gene and its transfer to

the cultivated crop species [62, 63]. CRISPR can be used to replace the faulty or poor-

performing R gene in a cultivated crop variety with the functional R gene from a disease-

resistant native variety via multiplexed HDR methodology.

Biomimicking refers here to the introduction of CRISPR-mediated mutations in such

a way that the sequence of the target gene is converted to the sequence from a disease-

resistant variety. Thus, instead of replacing the whole gene, the researcher introduces

only the specific mutations associated with the disease resistance trait, assuming that

the nucleotide differences between the gene of interest in the cultivated and wild var-

ieties are not otherwise significant to plant viability and productivity (Fig. 1). This has

been mainly achieved by utilizing a CRISPR system designed for targeted nucleotide

modification. A fusion of a nuclease-dead Cas9 or nickase with cytidine deaminase can

target point mutagenesis with high precision, and this approach has been successfully

used in several species for gene modification [64]. The same approach has been used to

introduce the N176K substitution encoded by the eIF4E virus-resistance allele (eIF4E1)

of Pisum sativum into the Arabidopsis EIF4E1 gene to generate Arabidopsis plants re-

sistant to Clover yellow vein virus (ClYVV) [65]. Recent studies have established the use

of synthetic directed evolution to evolve gene variants resistant to splicing inhibitors

and herbicides [66–68]. The same approach may be used under the biotic selective

pressure to evolve gene variants conferring resistance to selected pathogens.

CRISPR-mediated disease resistance: what has been achieved so far?
CRISPR technology and its variants have been used for applications in plant science

ranging from the study of gene function and protein localization to the introduction of

desired traits such as drought tolerance and increased grain size and number. These in-

teresting applications have been covered in recent review articles [26, 28]; here, we

focus on CRISPR-mediated engineering of plant disease resistance. Plant diseases are

mainly caused by infection with one or more of the main categories of plant pathogens:
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i.e., viruses, bacteria, and fungi. CRISPR technology has been used to engineer resist-

ance against all these major plant pathogen classes (Table 1).

CRISPR-mediated resistance against plant viruses: targeting virus genomes

Plant viruses are usually managed through improved agricultural practices and the use

of virus-resistant crop varieties. Most studies of CRISPR-mediated pathogen resistance

in plants have involved resistance to viruses. These studies have demonstrated two

main ways to engineer virus resistance: (1) directly targeting virus genome and (2) tar-

geting plant S genes crucial for the development of the viral disease (Fig. 1) [45].

The earliest work on engineered virus resistance used the first approach of directly

targeting the virus genome inside plant cells [103]. In two independent studies, Ali et al.

targeted multiple single-stranded DNA (ssDNA) geminiviruses: Beet curly top virus, Merre-

mia mosaic virus, Tomato yellow leaf curl virus, and Cotton leaf curl Kokhran virus with its

helper betasatellite cotton leaf curl Multan betasatellite, and successfully demonstrated

virus targeting by the sgRNA [72, 73, 76]. Within the viral genome, three sites were

targeted, two encoding replication-associated protein and capsid protein, and one an inter-

genic region. Targeting these sites introduced indels in virus genome consequently leading

to the lower virus titer and significantly reduced disease symptoms. Baltes et al. and Ji et al.

demonstrated similar results, targeting the geminiviruses Bean yellow dwarf virus and Beet

severe curly top virus, respectively [74, 75]. Apart from CRISPR-mediated targeting of the

viruses, these studies demonstrated limited success in achieving virus resistance in perman-

ent transgenic systems. A similar approach targeting the endogenous Banana streak virus

(eBSV) within the genome of plantain banana (Musa spp.) demonstrated that 75% of the

edited events remained asymptomatic compared to the non-edited plants [80].

Direct targeting of virus genomes via CRISPR is a means to engineer resistance against

RNA viruses as well. A similar approach targets the viral RNA, instead of DNA, and uses

the Cas9 RNA-binding variants, instead of DNA-binding Cas9. Zhang et al. developed Ni-

cotiana benthamiana and Arabidopsis plants expressing a FnCas9 targeting Cucumber

mosaic virus and Tobacco mosaic virus (TMV) and observed a significant reduction in

virus accumulation and reduced symptom development (Fig. 1) [71]. They later utilized a

similar strategy to produce resistance to Southern rice black-streaked dwarf virus, an RNA

virus targeting rice [70]. In two independent studies, Aman et al. also used an RNA-

targeting LwaCas13a (previously known as C2c2) to interfere with the RNA genome of

Turnip mosaic virus (TuMV) and demonstrated successful virus RNA targeting in both

N. benthamiana [37] and Arabidopsis [69]. Although LwaCas13a showed moderate target-

ing efficiency against TuMV in Aman et al. studies, these studies showed the great poten-

tial of using Cas13 systems in engineering plant immunity against RNA viruses. This led

Mahas et al. to further expand the Cas13-mediated virus immunity by screening various

Cas13 variants and identifying Cas13d system (CasRx) as the most robust Cas13 ortholog

to target and interfere with different RNA viruses, including TMV, Potato virus X (PVX),

and TuMV (Fig. 1) [104]. The impressive efficiency of Cas13 for targeting and interfering

with RNA viruses in plants could be exploited to potentially provide immunity against the

economically significant plant-infecting viroids. Whether Cas13 could successfully target

and degrade circular, highly compact and secondary structure-rich RNA viroid

genomes remain to be seen [105].
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Table 1 A summary of the studies on CRISPR-mediated plant disease resistance

Pathogen
type

Plant(s) Desired
modification

Targeted DNA/
RNA

Targeted
pathogen(s)/
disease(s)

Results Reference

m Arabidopsis Virus RNA
genome
disruption

Virus RNA genome Turnip mosaic virus Indels in virus
RNA

[69]

N.
benthamiana

Virus RNA
genome
disruption

Virus RNA genome Turnip mosaic virus Indels in virus
RNA

[37]

Rice, N.
benthamiana

Virus RNA
genome
disruption

Virus RNA genome Southern rice black-
streaked dwarf virus,
Tobacco mosaic virus

Reduction in
virus levels
and disease
symptoms

[70]

Arabidopsis,
N.
benthamiana

Virus RNA
genome
disruption

Virus RNA genome Cucumber mosaic virus,
Tobacco mosaic virus

Reduction in
virus levels
and disease
symptoms

[71]

N.
benthamiana

Virus DNA
disruption

Virus DNA
Rep, IR, and Cp

Beet curly top virus,
Merremia mosaic virus,
Tomato yellow leaf curl
virus

Indels in virus
DNA

[72]

N.
benthamiana

Virus DNA
disruption

Virus DNA and
satellite sequences

Cotton leaf curl Kokhran
virus, Tomato yellow
leaf curl Sardinian virus,
Tomato yellow leaf curl
virus, Merremia mosaic
virus, BCTV-Logan,
BCTV-Worland

Indels in virus
DNA

[73]

N.
benthamiana

Virus DNA
disruption

Virus DNA
Rep A/Rep and LIR

Bean yellow dwarf virus Indels in virus
DNA,
resistance to
virus

[74]

Arabidopsis,
N.
benthamiana

Virus DNA
disruption

Virus DNA
Rep, IR, and CP

Beet severe curly top
virus

Indels in virus
DNA,
resistance to
virus

[75]

Tomato, N.
benthamiana

Virus DNA
disruption

Virus DNA
Rep, IR, and Cp

Tomato yellow leaf curl
virus

Indels in virus
DNA,
resistance to
virus

[76]

N.
benthamiana

Virus DNA
disruption

Multiplex editing
at Rep and IR

Cotton leaf curl Multan
virus

Significantly
low virus
accumulation
and decreased
disease
symptoms

[77]

Cassava Virus DNA
disruption

AC2 and AC3 African cassava mosaic
virus

Indels in virus
DNA but no
virus
resistance

[78]

N.
benthamiana

Virus DNA
disruption

Multiplex editing
at virus DNA Rep,
IR, and Cp

Chilli leaf curl virus Significantly
low virus
accumulation
and decreased
disease
symptoms

[79]

Banana Virus DNA
disruption

Virus sequences in
the host plantain
genome

Endogenous banana
streak virus

75% of
pl0ants remain
asymptomatic

[80]

Biomimickinga Eif4e1 Clover yellow vein virus Reduced virus
accumulation

[65]

Rice Biomimickinga Eif4g Rice tungro spherical
virus

Resistance to
virus

[81]

Cassava Gene
disruption

nCBP-1, nCBP-2 Cassava brown streak
disease

Suppressed
disease

[82]
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Table 1 A summary of the studies on CRISPR-mediated plant disease resistance (Continued)

Pathogen
type

Plant(s) Desired
modification

Targeted DNA/
RNA

Targeted
pathogen(s)/
disease(s)

Results Reference

symptoms

Arabidopsis Gene
disruption

EIF4E Turnip mosaic virus Resistance to
virus

[47]

Cucumber Gene
disruption

eIF4E Cucumber vein
yellowing virus
(ipomovirus), Zucchini
yellow mosaic virus, and
Papaya ring spot
mosaic virus-W
(potyviruses)

Resistance to
three viruses

[46]

Fungus Tomato Gene
disruption

Multiplex gRNA at
Pmr4

Powdery mildew
caused by Oidium
neolycopersici

Significant
reduction in
mildew
symptoms

[83]

Tomato Gene
disruption

SlMapk3 Botrytis cinerea Increased
resistance to
B. cinerea

[84]

Tomato Gene
disruption

Solyc08g075770 Fusarium wilt Tolerance to
fusarium wilt

[85]

Rice Gene
disruption

Single and
multiplex gRNA at
OsERF922

Rice blast caused by
Magnaporthe oryzae

Significantly
decreased
blast lesions

[86]

Grape Gene
disruption

VvWRKY52 B. cinerea Increased
resistance to
B. cinerea

[87]

Tomato Gene
disruption

SlMlo1 Powdery mildew Resistance to
powdery
mildew

[88]

Banana Gene
insertion

RGA2, Ced9 Fusarium wilt caused
by Fusarium oxysporum
f. sp. cubense tropical
race 4 (TR4)

Significant
reduction in
disease

[89]

Rice Gene
disruption

OsMPK5 Fungal (Magnaporthe
grisea) and bacterial
(Burkholderia glumae)
pathogens

Indels in the
target;
resistance not
confirmed

[90]

Grape Gene
disruption

Mlo-7 Powdery mildew Indels in the
target;
resistance not
confirmed

[91]

Wheat Gene
disruption

TaMlo-A1, TaMlo-
B1, and TaMlo-D1

Powdery mildew High tolerance
to powdery
mildew

[92]

Wheat Gene
disruption

TaMlo Powdery mildew Indels in the
target;
resistance not
confirmed

[30]

Wheat Gene
disruption

TaEdr1 (three
homologs)

Powdery mildew Resistance to
powdery
mildew

[93]

Bacteria Rice Gene
disruption

OsSWEET13 Bacterial blight caused
by Xanthomonas
oryzae pv. Oryzae (Xoo)

Resistance not
confirmed

[94]

Rice Gene
disruption

OsSWEET11 Bacterial blight Enhanced
resistance to
Xoo

[95]

Rice Gene and
promoter
disruption

TALE-binding
elements (EBEs) in
OsSWEET13
promoter,

Bacterial blight caused
by Xoo

Broad-
spectrum
resistance
against

[50]
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Ali et al. highlighted a potential problem with the system by demonstrating the possi-

bility of virus escape from the CRISPR-edited plants [73]. Virus escape was later con-

firmed by Mehta et al., whose attempt to engineer resistance against African cassava

mosaic virus in permanent transgenic cassava (Manihot esculenta) lines failed to estab-

lish resistance [78]. Further investigation revealed that 33–48% of edited virus genomes

carried a conserved single-nucleotide mutation that conferred resistance to CRISPR-

Cas9 cleavage and generated virus escape mutants (Fig. 1) [78]. A proposed strategy to

counter this limitation is the use of a multiplex CRISPR system to introduce multiple

DSBs in virus DNA, which should be less prone to NHEJ-repaired functional virus mu-

tations and, in turn, to the development of escape mutants [106]. A recent study has

Table 1 A summary of the studies on CRISPR-mediated plant disease resistance (Continued)

Pathogen
type

Plant(s) Desired
modification

Targeted DNA/
RNA

Targeted
pathogen(s)/
disease(s)

Results Reference

OsSWEETT11, and
OsSWEEt14 genes

multiple Xoo
strains

Rice Promoter
disruption

OsSWEET11,
OsSWEET13, and
OsSWEET14

Bacterial blight Increased
resistance to
bacterial
blight;
confirmed in
field trials

[51]

Apple Gene
disruption

DIPM-1, DIPM-2,
and DIPM-4

Fire blight disease
(caused by Erwinia
amylovora)

Indels in the
target;
resistance not
confirmed

[91]

Rice Promoter
disruption

OsSWEET11,
OsSWEET14

Bacterial blight Indels in
promoter;
disease
resistance not
confirmed

[96]

Tomato Gene repair Jaz2 Bacterial speck disease
caused by
Pseudomonas syringae
pv. tomato DC 3000

Resistance to
bacterial speck
disease

[97]

Tomato Gene
disruption

Dmr6 Pseudomonas syringae,
Phytophthora capsici,
and Xanthomonas spp.

Resistance to
P. syringae, P.
capsici, and
Xanthomonas
spp.

[98]

Grapefruit Promoter
disruption

CsLOB1 Citrus canker Significantly
reduced
canker
symptoms

[99]

Wanjincheng
orange

Promoter
disruption

CsLOB1 Citrus canker Disease
severity
decreased by
83.2–98.3%

[100]

Oomycete Papaya Gene
disruption

PpalEPIC8 Phytophthora palmivora Increased
resistance
against P.
palmivora

[101]

Theobroma
cacao

Gene
disruption

TcNPR3 Phytophthora tropicalis Increased
resistance
against P.
tropicalis

[102]

aBiomimicking refers here to the introduction of CRISPR-mediated mutations in such a way that the sequence of
a target gene in disease-susceptible variety is converted to the sequence from a disease-resistant variety. Thus,
instead of replacing the whole gene, the researcher introduces only the specific mutations associated with the
disease resistance trait, assuming that the nucleotide differences between the gene of interest in the cultivated
and wild varieties are not otherwise significant to plant viability and productivity
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indeed demonstrated the targeting of a geminivirus, Chilli leaf curl virus, at multiple

sgRNA target sites and a significant reduction in viral DNA accumulation [79]. Subse-

quent transient assays confirmed a significant decrease in viral DNA accumulation and

disease symptoms [79]. Similar results were obtained by Yin et al., who used a multi-

plex CRISPR system to target Cotton leaf curl Multan virus at multiple genomic sites

(Rep and IR) and achieved successful resistance against virus in transgenic N.

benthamiana plants [77]. Further studies in crop plants and tests in field trials will be

needed to validate these findings. Although alternative strategies such as multiplex edit-

ing are aimed at addressing this, the potential for viral escape and the evolution of

CRISPR-resistant viruses remain the biggest concerns with this approach and limit the

applications of direct viral-genome-targeting CRISPR technology [106, 107].

CRISPR-mediated resistance against plant viruses: targeting plant S gene(s)

CRISPR-mediated targeting of S gene/s avoids the limitations associated with direct

viral genome targeting, as with this approach, the sgRNA targets the plant gene instead

of the viral genome, which is more prone to evasion because of its high copy number

and high recombination rate. Moreover, S gene disruption can be performed following

transgene-free CRISPR protocols. Thus, when S genes are known and well character-

ized, CRISPR-mediated targeting of S genes appears to be a better approach to engineer

viral immunity.

The S genes most widely targeted in CRISPR-mediated engineering of virus resistance

are the eIF4E genes, which encode cap-binding proteins essential for the cellular infec-

tion cycle of various RNA potyviruses. The potyviral 5′-terminal protein VPg interacts

with eIF4Es, and blocking this interaction triggers immunity against potyviruses in vari-

ous plant species. In two independent studies, CRISPR-mediated eIF4E targeting

yielded successful resistance against multiple viruses, including TuMV, Cucumber vein

yellowing virus, Zucchini yellow mosaic virus, and Papaya ring spot mosaic virus-W, in

Arabidopsis and cucumber [46, 47]. Later studies targeting eIF4E isoforms in other

important crop species produced broad-spectrum virus resistance in a variety of hosts.

Gomez et al. targeted the eIF4E isoforms in cassava, novel cap-binding protein-1

(nCBP-1) and nCBP-2, and showed that this significantly suppressed the symptoms of

Cassava brown streak virus disease [82]. Furthermore, a biomimicking approach generated

CRISPR-mediated mutations in Arabidopsis eIF4E1 that converted its sequence to match

the P. sativum eIF4E virus-resistance allele, successfully introducing resistance against

ClYVV [65]. Likewise, Macovei et al. demonstrated resistance in rice against rice Tungro

spherical virus through biomimicking of eIF4G alleles [81]. In summary, multiple CRISPR

systems have utilized S genes to achieve virus resistance in a number of crop species.

CRISPR-mediated resistance against bacteria

The most successful example of CRISPR-mediated introduction of bacterial resistance

in crops is by using OsSWEET gene/s to trigger immunity against bacterial blight

caused by Xanthomonas oryzae pv. oryzae. The rice SWEET clade III family contains

the genes OsSWEET11, OsSWEET13, and OsSWEET14, which encode sugar trans-

porters mediating glucose and sucrose export; SWEET gene induction by transcription

activator-like effectors (TALEs, the bacterial proteins used to develop TALENS)
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triggers sugar release into the apoplast, providing a nutrient source for the pathogen,

and thus, these genes act as S genes. Genome editing via TALENs had already demon-

strated that rice bearing one or more OsSWEET knock-outs shows resistance to bacter-

ial blight [48, 49]. Further studies identified the TALE-binding elements (EBEs) in the

OsSWEET promoters as key virulence factors in recessive OsSWEET-mediated resist-

ance [50, 94]. Recently, a comprehensive study introduced mutations into the pro-

moters of all three OsSWEET genes via CRISPR-Cas9 and reported that this resulted in

broad-spectrum resistance to bacterial blight (Fig. 1) [51].

In tomato (Solanum lycopersicum), bacterial speck disease is caused by Pseudomonas

syringae pv. tomato DC 3000, which produces coronatine that, with the co-receptor

JAZ2, stimulates stomata opening and facilitates leaf colonization by the bacteria. CRIS

PR-Cas9 has been used to edit SlJAZ2 to produce a dominant allele encoding a variant

of JAZ2 that lacks the C-terminal Jas domain, which prevents stomatal reopening and

provides resistance to bacterial speck disease [97]. Another Arabidopsis gene, DMR6

(DOWNY MILDEW RESISTANT 6), is strongly associated with salicylic acid regulation

and, in turn, with pathogen infection in plants. CRISPR has been used to target its to-

mato ortholog, SlDmr6-1, conferring broad-spectrum resistance against multiple patho-

gens including P. syringae, Phytophthora capsici, and Xanthomonas spp. [98].

One of the most economically important bacterial diseases for which CRISPR

provides a resistance solution is citrus canker. This infection, caused by Xanthomo-

nas citri subsp. citri, is considered among the most destructive diseases of citrus,

causing yield losses in citrus-growing regions worldwide. The main TALE of the

bacterium, PthA4, specifically binds to the effector-binding element in the pro-

moter of a citrus canker-susceptibility gene, LATERAL ORGAN BOUNDARIES 1

(CsLOB1), and activates its expression to favor citrus canker development [99].

Two independent studies have demonstrated that CRISPR-mediated editing of CsLOB1

leads to significantly reduced citrus canker symptoms in two citrus species, grapefruit

(Citrus × paradisi) [100] and Wanjincheng orange (Citrus sinensis Osbeck) [99].

CRISPR-mediated resistance against fungi

Fungal pathogens are causal agents of around 30% of emerging plant diseases [108] and

infect numerous economically important food crops (Table 1). CRISPR systems have been

used to target and disrupt the plant S genes for fungal pathogen susceptibility. Barley Mil-

dew resistance locus O (Mlo) encodes a membrane-associated protein that is essential for

fungal pathogen penetration of the host epidermal cells [109], and multiple studies indicated

that mutation of Mlo triggers plant immunity against powdery mildew [110–112]. Mutating

Mlo via CRISPR-Cas9 also conferred powdery mildew resistance in wheat [30, 88, 92] and

tomato non-transgenic systems [88]. Another powdery mildew S gene, Edr1 (Enhanced dis-

ease resistance 1), which encodes a Raf-like mitogen-activated protein, has also been tar-

geted via CRISPR-Cas9, resulting in a significant reduction in powdery mildew in wheat

[93]. Recently, CRISPR-mediated targeting of the Powdery mildew resistance 4 (Pmr4) S

gene, whose resistance mechanism is not completely understood, has been demonstrated to

cause a significant reduction of powdery mildew disease symptoms in tomato [83].

CRISPR has been used for gene disruption in rice targeting OsERF922, which encodes

a key ethylene-responsive factor that is involved in the modulation of biotic stress
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response and is a negative regulator of blast resistance in rice. Single or multiple

sgRNAs generated OsERF922 mutant rice lines that showed tolerance against rice blast,

with significantly decreased blast lesions compared to the controls [86]. Prihatna et al.

used CRISPR to study the reduced mycorrhizal colonization (rmc) tomato mutant lines,

which contain a chromosomal deletion affecting five genes that makes the plants sus-

ceptible to fusarium wilt. CRISPR-Cas9-mediated knock-out and complementation of

one of the five genes, Solyc08g075770, indicated that it is involved in this fusarium wilt

tolerance [85]. Wang et al. used CRISPR to target and disrupt a transcription factor

gene, VvWRKY52, with a critical role in plant response to biotic stress in the grape

(Vitis vinifera) cultivar Thompson Seedless and observed increased resistance against

the fungal pathogen Botrytis cinerea [87]. Likewise, Zhang et al. demonstrated that

CRISPR-mediated disruption of the gene encoding tomato mitogen-activated protein

kinase 3 (SlMAPK3), which regulates the accumulation of reactive oxygen species

(ROS), generated tomato plants resistant to B. cinerea [84].

CRISPR-mediated resistance against oomycete

Apart from the major viral, bacterial, and fungal pathogens, CRISPR has also been used

to address other biotic stresses, such as oomycete infection (Fig. 1). Phytophthora

palmivora is a destructive oomycete pathogen of papaya; the CRISPR-Cas9 system was

used to develop papaya plant mutant for a functional cysteine protease inhibitor (Ppa-

lEPIC8), which led to increased resistance against P. palmivora [101]. Likewise, resist-

ance has been engineered against another oomycete pathogen, Phytophthora tropicalis,

in Theobroma cacao, the tropical tree that produces cocoa beans [102].

Limitations and future prospects
CRISPR is being increasingly used to introduce desired traits, including disease resist-

ance, in numerous economically important crop species. Several independent studies

have demonstrated successful CRISPR-mediated engineered resistance and, in some

cases, broad-spectrum resistance against multiple pathogens (Table 1) [50, 51]. More-

over, these demonstrations of CRISPR-mediated disease resistance have not been lim-

ited only to the laboratory or greenhouse: several CRISPR crop varieties are in the

pipeline for commercialization and at least one product, false flax (C. sativa) with en-

hanced omega-3 oil, is reaching the market in record time in the USA [25]. This is an

indication that CRISPR crops and their products will reach consumers in the near fu-

ture, demonstrating that the exciting applications we have discussed here have great

potential in the development of future commercial crop varieties.

There have been several recent developments in the CRISPR technology that can be

directly implemented in disease-resistant crop production: for example, generating

gene-edited dicotyledonous plants through de novo meristem induction and eliminat-

ing time-consuming tissue culture steps [113], using temperature-tolerant CRISPR/

LbCas12a to increase the targeting and efficiency [114], enabling large DNA insertions

(up to 2 kb) with precision in rice [115], and applying heat-inducible CRISPR system to

increase the efficiency of gene targeting in maize [116]. Chromosome engineering in

crops is another exciting recent development enabling controlled restructuring of plant

genomes [117] and breaking genetic linkage via somatic chromosome engineering
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[118]. Taken together, these developments would further streamline the transfer of re-

sistance genes to elite cultivars.

Notably, the most economically important plant virus diseases are caused by gemini-

viruses, and all studies to date of CRISPR-mediated geminivirus resistance have used

direct virus DNA targeting. This approach has its limitations, however, owing to the

possibility of virus escape and generation of resistance-blocking strains (see the “CRIS

PR-mediated resistance against plant viruses: targeting virus genomes” section). The

most probable solution is the utilization of host susceptibility factors involved specific-

ally in the plant-geminivirus interaction. However, whereas there are well-characterized

S genes for other pathogens, such as Mlo for powdery mildew and eIF4E for poty-

viruses, such high-performance, precise S genes are not currently available for gemini-

viruses. Considerable work has been done to understand the process of geminivirus

infection, and several relevant plant genes have been identified; these comprehensive

review articles summarize host susceptibility factors that may be potential target S

genes for engineering geminivirus resistance, an important strategy to be pursued in

the future [119–122].

Given that the CRISPR technology was developed very recently, and it takes several

years to develop commercial crop varieties and move them through the standard regu-

latory procedures, there is a need to revise the regulatory timeline. Moreover, the

current legal framework within the EU regulates CRISPR crops as GM crops, even

when the products are transgene-free and contain no foreign DNA [123, 124]. These

regulatory frameworks increase the time and cost of variety development. Scientists

and policymakers need to work together and devise comprehensive plans for CRISPR

crops integration. Excellent examples of such efforts include a science-based regulatory

framework designed for engineered crops [125] and a GMO opt-in mechanism laid out

for the EU [126].

Apart from improvements to the regulatory and policy environment, several techno-

logical improvements are also needed to facilitate the development and testing of CRIS

PR crops. A technological bottleneck to CRISPR in plants is the low innate HDR effi-

ciency, which hinders several intended applications, such as gene replacement and large

chromosomal deletions. Although new strategies are being developed to improve HDR

efficiency in plants [57, 58, 127], this hurdle currently makes gene-insertion applica-

tions in plants challenging. Developing novel methods for the delivery of the genome

engineering machinery into germline cells will unlock the potential of this technology

to generate foreign DNA-free edited genomes. It will enable engineering wild relatives

or germplasm currently used in agriculture but recalcitrant for transformation. Finally,

extensive field trials are needed to test the performance of these crops, at least for sus-

tained resistance, and also for other productivity traits that may be compromised if, for

example, a multifunctional S gene is disrupted.
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