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Abstract

Background: During mammalian early embryogenesis, expression and epigenetic
heterogeneity emerge before the first cell fate determination, but the programs
causing such determinate heterogeneity are largely unexplored.

Results: Here, we present MethylTransition, a novel DNA methylation state transition
model, for characterizing methylation changes during one or a few cell cycles at single-
cell resolution. MethylITransition involves the creation of a transition matrix comprising
three parameters that represent the probabilities of DNA methylation-modifying
activities in order to link the methylation states before and after a cell cycle. We apply
MethylTransition to single-cell DNA methylome data from human pre-implantation
embryogenesis and elucidate that the DNA methylation heterogeneity that emerges at
promoters during this process is largely an intrinsic output of a program with unique
probabilities of DNA methylation-modifying activities. Moreover, we experimentally
validate the effect of the initial DNA methylation on expression heterogeneity in pre-
implantation mouse embryos.

Conclusions: Our study reveals the programmed DNA methylation heterogeneity
during human pre-implantation embryogenesis through a novel mathematical model
and provides valuable clues for identifying the driving factors of the first cell fate
determination during this process.

Keywords: DNA methylation, Heterogeneity, First cell fate determination

Background

During mammalian pre-implantation embryogenesis, gene transcription regulation
undergoes dramatic reprogramming [1-3], and expression heterogeneity emerges
among cells within the same embryo before the first cell fate determination, i.e., the
separation between the inner cell mass (ICM) and trophectoderm (TE) [4, 5]. A few re-
ports have suggested that such heterogeneity could affect the first cell fate
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determination. For example, expression heterogeneity of Carml in the 4-cell stage
mouse embryo has been reported to cause later imbalanced expression of Sox21, which
is critical in the determination of cell differentiation into ICM or TE cells [6, 7]. Two
recent studies have indicated that the cause of Carml expression heterogeneity can be
traced back to the 2-cell stage and is associated with the expression heterogeneity of
two long non-coding RNAs, LincGET [8] and Neat!I [9]. Considering the robustness of
early embryogenesis, such expression heterogeneity has been suggested to be the deter-
minate result of a programmed process [10, 11], i.e., a set of cellular instructions. How-
ever, to the best of our knowledge, the suggested program causing such heterogeneity
is largely unexplored. In addition to gene expression levels, DNA methylation levels
have been reported to be heterogeneous among cells in pre-implantation embryos [12],
likely as a result of a programmed process. As DNA methylation plays important roles
in gene transcriptional regulation, the expression heterogeneity that emerges during
early embryogenesis could at least partially be explained by DNA methylation. In con-
trast to gene expression, DNA methylation exists in a binary state for each CpG dyad,
and the transition of its state during each cell cycle can be described quantitatively
[13]. In addition, DNA methylation can be measured at a single CpG resolution in
single cells [12, 14-16]. Therefore, it is promising to elucidate the set of instructions
causing such epigenetic heterogeneity during early embryogenesis by building a math-
ematical model.

Several mathematical models have been built to quantitatively describe the DNA
methylation state transition across cell cycles [17-24]. Two models built in the early
1990s specified that the DNA methylation state in a CpG dyad can be one of three
states, unmethylated, hemi-methylated, and methylated, and that the type of DNA
methylation state transition can be either de novo methylation or methylation mainten-
ance [17, 18]. Genereux et al. and Sontag et al. improved the models by considering de
novo methylation on different DNA strands separately [19, 20]. Fu et al. and Arand
et al. considered the discriminates among the DNA methyltransferases (DNMTs) based
on hairpin bisulfite sequencing (hairpin-BS-seq) data [21, 22]. McGovern et al. and von
Meyenn et al. further incorporated 5-hydroxymethylcytosine (5hmC) into models to re-
flect the contribution of active demethylation to the DNA methylation state transition
[23, 24]. Recently, Busto-Moner et al. enabled genome-wide quantification of subcell
cycle kinetics of methylation maintenance using replication-associated bisulfite sequen-
cing (Repli-BS-seq) data [25]. Researchers have proposed two types of methods to esti-
mate the parameters of the models. One type of method relies on the acquisition of a
DNA methylation equilibrium state. For example, Genereux et al. applied a maximum
likelihood to estimate the parameters when the equilibrium state was reached [19], and
Sontag et al. used a Markov chain model with a defined steady state [20]. The other
type relies on the availability of specific genomics data. For example, Arand et al. calcu-
lated the efficiencies of DNMTs, i.e., the parameters of the transition model, based on
hairpin-BS-seq data upon knockout (KO) of each DNMT [22]. von Meyenn et al. ap-
plied partial differential equations to estimate the parameters by using reduced repre-
sentation bisulfite sequencing (RRBS) data, hairpin-BS-seq data, and TET-assisted
bisulfite sequencing (TAB-seq) data [24]. Busto-Moner et al. used maximum likelihood
estimation (MLE) to estimate the parameters quantifying the remethylation kinetics of
nascent DNA post-replication relied on Repli-BS-seq data [25].
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Although several mathematical models are available to describe the DNA methylation
state transition, none of them can be applied to study DNA methylation heterogeneity
during mammalian early embryogenesis using single-cell DNA methylome data, mainly
for three reasons. First, the DNA methylation level changes dramatically across each
cell cycle during early embryogenesis, demonstrating that the DNA methylation level is
far from an equilibrium state. Therefore, models that incorporate parameter estimation
methods based on an equilibrium state are not suitable. Second, active removal of
DNA methylation is prevalent during mammalian early embryogenesis [1-3]; thus,
models that do not consider active demethylation cannot be applied to this process.
Third, due to technical limitations, technologies for profiling 5-methylcytosine (5mC)
and 5hmC states together within the same cell are still not available, so models requir-
ing both 5mC and 5hmC information are not suitable. Overall, a new DNA methylation
state transition model is needed to study DNA methylation heterogeneity during mam-
malian early embryogenesis.

In this study, we developed a DNA methylation state transition model, MethylTransi-
tion, for characterizing methylation changes during one or a few cell cycles at single-
cell resolution. MethylTransition introduces a methylation state ratio vector with 5
discrete states to describe the overall pattern of DNA methylation states for a given
cell. To link the two methylation state ratio vectors before and after a cell cycle,
MethylTransition uses a transition matrix comprising 3 parameters separately repre-
senting the probabilities of DNA methylation maintenance, active demethylation, and
de novo methylation. The model estimates the parameters via a matrix approximation
strategy with the Newton-Raphson method. Unlike previous models, MethylTransition
does not need an equilibrium state or a 5hmC profile. Therefore, it is suitable for the
elucidation of DNA methylation heterogeneity during mammalian early embryogenesis
based on single-cell bisulfite sequencing (scBS-seq) data. We applied MethylTransition
to scBS-seq data during human pre-implantation embryogenesis, and we found that the
DNA methylation heterogeneity that emerges is largely determined by the initial DNA
methylation state at the zygote stage (i.e., the 1-cell stage) and by a set of instructions
represented by the model parameters. We further discussed the potential regulatory ef-
fects of DNA methylation heterogeneity in early embryos. The source code for Methyl-
Transition can be found at https://github.com/TongjiZhanglab/Methyl Transition [26].

Results

Computational framework of MethylTransition

To quantitatively characterize the DNA methylation state transition across a single cell
cycle based on scBS-seq data, we developed MethylTransition, a probabilistic model
with robustly estimated parameters. MethylTransition relies on the assumption that
changes in the DNA methylation state at a CpG site across a single cell cycle occur in
three steps: passive demethylation during DNA replication, active DNA methylation al-
teration by DNA methylation-modifying enzymes, and DNA methylation state combin-
ation during the combination of non-sister chromatids (Fig. 1a). A CpG site contains
two CpG dyads in a diploid cell, while a CpG dyad contains two complemented CpG
dinucleotides (Additional file 1: Fig. S1a). To illustrate the state transition probability at
each step, we used I as a symbol to represent methylated CpG dinucleotides and 0 to
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Fig. 1 Computational framework of MethylTransition. a Schematic overview of DNA methylation changes
during mitosis. MethylTransition relies on the assumption that changes in the DNA methylation state at a
CpG site across a single cell cycle occur in three steps: passive demethylation during DNA replication, active
DNA methylation by DNA methylation-modifying enzymes, and DNA methylation state combination during
the combination of non-sister chromatids. The open circle represents a CpG dinucleotides with an
unmethylated C, and the solid circle represents a CpG dinucleotides with a methylated C. In the first step,
DNA replication, the newly synthetized strand (gray) is unmethylated. In the second step, enzyme action,
the DNA methylation state in a CpG dyad can be changed by different enzymes. In the third step, non-
sister chromatid combination, the observed DNA methylation state of a CpG site in a single cell is the
combination of the DNA methylation states from both homologous chromosomes for diploid organisms. b
Transition probabilities among DNA methylation states during DNA replication and enzyme action. We used
1 as a symbol to represent a CpG dinucleotides with a methylated C and 0 to represent a CpG
dinucleotides with an unmethylated C. The DNA methylation state for a CpG dyad can be unmethylated (0-
0), hemi-methylated (0-1 or 1-0), or fully methylated (1-7). The upper panel shows the transition probabilities
among states during DNA replication, where g represents the probability of parental DNA being present in
one of two daughter strands and is 0.5 for the symmetric division. The lower panel shows the transition
probabilities among states during enzyme action, where u is the probability of de novo methylation on an
unmethylated CpG dyad, p is the probability of methylation maintenance on a hemi-methylated CpG dyad,
and d is the probability of active demethylation on a methylated or hemi-methylated CpG dyad

represent unmethylated CpG dinucleotides. Thus, the DNA methylation state for a
CpG dyad can be one of the following types: unmethylated (0-0), hemi-methylated (0-1
or 1-0), or fully methylated (1-I). In the first step, i.e., DNA replication, MethylTransi-
tion assumes that the newly synthetized strand is unmethylated. The transition prob-
abilities among DNA methylation states for a CpG dyad are displayed in the upper
panel of Fig. 1b (see the “Methods” section for details), where a represents the prob-
ability of parental DNA in one of two daughter strands and is 0.5 for the symmetric
division. In the second step, i.e., enzyme action, the DNA methylation state in a CpG
dyad can be changed by different enzymes. According to the distinct roles of DNA
methylation-modifying enzymes, MethylTransition denotes the probability of de novo
methylation on an unmethylated CpG dyad as u, the probability of methylation main-
tenance on a hemi-methylated CpG dyad as p, and the probability of active
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demethylation on a methylated or hemi-methylated CpG dyad as d. The transition prob-
abilities among DNA methylation states for a CpG dyad are shown in the lower panel of
Fig. 1b (see the “Methods” for details). In the third step, i.e., non-sister chromatid combin-
ation, the observed DNA methylation state of a CpG site in a single cell is the combin-
ation of the DNA methylation states of both homologous chromosomes for diploid
organisms. There are five possible methylation states at each Cp@G site: unmethylated (la-
beled S1), quarter-methylated (S2), half-methylated (S3), three-quarter-methylated (S4),
and fully methylated (S5) (Additional file 1: Fig. S1a; see the “Methods” section for details).
Then, MethylTransition generates a matrix to describe the transition probability among
the five states in this step (see the “Methods” section for details). Overall, MethylTransi-
tion constructs a probability matrix (74) with introduced parameters to quantitatively
characterize the DNA methylation state transition across a single cell cycle.

Within the framework of MethylTransition, a transition frequency matrix could the-
oretically be calculated by measuring the DNA methylation state of a CpG site before
and after a cell cycle, and then the parameters u, d, and p could be estimated. However,
due to the high dropout rate of public scBS-seq data, the percentage of CpG sites both
sequenced in two scBS-seq datasets is generally less than 20% (Additional file 1: Fig.
S1b), and it is difficult to accurately assign a methylation state to a CpG site based on
scBS-seq data. To overcome the above difficulties, we propose two assumptions. First,
the DNA methylation states of CpG sites in the promoter of a gene can be represented
by the average DNA methylation level in this promoter. This assumption is largely true
for the mammalian genome [27], and the various DNA methylation levels in promoters
are much smaller than those in other regions (Additional file 1: Fig. S1c). Second, the
activity levels of DNA methylation-modifying enzymes in genomic regions with similar
chromatin status are largely consistent. Based on these two assumptions, for genes with
similar chromatin status at their promoters, each gene’s promoter can be assigned one
of the five methylation states (S1 to S5) using scBS-seq data, and the methylation state
ratio vector of the genes in each methylation state can be used to present the overall
pattern of methylation states for those genes within a given cell (see the “Methods” sec-
tion for details). Given two separate methylation state ratio vectors before and after a
cell cycle, the transition frequency matrix T’z linking the two vectors can be calculated.
Then, MethylTransition can estimate the parameters u, d, and p by minimizing the dif-
ference between the transition probability matrix 74 and the calculated transition fre-
quency matrix T, while a cost function is constructed and optimized by using the
Newton-Raphson method [28] (see “Methods” section for details). In addition to esti-
mating the transition parameters with given initial and terminal DNA methylation
states, MethylTransition can also calculate the methylation state ratio vector after a cell
cycle with given initial DNA methylation states and a set of transition parameters.
MethylTransition has been implemented as an R library (Additional file 1: Fig. S1d),
and the source code has been released on GitHub (https://github.com/TongjiZhanglab/
MethylTransition).

Performance evaluation of MethylTransition
To evaluate the performance of MethylTransition, we used three different strategies.
First, we tested the robustness of parameter estimation with respect to cell-to-cell


https://github.com/TongjiZhanglab/MethylTransition
https://github.com/TongjiZhanglab/MethylTransition

Zhao et al. Genome Biology (2020) 21:277 Page 6 of 23

variation. We applied MethylTransition to all available high-quality scBS-seq data at dif-
ferent stages of human pre-implantation embryos [12], and the parameters were estimated
for each pair of two cells from the adjacent stages. The variances of parameters estimated
by using different cells from the same stage were small (Fig. 2a), confirming the robust-
ness of MethylTransition in parameter estimation with respect to cell-to-cell variation.
Second, we examined the robustness of parameter estimation for different dropout
rates of scBS-seq data. We applied MethylTransition to a pair of scBS-seq datasets from
two adjacent human pre-implantation stages, the zygote stage and the 2-cell stage, with
average promoter DNA methylation levels of 16.8% and 15.0%, respectively. When all
22,056 promoters with sequenced CpG sites in both datasets were used to construct
the methylation state ratio vectors, the parameters were estimated as z = 0.03, d = 0.23,
and p =0.76. To evaluate the effect of dropout on parameter estimation, we randomly
sampled fractions of the 22,056 promoters to represent dropout rates from 10 to 90%
(with 10% as the interval), and the subsets of genes were used to construct the
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methylation state ratio vectors and then to estimate the parameters (see “Methods” sec-
tion for details). Across the different dropout rates, the estimated parameters were con-
sistent, with slightly increased standard deviations at high dropout rates (Fig. 2b). Our
results demonstrate that the parameter estimation method of MethylTransition is ro-
bust even with a high dropout rate of scBS-seq data.

Third, we evaluated whether the estimated parameters could represent the levels of
corresponding DNA methylation-modifying activities. The dramatic DNA methylation
decrease between the human zygote stage and 2-cell stage was characterized by a
higher probability of active demethylation (d = 0.23) and a lower probability of methyla-
tion maintenance (p =0.76) than that in the equilibrium condition (d=0.09 and p =
0.90, respectively), consistent with the findings of previous studies [29]. To confirm the
biological meanings of the estimated parameters, we gradually altered the methylation
state ratio vector at the 2-cell stage to represent a series of DNA methylation transition
conditions (from decrease to equilibrium, then to increase), and the altered vectors
were used to estimate the parameters (see the “Methods” section for details). Consistent
with our expectations, the probability of active demethylation (d) decreased dramatic-
ally from DNA methylation decreasing conditions to the equilibrium condition; this de-
crease in d was coupled with rapid increases in the probability of methylation
maintenance (p) and the probability of de novo methylation (u), which clearly increased
from the equilibrium condition to increasing conditions (Fig. 2c). To further evaluate the
interpretability of parameters, we extended the application of MethylTransition to bulk
cell-level BS-seq data with methylation enzymes knockout (see the “Methods” section for
details). We collected the BS-seq data in wild-type and two types of enzyme-knockout
mouse embryos (Dnmtl /=, Dnmt3a/b™"") at the E8.5 stage [30]. The Dnmtl E embryos
displayed the smallest p, and the Dnmt3a/b™'~ embryos showed the smallest %, which are
in agreement with the known function of these DNMTs (Additional file 1: Fig. S2a). In
addition, we collected the BS-seq data in wild-type and two types of enzyme-knockout
zebrafish embryos (Tet3™'~, Tet1/2/377) at 24h post-fertilization (hpf) [31]. Both Tet3™/~
embryos and Tet1/2/3”'~ embryos showed smaller d than wild-type embryos, and Tet1/2/
37~ embryos showed the smallest d (Additional file 1: Fig. $2b). Our results confirmed
that the estimated parameters can reflect the levels of DNA methylation-modifying
activities.

Programmed DNA methylation heterogeneity in human pre-implantation embryos

To comprehensively investigate the cause of DNA methylation heterogeneity in early
embryogenesis, we reanalyzed scBS-seq data in human pre-implantation embryos. We
observed that 31.7~42.6% of the promoters showed DNA methylation state polymorph-
ism among cells within a 4-cell stage embryo, and the percentage increased to
54.4~65.7% for 8-cell stage embryos, confirming that DNA methylation states are quite
heterogeneous among cells in pre-implantation embryos [12]. To quantitively measure
such heterogeneity, we used public scBS-seq data from a single embryo for each stage
and calculated a heterogeneity score for each promoter based on the DNA methylation
states from different cells in the same embryo (Additional file 1: Fig. S3; see the
“Methods” section for details). When classifying the promoters into five classes based
on their DNA methylation states in the zygote stage, we found that the DNA
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methylation heterogeneity in 4-cell and 8-cell stage embryos was significantly different
among classes, while promoters with heavier DNA methylation states in the zygote
stage tended to have higher DNA methylation heterogeneity in the 4-cell and 8-cell
stages (Fig. 3a, b). Given such an association between the initial methylation states and
the DNA methylation heterogeneity at later stages, we hypothesized that the DNA
methylation heterogeneity in early embryos might be an intrinsic output of a pro-
grammed process following a set of cellular instructions.
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Fig. 3 Programmed DNA methylation heterogeneity in human pre-implantation embryos. a, b Box plots of
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To test the above hypothesis, we applied MethylTransition to the first three cell
cycles of human embryogenesis using scBS-seq data from a single embryo for
each stage. To simplify the calculation, we used all genes’ promoters to estimate
the parameters. For each combination of cell pairs between embryos in adjacent
stages, the parameters u, d, and p were estimated, with substantial robustness
among combinations (Fig. 3c). The highest value of the parameter d, i.e., the
probability of active demethylation, occurred during the transition between the 2-
cell and 4-cell stages, while the highest value of the parameter p, i.e., the prob-
ability of methylation maintenance, occurred during the transition between the 4-
cell and 8-cell stages. The parameter u, i.e., the probability of de novo methyla-
tion, was consistently low during this process. Given the initial methylation states
of the promoters at the zygote stage and the estimated parameters of the first
three cell cycles, MethylTransition was applied to predict the DNA methylation
heterogeneity for each promoter in the 4-cell and 8-cell stages, respectively
(Fig. 3d, e; see the “Methods” section for details). The promoters with heavier
DNA methylation states in the zygote stage clearly displayed a higher predicted
DNA methylation heterogeneity in the 4-cell and 8-cell stages, consistent with
the trends in observed heterogeneity among classes with distinct initial methyla-
tion states. Such predictable heterogeneity demonstrates that the DNA methyla-
tion heterogeneity in early embryos is largely an intrinsic output of a
programmed process with given initial methylation states and a few DNA methy-
lation state transition parameters.

To investigate the impacts of initial methylation states and DNA methylation
state transition parameters on this programmed heterogeneity, we calculated the
predicted scores of DNA methylation heterogeneity in the 8-cell stage with simu-
lated values of MethylTransition parameters for five classes of promoters with dis-
tinct initial methylation states (Fig. 3f). To simplify the simulation, we kept u =
0.03, which was supported by the absence of nuclear DNMT3a and DNMT3b dur-
ing this process [32], and used the same values of p or d for all three cell cycles.
We observed that for any given class, the predicted scores of DNA methylation
heterogeneity varied dramatically for different combinations of p and d, while with
a given set of p and d values, the predicted scores tended to be higher in classes
with heavier initial methylation states. In a typical mammalian cell, most promoters
are either unmethylated (S1) or fully methylated (S5); in addition, during a typical
mammalian cell cycle, the probability of methylation maintenance (p) is very high,
while the probability of active demethylation (d) is quite low [33, 34]. From the
simulation, we observed low predicted heterogeneity (score <0.2) in the S1 and S5
classes for combinations of high p (>0.94) and low d (<0.05) values, indicating
that DNA methylation heterogeneity is unlikely to be introduced during the cell
cycle in a typical mammalian cell. Unlike typical mammalian cells, the cells in early
embryos display clearly higher d and lower p values, which can intrinsically cause
initial methylation state depended on DNA methylation heterogeneity during early
embryogenesis. Taken together, our results indicate that the largely programmed
DNA methylation heterogeneity in early embryos is a natural result of the unique
probabilities of methylation maintenance and active demethylation that occur dur-
ing this process.
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Association of sequence and epigenetic features with DNA methylation heterogeneity

Although the DNA methylation heterogeneity in early embryos was largely predictable
by MethylTransition with a few parameters, some promoters showed substantially
higher or lower scores of observed methylation heterogeneity than predicted, especially
promoters in the S1 and S2 classes (Fig. 4a, Additional file 1: Fig. S4a), indicating that
additional features may have significant impacts on the DNA methylation heterogeneity
of promoters in these classes. In order to investigate which sequence or epigenetic
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Fig. 4 Impacts of sequence and epigenetic features on DNA methylation heterogeneity. a Differences
between the observed and predicted DNA methylation heterogeneity scores in human 8-cell stage
embryos. Promoters were classified into 5 classes based on their DNA methylation states in the zygote
stage. The size of each solid circle represents the number of promoters. Each gray box shows the 1st and
3rd quartiles of the predicted heterogeneity scores in each class. b Bar plot of the importance of sequence
and epigenetic features for DNA methylation heterogeneity at the 8-cell stage, as determined by random
forest analysis. The features include CpG ratio, chromatin accessibility, and H3K4me3 and H3K27me3 levels
at the 8-cell stage. ¢ Box plots of the differences in CpG ratio between different categories of promoters in
the S1 and S2 classes. The promoters in the ST and S2 classes were divided into three categories: higher-
heterogeneity gene promoters (HHGs; with observed heterogeneity higher than the 3rd quantile of the
predicted heterogeneity score of the class), model-predictable heterogeneity gene promoters (MHGs), and
lower-heterogeneity gene promoters (LHGs; with observed heterogeneity lower than the 1st quantile of the
predicted heterogeneity score of the class). Student’s t test was performed for comparisons between
adjacent categories (***p value <0.001). d Estimated parameters for different groups of promoters with
distinct CpG ratios during the first three cell cycles of human embryogenesis. The promoters were grouped
into three groups with high (2 0.6), moderate (between 0.4 and 0.6), or low (< 0.4) CpG ratios. The lines link
the mean values of the parameters for each cell cycle. The gray shaded areas represent the 95% confidence
intervals around the mean values. Red indicates the parameter u, blue indicates the parameter d, and
yellow indicates the parameter p. e Box plots of the differences in the mean squared error between the
original prediction obtained using uniform sets of u, d, and p for all promoters and three conditional
predictions based separately on CpG ratio grouping, chromatin accessibility grouping, and H3K4me3 signal
grouping. The mean squared error was calculated as the average squared difference between the predicted
methylation heterogeneity score and the observed score. Student's t test was performed for comparisons
between the original prediction and each of the conditional predictions (***p value < 0.001; **p value < 0.01)
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features may strongly associate with DNA methylation heterogeneity, we performed
random forest analysis to identify relevant features from sequence patterns (CpG ratio),
chromatin accessibility, and histone modification patterns (H3K4me3, H3K27me3) in
human pre-implantation embryos (see the “Methods” section for details). Among these
features, the CpG ratio showed much greater relevance to promoter DNA methylation
heterogeneity than other features. Both chromatin accessibility and H3K4me3 signals
showed moderate relevance (Fig. 4b). For the S1 and S2 classes, the promoters with
lower heterogeneity scores than predicted showed significantly higher CpG ratio, chro-
matin accessibility, and H3K4me3 signals than those with heterogeneity scores similar
to the predicted scores (Fig. 4c, Additional file 1: Fig. S4b, c), suggesting that the lim-
ited performance of MethylTransition for the S1 and S2 classes is likely due to these se-
quence and epigenetic features. To examine whether DNA methylation state transition
parameters are variable among promoters with distinct CpG ratios, we divided pro-
moters into three groups with high (= 0.6), moderate (between 0.4 and 0.6), or low (<
0.4) CpG ratio and applied MethylTransition to the first three cell cycles of human em-
bryogenesis based on the three groups of promoters separately. The sets of the esti-
mated parameters u, d, and p were different among groups of promoters with distinct
CpG ratios (Fig. 4d). The group of promoters with a high CpG ratio showed lower
values of u and p, together with higher values of d, than the other two groups, consist-
ent with the findings of previous studies that CpG islands tend to be protected from
DNA methylation [35]. We further predicted the DNA methylation heterogeneity for
each promoter in the 8-cell stage using parameter values estimated based on CpG ratio
grouping, and the predicted heterogeneity showed a significantly smaller mean squared
error to the observed than the original prediction obtained using uniform u, d, and p
values for all promoters (Fig. 4e). In addition to assessing DNA methylation state tran-
sition parameters among promoters with distinct CpG ratio, we also calculated the pa-
rameters among promoters with distinct chromatin accessibility or distinct H3K4me3
signals (Additional file 1: Fig. S4d, e). The heterogeneity predicted using parameters es-
timated based on chromatin accessibility or H3K4me3 signal grouping also showed a
significantly smaller mean squared error to the observed than the original prediction
(Fig. 4e). Taken together, our results demonstrate that the features of CpG ratio, chro-
matin accessibility, and distinct H3K4me3 signals are strongly associated with DNA
methylation heterogeneity by diverse DNA methylation state transition parameters.

Potential regulatory effects of DNA methylation heterogeneity

As DNA methylation at promoters plays important roles in gene transcriptional regula-
tion, we hypothesized that the largely programmed DNA methylation heterogeneity at
promoters can affect the heterogeneity of gene expression. To test this hypothesis, we
first calculated the correlation between promoter DNA methylation heterogeneity
scores and expression heterogeneity scores in human 8-cell stage embryos (see the
“Methods” section for details), and the two types of heterogeneity scores indeed showed
a positive correlation (cor =0.18; Fig. 5a). Next, we investigated the temporal associ-
ation between promoter DNA methylation heterogeneity and expression heterogeneity.
The genes with high DNA methylation heterogeneity promoters at the 4-cell stage
showed significantly larger expression heterogeneity increasement from that stage to
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Fig. 5 Potential regulatory effects of DNA methylation heterogeneity. a Box plots of the relationship
between DNA methylation heterogeneity and expression heterogeneity in human 8-cell stage embryos.
The Pearson correlation coefficient of the two heterogeneity scores was 0.18. b Volcano plot comparing the
gene expression heterogeneity between mouse Stella’~ embryos and mouse wild-type (WT) embryos at
the 8-cell stage. The x-axis represents the log,-transformed fold change, and the y-axis represents the log;o-
transformed p value. A total of 265 genes had significantly higher expression heterogeneity scores in
Stella™’~ embryos than in WT embryos, while 38 genes had significantly lower expression heterogeneity
scores in Stella”~ embryos than in WT embryos. Three genes reported to be related to cell fate
determination during mouse embryogenesis are indicated in green. ¢ Box plots comparing the DNA
methylation levels in mouse zygotes between genes with increased expression heterogeneity and other
genes. Student’s t test was performed (**p value < 0.01). d, e Box plots of the DNA methylation
heterogeneity (d) and expression heterogeneity (e) in human 8-cell stage embryos between first cell fate
determination (FCFD)-related genes and other genes. Student’s t test was performed for comparisons (***p
value <0.001). f Heatmap of the DNA methylation heterogeneity scores (blue) and expression
heterogeneity scores (green) for FCFD-related genes. The FCFD-related genes were classified into four
groups based on their DNA methylation and expression heterogeneity scores at the 8-cell stage (HH: DNA
methylation heterogeneity > 0.3 and expression heterogeneity > 0.5; HL: DNA methylation heterogeneity > 0.3
and expression heterogeneity < 0.5; LH: DNA methylation heterogeneity < 0.3 and expression heterogeneity >
0.5; and LL: DNA methylation heterogeneity < 0.3 and expression heterogeneity < 0.5). Within the HH group,
three reported ICM markers (GDF3, CUBN, and IGFT) and a TE marker (GCMT) are indicated

the 8-cell stage than other genes (Additional file 1: Fig. S5a). Differently, the genes with
high expression heterogeneity at the 4-cell stage showed similar promoter DNA methy-
lation heterogeneity increasement from that stage to the 8-cell stage with other genes
(Additional file 1: Fig. S5b), which implied that DNA methylation heterogeneity at pro-
moters might affect the heterogeneity of the gene expression. Due to restrictions pre-
venting the editing of human embryos, we then used mouse embryos to further clarify
the effects of DNA methylation heterogeneity on expression heterogeneity. Similar to
the case in human embryos, the DNA methylation heterogeneity that emerged during
mouse early embryogenesis was also largely determined by the initial DNA methylation
state at the zygote stage (Additional file 1: Fig. S6). In this study, we generated single-
cell RNA-seq data for cells in the 8-cell stage from Stella’~ mouse embryos, which
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have been reported to have much higher DNA methylation levels than normal embryos
[36]. Upon comparing the expression heterogeneity scores of Stella™'~ mouse embryos
to those of normal embryos, we identified 6.97-fold more genes with significantly ele-
vated heterogeneity scores in Stella™’~ embryos than genes with reduced scores includ-
ing genes encoding reported lineage-determining factors of ICM and TE (Neatl [9],
Tfap2c [37], Yapl [38, 39]) (Fig. 5b). The genes with elevated expression heterogeneity
scores in Stella™'~ embryos showed significantly lower initial DNA methylation levels at
promoters in the zygote stage in normal mouse embryos than other genes (Fig. 5¢), in-
dicating that increases in initial DNA methylation levels can increase the expression
heterogeneity in later stages, especially for genes with initially minimally methylated
promoters. Considering that promoters with heavier DNA methylation in the zygote
stage tended to have higher DNA methylation heterogeneity in later stages, the in-
creased expression heterogeneity in Stella™'~ embryos might be mediated by the largely
programmed DNA methylation heterogeneity at promoters.

We further hypothesized that the largely programmed DNA methylation heterogen-
eity at promoters might contribute to the first cell fate determination. To test this hy-
pothesis, among 7471 expressed genes in ICM or TE, we defined 899 ICM- or TE-
specific genes as the list of genes related to the first cell fate determination in humans
(see the “Methods” section for details). At the 8-cell stage, that list of genes showed sig-
nificantly higher DNA methylation heterogeneity at promoters, together with higher
expression heterogeneity, than other expressed genes (Fig. 5d, e), indicating that the
separation between the ICM and TE could at least partially be explained by the
emerged expression heterogeneity and by largely programmed DNA methylation
heterogeneity at promoters. Among the list of genes related to the first cell fate
determination, 64 genes showed both high DNA methylation heterogeneity at
promoters and expression heterogeneity at the 8-cell stage (Fig. 5f and Add-
itional file 2: Table S1), including the known ICM marker genes GDF3 [40],
CUBN [41], and IGF1 [42] and the known TE marker gene GCM1 [43]. The clear
association between DNA methylation heterogeneity and the first cell fate deter-
mination suggests that consideration of DNA methylation heterogeneity may pro-
vide clues for identifying driving factors of driving cell fate determination during
human pre-implantation embryogenesis.

Discussion

Although expression and epigenetic heterogeneity occurring before the first cell fate de-
termination in mammalian early embryogenesis has been suggested to be a determinate
result of a program [10-12] (i.e., a process with initial states and a set of cellular in-
structions), to the best of our knowledge, no studies have been designed to illustrate
such a program. In this study, we took advantage of the quantitative features of scBS-
seq data to elucidate the set of instructions causing DNA methylation heterogeneity
during early embryogenesis by building MethylTransition, a mathematical model that
enables characterization of the DNA methylation state transition during single or a few
cell cycles. The results of this study clearly demonstrate that DNA methylation hetero-
geneity at promoters in early mammalian embryos is largely an intrinsic output of a
programmed process with given initial methylation states and a few DNA methylation
state transition parameters. It should be clarified that the cell cycle itself does not
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naturally result in DNA methylation heterogeneity. Calculations based on MethylTran-
sition showed that DNA methylation heterogeneity is unlikely to be introduced during
the cell cycle in typical adult mammalian cells, which have different initial methylation
state distributions and DNA methylation state transition parameters than cells in early
mammalian embryos. This study illustrates that the largely programmed DNA methyla-
tion heterogeneity in early mammalian embryos is a determinate result of the unique
probabilities of methylation maintenance and active demethylation that occur during
early embryogenesis.

The process of the first cell fate determination in early mammalian embryos is
associated with distinct expression and epigenetic patterns between ICM and TE
cells [6, 7]. This study showed a clear association between DNA methylation het-
erogeneity and the first cell fate determination, and the results suggest that the ex-
pression heterogeneity that emerges before the first cell fate determination could
be at least partially caused by largely programmed DNA methylation heterogeneity.
In addition to DNA methylation, multiple layers of factors participate in transcrip-
tional regulation. A previous model study based on mouse embryogenesis data pro-
posed that the first cell fate determination-related expression heterogeneity is
initiated by random segregation at each cleavage division and strengthened by
competing transcriptional circuits [5]. In human embryos, the major phase of zyg-
otic genome activation begins at the 8-cell stage, much later than in mouse em-
bryos (in which it occurs at the 2-cell stage) [44], indicating that humans have a
larger time window for the accumulation of DNA methylation heterogeneity before
the large-scale transcription begins. As a supplement to that model study, this
study suggests that the initial source of expression heterogeneity in human em-
bryos could be at least partially mediated by the largely programmed DNA methy-
lation heterogeneity at promoters. We suspect that consideration of DNA
methylation heterogeneity could provide valuable clues for identifying driving fac-
tors of the first cell fate determination during human pre-implantation
embryogenesis.

Unlike other mathematical models, MethylTransition was designed to characterize
the methylation state changes that occur during one or a few cell cycles at single-
cell resolution, and its application could be extended to other biological processes
with dramatic DNA methylation changes, such as oogenesis [45]. Despite its
unique features, MethylTransition has two technical limitations. First, due to the
high dropout rates of public scBS-seq data, MethylTransition relies on the assump-
tion that the activity levels of DNA methylation-modifying enzymes in a cell are
constant across the genome, which is inconsistent with numerous reports that both
sequence and epigenetic features affect the activity of these enzymes [25, 46—49].
This limitation could be partially resolved by applying this framework to a subset
of promoters with similar sequence or epigenetic features. Second, MethylTransi-
tion assumes that de novo methylation, methylation maintenance, and active de-
methylation are three independent events. However, this may not always be true,
as crosstalk between de novo methylation and methylation maintenance has been
reported [50-52]. Those studies indicated that the functions of the DNA
methylation-modifying enzymes are complex and not independent. Furthermore,
some factors, for example, Stella, have distinct roles in the modulation of DNA
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methylation at different mouse development stages [36, 53]. Although the parame-
ters of MethylTransition integrated the function of various enzymes to represent
the overall levels of DNA methylation-modifying activities, incorporating the cross-
talk of those activities may further improve the interpretability of this model. Fu-
ture versions of MethylTransition could be extended to consider the conditional
probabilities among the three DNA methylation-modifying activities.

Conclusions

To quantitatively characterize the DNA methylation state transition during mam-
malian early embryogenesis, we presented MethylTransition, a novel DNA probabil-
istic model for characterizing methylation changes during one or a few cell cycles
at single-cell resolution. By applying MethylTransition to scBS-seq data during hu-
man pre-implantation embryogenesis, we elucidated that the DNA methylation het-
erogeneity that emerges at promoters is a determinate result of the unique
probabilities of methylation maintenance and active demethylation that occur dur-
ing early embryogenesis. This study further suggested that consideration of pro-
grammed DNA methylation heterogeneity provides valuable clues for identifying
driving factors of the first cell fate determination.

Methods

Computational framework of MethylITransition

We used I as a symbol to represent methylated CpG dinucleotides and 0 to repre-
sent unmethylated CpG dinucleotides. Thus, the DNA methylation state for a CpG
dyad in one chromosome could be one of the following types: unmethylated (0-0),
hemi-methylated (0-1 or 1-0), or fully methylated (I-1). The calculated ratios of
CpG dyads in these four methylation states are x;, x5, x3, and x4, and the ratio
vector M; is:

M, = (1)

MethylTransition relies on the assumption that changes in the DNA methylation
state at a CpG site across a single cell cycle occur in three steps. In the first step, subse-
quent to the passive demethylation of DNA with DNA replication in the cell, the ratio
vector M changes to M,, which can be represented as:

1 a (1-a) 0
10 (1-a) 0 (1-a)
To=10 0 a a (2)
0 0 0 0
M, = Tg-M; (3)

where a represents the probability of parental DNA in one of two daughter strands and
is 0.5 for the symmetric division. M, is the ratio vector after DNA replication.
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In the second step, the DNA methylation state in a CpG dyad can be altered by
DNMTs or by DNA demethylases. We denoted the probability of maintaining methyla-
tion at a hemi-methylated CpG site as p, the probability of de novo methylation at a
CpG site as u, and the probability of active demethylation at a methylated CpG site as
d. The change in DNA methylation under the actions of various enzymes can be
expressed as:

(1-u)x(1-u) 1-u)x(1-p)xd dx (1-u)x (1-p) dxd
T ux (1-u) (1-p)x(1-u)x(1-d) dx(u+p-uxp) (1-d)xd
e (1-u)xu (u+p-uxp)xd (1-d)x(1-u)x(1-p) dx(1-d)
uXu (u+p-uxp)x(1-d) (A-d)xw+p-uxp) (1-d)x(1-4d)
(4)
M, = TrM, (5)

where M, represents the ratio vector after actions have been exerted by various
enzymes.

In the third step, for diploid organisms, the observed DNA methylation state of
a CpG site in a single cell is the combination of the DNA methylation states
from both homologous chromosomes. Such combination results in five possible
DNA methylation states at each CpG site: unmethylated (labeled S1), quarter-
methylated (S2), half-methylated (S3), three-quarter-methylated (S4), and fully
methylated (S5). These states can be experimentally measured, and the ratios of
CpG sites in these five methylation states (S;, Sy, S3, Sy and S5) can be calcu-
lated. Thus, the DNA methylation state changes from mother cell to daughter
cell are represented by:

X1 X12  X13  X14 X15
X21  X22  X23  X24  X25
Ty=| %31 X3 X33 X34 X35 (6)
X41  X42  X43  X4a K45
X51  X52 X53 X54 X55
!
51 Sl
52, 52
Sy | =T4| S3 (7)
!
54 54
55 SS

where Sly, Szy, 53', 54', and Ssy represent the ratios of CpG sites in the five DNA
methylation states in a daughter cell, and x; indicates the probability that the
DNA methylation states are changed from state j in the mother cell to state i in
the daughter cell. The element in the ith row and the jth column of the probability
matrix T,.- Ty, described above is denoted as ;. The relationships between x;; and
t; are calculated as follows:
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x11 =t X tnn

1
X13 = P X (t11 X tig + t11 X tiz + b1z X t11 + bz X t11)
1
X13 = 5 X (811 X tia + b1z X tig + b1z X tis + t13 X Lo + t13 X t13 + t1a X £11)

1
X14 = 2 X (t12 X tia + iz X tia + tia X tig + tia X t13)

X15 = t1g X L1

...... (8)

X51 = ta1 Xty

1
X523 = 2 X (a1 X tag + ba1 X taz + tap X taq + taz X ta1)

1
X53 = 5 X (Fa1 X tas + tag X tag + tag X tag + taz X Lag + taz X tag + taa X ta))

1
K54 = p X (s X taa + bag X taa + tas X tag + tas X tag)

X55 = Laq X Laa

Based on the above three steps, the changes in DNA methylation states during one
cell cycle can be represented by the above probability matrix T4 with a few parameters.
Then scBS-seq data are used to infer the ratio of each DNA methylation state within a
single cell. To imitate the DNA methylation state transition before and after the cell
cycle, the state transition frequency matrix (Tp) is calculated using scBS-seq data of a
cell from the early stage (mother cell) and a cell from the adjacent late stage (daughter
cell) as follows:

011 012 013 014 015
021 022 023 024 035
031 032 033 034 035 (9)
041 042 043 044 045
051 052 053 054 055

Tp

where o;; is the observed frequency at which the DNA methylation state is changed
from state j in the mother cell to state i in the daughter cell.

MethylTransition estimates the parameters u, d, and p by minimizing the difference
between the transition probability matrix 7,4 and the calculated transition frequency
matrix Tz We defined a cost function as the square of the Euclidean distance between
T, and Ty [28]:

](Lt,d,p) = Z 4 (oi,j—x,«,j)z (10)

=1 j

The best parameter was obtained by minimizing J(i, d, p). Although it is unrealistic
to expect an algorithm to find global minima, many numerical optimization techniques
can be applied to find local minima. According to the definition of probability, the pa-
rameters u, d, and p range from 0 to 1. Considering the reliability and efficiency of the
algorithm, we used the Newton-Raphson method as the optimization algorithm.

(it,gl,fa) = argminuﬁd"p](u,d,p) (11)

As the estimates of parameters with different initial values in the Newton-Raphson
method are distributed around the true value, MethylTransition randomly selects three
numbers in the range of 0 to 1 as the initial values of u, d, and p to estimate the



Zhao et al. Genome Biology (2020) 21:277 Page 18 of 23

parameters and repeats the analysis 100 times. The parameters that minimize the cost

function value are prioritized.

Calculation of the DNA methylation state ratio vector
We assigned a DNA methylation state S to each gene promoter region (+ 2 kb around
the transcription start site (TSS)) for a given cell, as follows:

S1,if m<0.125
S2,if 0.125<m < 0.375
S3,if 0.375<m < 0.625
S4.,if 0.625<m < 0.875

S5,if m>0.875
NA, if m is not available

(12)

where m is the average methylation level of the promoter. To avoid the missing value
problem of scBS-seq data, the promoters with state as NA are removed from the par-
ameter estimation. The DNA methylation state ratio vector contains 5 items represent-
ing the fractions of the promoters assigned as S1, S2, S3, S4, and S5, and the vector is
used to present the overall pattern of methylation states for a given cell.

Performance evaluation for the robustness of subsampling

We calculated the DNA methylation state vectors of two adjacent human pre-
implantation stages based on two scBS-seq datasets (GSM2481558 and GSM2481533).
To evaluate the effects of dropout on parameter estimation, we used a bootstrapping
approach. Briefly, we randomly sampled fractions of 22,056 promoters to represent the
dropout rates from 10 to 90% (with 10% as the interval) with 100 rounds of replace-
ments for each dropout rate. In each sampling, the selected promoters were used to
construct a methylation state ratio vector and a transition frequency matrix, which

were used to estimate a set of parameters.

Performance evaluation for biological meanings

We used the original transition frequency matrix calculated based on the two scBS-seq
datasets (GSM2481558 and GSM2481533) as the decreased methylation transition con-
dition, and we used an identity matrix to represent the equilibrium condition. To simu-
late a gradual change in transition conditions from decreasing to equilibrium, we
generated 9 transition frequency matrixes to represent the linear switch from the ori-
ginal transition frequency matrix to an identical matrix with equal intervals. We further
transposed and scaled the original transition frequency matrix as the increased transi-
tion condition. To simulate a gradual change in transition conditions from equilibrium
to increasing, we generated 9 transition frequency matrixes to represent the linear
switch from the identical matrix to the transposed and scaled matrix with equal inter-
vals. We estimated the sets of parameters based on the original transition frequency
matrix, the identical matrix, the transposed and scaled matrix, and 18 generated transi-

tion frequency matrixes.
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Extension of MethylTransition on bulk-cell BS-seq data
Each high coverage CpG site (coverage >4) in a given bulk cell BS-seq data was
assigned a DNA methylation state S, as follows:

S1,if m,<0.125
S2,if 0.125<my, < 0.375
S3,if 0.375<my, < 0.625
S4. if 0.625<my, < 0.875

S5, if m;,>0.875
NA, if m,, is not available

(13)

where my,, is the methylation level of the CpG site. The sites with state as NA are re-
moved from the parameter estimation. The transition frequency matrix was calculated
using two paired BS-seq data. We assigned an approximate number of cell cycles based
on the knowledge of development timing (n =5 for 8-cell to E8.5 mouse embryo and
n =10 for epiboly to 24 hpf zebrafish embryo). The logarithm transformation of the
transition frequency matrix was used to estimate the parameters during multiple cell
cycles, with the assumption that the parameters of each cell cycle are consistent.

Calculation of DNA methylation heterogeneity and expression heterogeneity

The DNA methylation heterogeneity of a given promoter in a pre-implantation embryo
represents the promoter’s polymorphism of methylation states across cells in the same
embryo. For each promoter, we calculated the proportions of cells belonging to each of
the five methylation states. Then, we calculated the inequality of the methylation state
distribution combined with the Gini index to quantitively measure the heterogeneity
(Additional file 1: Fig. S3). If «; is the proportion of the methylation state i, and there
are # states (1 = 5), then the DNA methylation heterogeneity Hpehyi is given by:

Z?:lz’;:l ’xi - x}"
2my i

Hmethyl =1- (14')

The expression heterogeneity of a given gene in a pre-implantation embryo repre-
sents the polymorphism of gene expression across cells. For each gene, we calculated
the expression heterogeneity He.p, as the squared coefficient of variation (CV?) of the
expression level across the cells in the same embryo.

Prediction of DNA methylation heterogeneity

With given parameters (i, d, p) and an initial DNA methylation state ratio vector (M),
the DNA methylation transition matrix (7, 4 ) and the terminal DNA methylation
state ratio vector (M;) can be calculated by the equations mentioned in the “Computa-
tional framework of MethylTransition” section. For each promoter, the probability that
its DNA methylation state at the zygote stage will change to any of the five states in
the 2-cell stage can be calculated. Then, a random sampling method (based on the R
function sample()) was used to assign each promoter a state in each of the 2-cell stage
cells based on the calculated probability and the initial DNA methylation state in the
zygote stage cell. For different cells in the same stage, different random seeds were
used. The procedures for the prediction of the state transition from the 2-cell stage to
the 4-cell stage and those for prediction of the state transition from the 4-cell stage to
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the 8-cell stage were the same. For each promoter, the DNA methylation heterogeneity
Hpethyt Was calculated as mentioned above with the predicted DNA methylation states

for each cell in 4-cell or 8-cell stage embryos.

Identification of relevant features of DNA methylation heterogeneity

The CpG ratio was calculated for each promoter, as previously described [54]. The
chromatin accessibility on each promoter was also calculated using a published assay
for transposase-accessible chromatin using sequencing (ATAC-seq) data for human 8-
cell stage embryos [55]. The H3K4me3 and H3K27me3 signals on each promoter were
derived from published ChIP-seq data from human 8-cell stage embryos [56]. Based on
the differences between the observed and predicted DNA methylation heterogeneity
scores for the gene promoters, the promoters in classes S1 and S2 were divided into
three categories: higher-heterogeneity gene promoters (HHGs; with observed hetero-
geneity higher than the 3rd quantile of the predicted heterogeneity score of the class),
model-predictable heterogeneity gene promoters (MHGs), and lower-heterogeneity
gene promoters (LHGs; with observed heterogeneity lower than the 1st quantile of the
predicted heterogeneity score of the class). With the values for the above sequence and
epigenetic features and the category labels, we performed random forest analysis using
the RandomForestRegressor function in the Python package sklearn [57] to evaluate the
importance of each feature to the DNA methylation heterogeneity.

Identification of human first cell fate determination-related genes

We first excluded genes that were not expressed in blastocysts (genes with FPKM
values less than 1 in ICM and TE cells). We then identified differentially expressed
genes between ICM and TE cells using DESeq2 with a threshold of p value < 0.05 and
fold change > 4. These differentially expressed genes were considered as the genes re-
lated to human first cell fate determination.

Single-cell RNA-seq library generation and sequencing of Stella”~ mouse embryos
Stella™~ mice have been described previously [36]. RNA was isolated from each single
cell of two 8-cell stage Stella™~ embryos with the Smart-seq2 protocol. To generate
RNA sequencing libraries, a KAPA Hyper Prep Kit was used following the manufac-
turer’s instructions. The adapters used were from a KAPA Single-Indexed Adapter Kit.
Paired-end 150-bp sequencing was further performed on a HiSeq X Ten platform (Illu-
mina) at Novogene. The animal experimental procedures were performed according to
the Tongji University Guide for the use of laboratory animals.
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