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Abstract

Microbial eukaryotes constitute a significant fraction of biodiversity and have recently
gained more attention, but the recovery of high-quality metagenomic assembled
eukaryotic genomes is limited by the current availability of tools. To help address
this, we have developed EukCC, a tool for estimating the quality of eukaryotic
genomes based on the automated dynamic selection of single copy marker gene
sets. We demonstrate that our method outperforms current genome quality
estimators, particularly for estimating contamination, and have applied EukCC to
datasets derived from two different environments to enable the identification of
novel eukaryote genomes, including one from the human skin.
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Background
The DNA of microorganisms is routinely extracted, sequenced and assembled into

genomes, both from isolate cultures and within the context of metagenomic analyses.

Estimating the quality of the recovered genome is crucial, to prevent incomplete or

contaminated genomes from being published. Single copy marker genes (SCMGs) are

routinely used to estimate the quality of a newly assembled genome. As these genes

are expected to occur only once within a genome, comparing the number of SCMGs

found within a draft genome to the number of expected marker genes provides an

estimation of completeness, while additional copies of a marker gene can be used as an

indicator of contamination. This approach has been widely accepted for prokaryotes

and eukaryotes alike [1–4]. For prokaryotic genomes, CheckM [4] is the most widely

used tool for estimating completeness and contamination, although other approaches

have also been used and sets of prokaryotic SCMGs are also provided by BUSCO [2, 5]

and anvi’o [6]. CheckM uses an initial set of universal SCMGs to identify the clade of a

genome and subsequently uses clade specific sets to estimate the quality.
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Similarly, SCMGs have also been used to assess isolate eukaryotic genomes as well.

CEGMA [1] used 240 universal single copy marker genes identified from six model

organisms to estimate genome completeness. BUSCO superseded CEGMA, with the

major advance of curated marker gene sets for several eukaryotic and prokaryotic

clades, in addition to the single universal eukaryotic marker gene set. However, while

BUSCO (version 3.1) provides sets to estimate completeness of eukaryota, protists,

plants and fungi, it remains up to the user to select which is the most suitable set when

assessing genome quality. Besides these more universal approaches, others have focused

on certain eukaryotic clades: FGMP estimates genome quality of fungal isolate genomes

for which it utilises both SCMGs and also highly conserved regions found within fungal

genomes [7]. For protists, anvi’o provides a reduced number of profiles from the BUSCO

‘protist’ set to estimate the genome quality of eukaryotic genomes (unpublished).

The past two decades have seen a dramatic advancement in our understanding of the

microscopic organisms present in environments (known as microbiomes) such as

oceans, soil and host-associated sites, like the human gut. Most of this knowledge has

come from the application of modern DNA sequencing techniques to the collective

genetic material of the microorganisms, using methods such as metabarcoding (amplifi-

cation of marker genes) or metagenomics (shotgun sequencing). Based on the analysis

of such sequence data, it is thought that up to 99% of all microorganisms are yet to be

cultured [8].

To date, the overwhelming number of metabarcoding and metagenomics studies have

focused on the bacteria present within a sample. However, viruses and eukaryotes are also

important members of ecosystems, both in terms of their numbers and functions [9–12].

Indeed, the unicellular protists and fungi are estimated to account for about 17% of the

global microbial biomass. Within the microbial eukaryotic biomass, the genetically diverse

unicellular organisms known as protists account for as much as 25% [13].

Despite the increased number of complete and near complete genomes, metabarcod-

ing and metagenomic approaches that have included the analysis of microbial eukary-

otes have demonstrated that the true diversity of protists is far greater than that

currently reflected in the genomic reference databases (such as RefSeq or ENA). For ex-

ample, a recent estimate based on metabarcoding sequencing suggests that 150,000

eukaryotic species exist in the oceans alone [14], but only 4551 representative species

have an entry in GenBank (15. Nov 2019). Thus, if the functional role of a microbiome

is to be completely understood, we need to know what these as yet uncharacterised

organisms are and the functional roles that they may be performing.

Currently, one of the best approaches for understanding microbiome function is

through the assembly of shotgun reads (usually 200–500 bp long) to obtain longer

contigs (typically in the range of 2000–500,000 bp). These contigs provide access to

complete proteins, which may then be interpreted within the context of surrounding

genes. In the last few years, it has become commonplace to extend this type of analysis

to recover putative genomes, termed metagenome assembled genomes (MAGs). MAGs

are generated by grouping contigs into sets that are believed to have come from a single

organism—a process known as binning [15]. However, even after binning, MAGs vary

in their completeness and are typically fragmented, due to a combination of biological

(e.g. abundance of microbes), experimental (e.g. depth of sequencing) and technical

(e.g. algorithmic) reasons. Furthermore, the computational methods used for binning
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the contigs can sometimes fail to distinguish between contigs that have come from

different organisms, leading to a chimeric genome (termed contamination). This is an

issue that has to be taken into account when analysing MAGs [16]. Consequently,

genome quality assessment is a crucial part of the process, allowing the identification

and selection of high-quality MAGs.

Here, we investigate the performance of current approaches across different

eukaryotic clades and describe EukCC, an unsupervised method for the estimation of

eukaryotic genome quality in terms of completion and contamination, with a particular

view of applying this tool for the assessment of eukaryotic MAG quality.

Results
Evaluation of BUSCO across different eukaryotic clades

To determine the applicability of BUSCO 3.1 for evaluating the quality of eukaryotic

MAGs, we first tested how the more general eukaryotic BUSCO set performed in terms

of assessing the completeness and contamination for a range of eukaryotic isolate

genomes. Briefly, fungal and protist genomes were downloaded from the NCBI Reference

Sequence Database (RefSeq) and completeness and contamination was estimated using

BUSCO in ‘genome mode’, which employs AUGUSTUS for gene prediction [17], with the

eukaryota SCMG set (‘eukaryota_odb9’). Subsequently, the completeness and contamin-

ation of fungi and protist genomes were additionally estimated using the fungal (‘fungi_

odb9’) and protist (‘protists_ensembl’) sets respectively. As these genomes are of high quality

and manually curated, it was anticipated that they should have very high levels of complete-

ness and minimal levels of contamination.

To understand the overlap between the eukaryotic BUSCO set and the selected

genomes, we counted the number of matched BUSCOs in each taxonomic clade con-

taining at least 3 reference genomes. While BUSCO reports complete, fragmented and

duplicated BUSCOs, for the sake of simplicity we summarised all these as ‘matched’

BUSCOs (Fig. 1a). One of the main applications of BUSCO has been the assessment of

fungal genomes, which also represent the most numerous eukaryotic genomes in the

reference databases. Thus, it was unsurprising that > 95% of the 303 eukaryotic

BUSCOs were matched in genomes coming from Ascomycota, Mucoromycota and

Basidiomycota. However, BUSCO performed less well on eukaryotic genomes arising

from other taxonomic groups. Notably, the numbers of BUSCOs found in Amoebozoa

genomes varied greatly, with a median of 88.78%, but varied between 69.6% for Enta-

moebidae (number of species, n = 4) and 94.9% for the four further Amoebozoa families

(n = 6). More surprising was that the Ciliophora genomes (n = 4) rarely matched

BUSCO eukaryotic marker genes, with a median of 1.16% of BUSCOs matched.

We also evaluated the BUSCO protist set in the same way. Somewhat counterintuitively,

using this more specific set the mean proportion of matched BUSCOs in Amoebozoa

dropped from 88.78 to 78.37%, yet increased for Apicomplexa from 61.72 to 68.37%. In

other taxa, such as Stramenopiles, the range of missing BUSCOs increased (Fig. 1S). This

suggests that the use of a more specific BUSCO set can improve predictions, but that it

does not resolve the problem of inaccurate estimation of completeness in specific clades.

To determine if the underestimation in clades other than fungi is random or caused

by systematic biases, we created a matrix containing all found, missing, fragmented or
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complete BUSCOs in all analysed reference genomes, excluding Basidiomycota,

Mucoromycota and Ascomycota (Fig. 1b, see the “Methods” section). We arranged the

columns based on the NCBI taxonomy and rows using k-modes clustering. Within

certain clades, such as Cryptophyta, Microsporidia and Apicomplexa, the same BUS-

COs were often missing across a large number of species. For each BUSCO, we evalu-

ated whether it was missing in at least half the species of a given clade. Subsequently,

when disregarding any BUSCO missing in at least three clades, the number of BUSCOs

in the eukaryota set was reduced from 303 to 86.

Taken together, this shows that the BUSCO eukaryota set does not perform

uniformly across all eukaryotic clades. Others have observed similar issues when inves-

tigating individual species or clades [18, 19]. We also investigated whether factors, such

Fig. 1 Benchmarking of BUSCO using reference genomes. a We downloaded eukaryotic RefSeq genomes
excluding bilateria and vascular plants and ran BUSCO in ‘genome mode’ using the ‘eukaryota_odb9’ set. For
each clade, we summarised the number of BUSCO markers matched. For fungal clades, such as
Ascomycota, Mucoromycota and Basidiomycota, most BUSCOs matched a single target—suggesting 100%
completeness of the reference genomes. However, in other clades, a substantial fraction of BUSCOs were
frequently not matched (Apicomplexa, for example). b For species not belonging to fungal clades, we
created a matrix using the detailed BUSCO results. Genomes are sorted taxonomically (using the assigned
NCBI taxonomy) in columns and the result for each BUSCO in rows. The matrix is coloured according to the
BUSCO result, which reports complete, duplicated, fragmented and missing marker genes. Fragmented hits
are reported if only part of the BUSCO was detected. Above is shown the percentage of duplicated
BUSCOs, the number of the RefSeq transcripts for each genome, the genome size and the GC content. In
some clades, there is a clear relationship between the genome taxonomy and missing BUSCOs. In the case
of Microsporidia and Apicomplexa, but also for Euglenozoa, this relationship is especially strong
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as genome size, GC content or proteome size, could account for the bias in matching

BUSCOs, but taxonomic lineage represented the single strongest signal.

Influence of gene prediction on BUSCO matches

To understand whether issues with de novo gene prediction could be the cause of the

missing BUSCO matches, we additionally ran BUSCO in ‘protein mode’ on the genome

protein annotations provided by RefSeq and proteins predicted using GeneMark-ES

([20]; Fig. 1S C). When running BUSCO in this mode against RefSeq protein annota-

tions, the number of matched BUSCOs increased overall, indicating that de novo

prediction methods do account for some of the loss of sensitivity. However, the general

pattern of missing markers across clades remained. Taking Ciliophora as an extreme

example, the median of matched markers was 1.2% in ‘genome mode’, which was

increased to 76.2% using RefSeq annotations. For other clades, the differences were less

substantial but still observable. For example, in Apicomplexa 61.7% of BUSCOs were

matched using AUGUSTUS, rising to 73.9% using GeneMark-ES and 74.2% with

RefSeq annotations. Notably, GeneMark-ES failed to run on several genomes of the

Cryptophyta and Ciliophora clades, as well as for the single Rhizaria genome, which

BUSCO estimated in ‘genome mode’ to have close to 100% missing markers. The

primary reason GeneMark-ES did not work for a genome was a lack of suitable training

data: out of six failed annotation attempts, five had four or less contigs included in the

training phase of GeneMark-ES.

Establishing specific single copy marker gene libraries

To more accurately compute quality estimates for novel genomes, we wanted to define

sets of SCMGs that were comprehensive for microbial eukaryotes, as well as being both

sensitive and specific. As shown above, BUSCO produces sets of SCMGs for specific

clades which can be more precise in quality estimation. Building on this observation,

we aimed at defining multiple sets of SCMGs covering a large range of protists and

fungi. We anticipate that a key use case of the marker gene library will be the applica-

tion of it to poorly characterised genomes, and as such, the genes are likely to be

identified by de novo prediction. We therefore chose to (re-)annotate all eukaryotic

RefSeq species (not belonging to bilateria or vascular plants) using GeneMark-ES

generated gene predictions to more closely represent the use case of metagenomics. In

addition, this favours the selection of marker genes which can be predicted using de

novo approaches. GeneMark-ES was chosen and applied as we previously demonstrated

that the tool worked well across a large range of species and generally performs closer

to the RefSeq annotation benchmark. Additionally, we added all eukaryotic species that

are used as reference genomes in UniProtKB. The resulting proteins were then

annotated with the family-level profile HMMs from PANTHER 14.1 [21] using hmmer

(version 3.2) [22]. We choose PANTHER, as amongst tested databases, it has been

shown to have the largest coverage of the analysed proteins [23] and because the

PANTHER profile HMMs model full-length protein families rather than their constitu-

ent globular domains.

In order to increase paralog separation and minimise local matches caused by com-

mon domains, we aimed to define profile specific bit score thresholds. To achieve this,
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we relied on a taxonomically balanced set of species, across which, for each profile, we

identified the bit score threshold leading to the highest number of single copy matches

(see the “Methods” section).

Thereafter, to define clade specific SCMGs, we first constructed a reference tree for

the given genomes using 55 widely occurring SCMGs (from here on termed “reference

set”, see the “Methods” section). In each clade of the tree, we checked for SCMGs with

a prevalence of at least 98%. A set of marker genes was then defined whenever we

found 20 or more PANTHER families in a clade matching the aforementioned preva-

lence threshold. Using this approach, we were able to define 477 SCMG sets across the

entire tree. In contrast to BUSCO and CEGMA, we were not able to identify SCMGs

based on the PANTHER models that were applicable to the entire eukaryotic kingdom,

but instead found sets applicable to many subclades. While this is desirable for specifi-

city, the obvious drawback is knowing which set is the most appropriate to use—it

would be impractical to manually assign the most appropriate set (especially if a large

number of different genomes were to be assessed). Thus, we developed EukCC, a soft-

ware package to select the most appropriate SCMGs, and use these to estimate genome

quality.

Automatically selecting the appropriate single copy marker gene set

To select the most specific set of SCMGs for a novel genome of unknown taxonomic

lineage, EukCC performs an initial taxonomic classification by annotating the de novo

predicted proteins using the 55 widely occurring SCMGs reference set. Pplacer [24] is

then applied to phylogenetically contextualise each match within the reference tree.

Tracing each placement in the tree, EukCC determines the lowest common ancestor

(LCA) node for which an SCMG set is defined in the database.

As may be expected, while pplacer often places all sequences in a simple, narrow

region of the reference tree, occasional placements occur within inconsistent, distantly

related clades. In such cases, no single set of SCMGs may encompass all locations. To

overcome these cases, the SCMG set that encapsulates the largest fraction of the place-

ments is located. While this process overcomes cases where outlying placements occur

due to incorrect or inconsistent placements, this approach may select an incorrect

SCMG set if the matches to the reference SCMGs from a novel genome cannot reliably

be placed in the tree. To help control for this, EukCC always reports how many profiles

are covered in a set and provides the option of plotting the placement locations

(Fig. 5S). Thus, in a situation where a set was chosen that only encompasses a fraction

of the reference SCMGs, a more in-depth analysis of this MAG could, and should, be

carried out.

After the initial placement, EukCC assesses the completeness and contamination

in a second step by annotating all proteins with the profiles that are expected to

be single copy within the assigned clade. EukCC then reports the fraction of single

copy markers found and the fraction of duplicated marker genes, corresponding to

the completeness and contamination score, as provided for prokaryotes by

CheckM. Additionally, EukCC uses the inferred placement to give a simple phylo-

genetic lineage estimation based on the consensus NCBI taxonomy of the species

used to construct the chosen evaluation set.
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Comparison of BUSCO to EukCC quality estimates

Having established new sets of SGMGs and having developed EukCC for their selec-

tion, we next evaluated the accuracy of our approach for estimating completeness and

contamination. To do so, we used both EukCC and BUSCO to estimate the complete-

ness and contamination of 19 RefSeq genomes, from 6 different clades, that were not

used to establish the EukCC SCMGs. As these were complete genomes, we simulated

varying amounts of completeness and contamination (see the “Methods” section). Dur-

ing the preparation of this manuscript, an updated version of BUSCO was produced,

version 4, which introduced a similar concept as described above for EukCC for

automatically selecting gene marker datasets. For the sake of completeness, we have

also included BUSCO 4.0. For BUSCO 3.1, we used the taxonomy assigned to each

genome to select the most specific BUSCO sets, EukCC and BUSCO 4.0 dynamically

selected the SCMGs set from their respective library of clade specific SCMGs. As we

showed earlier that the de novo gene prediction can have an influence on the BUSCO

results, we ran BUSCO using AUGUSTUS as well as in ‘protein mode’ on GeneMark-

ES predicted proteins, which are also used by EukCC. It is worth noting that due to the

limited availability of RefSeq genomes, the genomes selected in this benchmark were

partially (10 out of 19) already included in OrthoDB v10v1 (odb10) and as such

Fig. 2 Comparison of EukCC and BUSCO using simulated data. We compared EukCC to BUSCO (versions 3.1 and
4.0) using a set of 19 genomes from RefSeq belonging to Alveolates, Amoebozoa, Apusozoa, Fungi, Rhizaria,
Stramenopiles and Viridiplantae. We fragmented the genomes and added varying amounts of contamination from
another genome in the same clade. We then ran BUSCO and EukCC to estimate completeness and
contamination. The red line highlights 0% deviation from the ground truth. a We defined completeness in BUSCO
as 100% minus missing BUSCOs. For genomes with a contamination between 0 and 5%, EukCC underestimated
completeness with a median of 2.74%, while BUSCO 3.1 underestimates the completeness across all genomes
with a median above 20%. BUSCO 4.0 underestimates completeness on average by 5.75%. With increasing
amounts of contamination, EukCC underestimates more rarely. Only when genome completeness falls below 50%
and/or contamination exceeds 15% does EukCC consistently overestimate completeness. b To evaluate
contamination we counted the number of duplicated BUSCOs or marker genes (in the case of EukCC). For
genomes with 0–5% contamination and high completeness (> 90%), EukCC overestimates contamination, but by
below 5%. With increasing amounts of contamination, EukCC tends to underestimate contamination, but
outperforms BUSCO 4.0, which consistently underestimates contamination by a larger fraction
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confound the benchmark in favour of BUSCO 4.0. This is particularly true for the

Stramenopile and the Viridiplantae clade, from which all of the benchmark genomes

are included in odb10.

When estimating completeness across simulated genomes with no added contamin-

ation, EukCC performed better than BUSCO 3.1 or 4 using AUGUSTUS and better

than BUSCO 3.1 with GeneMark-ES. Completeness estimates between BUSCO 4.0 and

EukCC, both using GeneMark-ES, were within 2.5% for genomes of at least 80% com-

pleteness. With increasing contamination, EukCC’s estimates show a lower deviation

from the ground truth. As BUSCO 4 overall outperforms BUSCO 3 in our analysis, we

will focus on this version from here on when referring to BUSCO.

BUSCOs completeness estimates for simulated genomes with more than 95%

completeness and no contamination, using AUGUSTUS or GeneMark-ES, had a mean

deviation from the ground truth of 5.75% with GeneMark-ES having the lower standard

deviation of 21%. Meanwhile, EukCC’s estimates are more accurate with a deviation of

2.74% and a standard deviation of 13% (Fig. 2a). Within clades, there is variation to be

noted between BUSCO and EukCC: using this benchmark BUSCOs completeness esti-

mate accuracy varies amongst clades. Out of all the tested clades, BUSCO performed

best for Fungi, Alveolates and Stramenopiles, but underestimates completeness in

Amoebozoans. EukCC’s estimates are comparable for Fungi and Alveolates, but more

reliable for Amoebozoans. BUSCO outperforms EukCC in the Stramenopile clade,

where EukCC has a larger standard deviation and mean, but notably all genomes of this

clade benchmark are included in odb10 and so the benchmark is not independent from

the training data for BUSCO, where it is independent for EukCC. Between both tools,

it is notable that clades with little training data, such as Stramenopiles and Amoebozoa,

are more often underestimated in their completeness.

To demonstrate EukCC’s performance in estimating contamination, we also

assessed the contamination estimates against the known value of contamination,

against a background of increasing levels of genome completeness (Fig. 2b, Add-

itional file 1: Fig. S2). Thus, contamination from other genomes belonging to the

same clade was added to complete or partially fragmented genomes (see the

“Methods” section). We investigated in-clade contamination first, as opposed to out

of clade contamination, as this form of contamination is more likely given current

binning algorithms. For almost complete genomes, those with > 90% completeness

and simulated contamination < 5%, EukCC deviates from the expected contamin-

ation estimate on average by 2% for Fungi and Alveolates. At lower levels of com-

pleteness (60–80%), EukCC’s contamination estimates are less accurate, but as

completeness increases (> 90%), the accuracy of contamination estimation increases,

with a median error of < 2% for genomes with contamination below 10%. Overall,

as genomes include increasing amounts of contamination, EukCC begins to over-

estimate completeness, e.g. by ~ 5% for fungal genomes with expected completeness

60–70% and a contamination of 10–15% (Additional file 1: Fig. S2). This is some-

what to be expected, as there is a greater chance of finding an expected marker

gene in the contaminating contigs, leading to inflated completeness. While EukCC

tends to overestimate contamination in the range of 0–5% contamination, BUSCO

tends to underestimate contamination across all simulated genomes containing

more than 5% contamination.
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Next, we ran the same benchmark with contamination added from genomes out-

side the clade, to understand if EukCC’s estimates remain stable. Overall, we saw a

slight decrease in the accuracy of the contamination estimate, which resulted from

a wider variation in the contamination estimates. However, completeness estimated

remained consistent with the previous within clade contamination, with genomes

overestimated on average by 1.6% for genomes with a simulated completeness >

90% and contamination 5–15% (Additional file 1: Fig. S3). To understand the cause

of the slight overestimation of genome completeness with increasing amounts of

added contamination using EukCC, we added contamination in the form of ran-

dom DNA to the genomes and repeated the genome completeness and contamin-

ation assessments. In this case, the contamination estimate was not affected by the

added contamination, confirming the hypothesis that overestimation of complete-

ness is caused by contaminating contigs by chance providing the correct, yet miss-

ing, SCMGs.

Another advantage of EukCCs for estimating completeness and contamination of

MAGs is the uniform distribution of the SCMGs across the entire genome. To

demonstrate this, we randomly sampled 5 kb fragments and computed the Pearson

correlation between the sampled size and the recovered marker genes for all spe-

cies used within this benchmark. All sets used in this test showed linearity with a

Pearson correlation coefficient of at least 0.95, indicating a uniform distribution of

the marker genes across the genome. Nevertheless, it remains possible that shorter

contigs that are assigned to a MAG may lack any marker gene, so are not evalu-

ated as part of the genome quality estimates performed by EukCC. To highlight

this, EukCC outputs the fraction of genome that cannot be assessed due to this

feature.

Across all simulated genomes, EukCC could estimate genome quality starting

from a completeness of around 50%. Genomes less complete than this were often

not able to be processed using the self-training mode of GeneMark-ES. To over-

come these shortcomings of GeneMark-ES, we developed a python package called

pygmes which allows the use of pre-trained GeneMark-ES models for over 700

species. Briefly, pygmes tries to run GeneMark-ES in self-training mode first; if

this fails, it will predict proteins using GeneMark-ES with five pre-trained

GeneMark-ES models from different taxonomic clades. Using the best proteome

(in terms of number of amino acids/proteins), it will predict the taxonomic

lineage against a UniRef50 database with diamond. Using this taxonomic assign-

ment, the model with the largest taxonomic overlap amongst the 700 available

GeneMark-ES training models will be chosen and applied to predict the final

proteome. Users can opt to rely on this library of models by providing the

‘--pygmes’ flag to EukCC.

Overall, in this benchmark, we found that BUSCO 3.1 and 4 tend to underestimate

contamination in genomes of high completeness (Additional file 1: Fig. S2). BUSCO 4.0

performs better than BUSCO 3.1 and provides more reliable completeness estimates

when paired with GeneMark-ES instead of the default AUGUSTUS gene caller.

Meanwhile, EukCC tends to underestimate completeness and overestimates contamin-

ation (albeit at low rates), which leads to more conservative, yet more accurate genome

quality estimates.
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Comparing gene predictions from GeneMark-ES to RefSeq

As BUSCO’s performance increased when using GeneMark-ES compared to AUGUST

US, we investigated how well the GeneMark-ES predicted proteins overlap with anno-

tations from RefSeq. For a taxonomically balanced subset of 89 eukaryotic genomes, we

predicted proteins de novo using GeneMark-ES and cross referenced SCMGs used by

EukCC against RefSeq annotated sequences from the same species using DIAMOND

([23]; see the “Methods” section). We then generated a pairwise alignment between the

predicted (query) protein and the best hit from the reference set and counted the gaps

(irrespective of length) in both the reference and the query. Pairwise alignments with

few gaps generally involve proteins of the same length. In the relatively few cases where

there were a larger number of gaps (> 10 gaps), these were introduced because the

GeneMark-ES proteins were smaller compared to RefSeq, suggesting that GeneMark-

ES does miss a small subset of exons. Despite this, the assigned RefSeq proteins and

the corresponding GeneMark-ES proteins were found to have a generally similar length

distribution. Together, this suggests that the SCMGs chosen by EukCC and predicted

by GeneMark-ES are similar to the annotations in RefSeq (Additional file 1: Fig. S5).

Application of EukCC for the evaluation of MAG quality

Having established the utility of EukCC on the simulated benchmark, we applied it to

metagenomic datasets. As a first example, we investigated samples from the skin micro-

biome, a relatively well characterised microbiome, where the community has low diver-

sity and is known to include many fungal species, many of which have been isolated

and their genomes sequenced [25, 26]. These features provided the best chance of pro-

ducing de novo assembled eukaryotic MAGs for which we could estimate the quality

using EukCC and independently verify their quality using reference genomes. Further-

more, given that BUSCO performs well for fungal genomes, this would provide

additional validation of the EukCC results.

We retrieved the sequencing data for the largest publicly available human skin micro-

biome study (accession PRJNA46333 [27, 28]), which comprises 4009 individual shot-

gun sequencing runs, from which 2488 runs can be assigned to 15 individuals.

Following successful assembly of 3910 runs with metaSPAdes [29] and binning with

CONCOCT ([30]; see the “Methods” section), 2497 of the assembled runs produced

bins, generating 56,610 bins in total. As these bins were expected to be a mixture of

bacterial and eukaryotic genomes [31, 32], a top level classification was performed of

all bins using EukRep [33] to identify any bin containing at least 1Mb of predicted

eukaryotic DNA, reducing the number of bins from 56,610 to 434 (with the bins

hereafter referred to as a MAG).

Using EukCC, we could predict the MAG quality for 233 out of the 434 MAGs. We

then assigned reference genomes to as many MAGs as possible, by finding the closest

GenBank entry for each based on Mash distances ([34]; see the “Methods” section).

93.13% of the MAGs (217 out of 233) could be assigned to a fungal reference genome

with a Mash distance < 0.1, corresponding to average nucleotide identity (ANI) of ~

90% or above. To verify the EukCC genome completeness estimates, we compared the

alignment fraction of the reference to the predicted completeness of EukCC for all

MAGs. For those MAGs that could be aligned to a reference genome with an ANI >
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95% and had a predicted contamination below 5% and a completeness > 50%, the

median difference between alignment fraction and predicted completeness was 4.6%,

with EukCC underestimating the completeness (Additional file 1: Fig. S4 B). BUSCO

4.0 underestimated completeness in the same MAGs by 9.8% while FGMP [7] (another

fungal genome quality estimator) overestimated completeness by 11.24% (Additional

file 1: Fig. S4 D).

Next, we removed the redundancy between the MAGs (based on the assignment to

the same reference genomes and retaining the most complete MAG, with a contamin-

ation < 5%). This yielded a non-redundant set of 5 MAGs, corresponding to Malassezia

restricta (with a EukCC reported completeness of 92.84% and a contamination of

1.38%), M. globosa (completeness 84.87 and contamination 1.49%), M. sympodialis

Fig. 3 Recovery of MAGs belonging to Malassezia. We assembled 3910 metagenomes and could recover
almost complete MAGs of M. globosa, M. restricta, M. sp., M. sloofiae and M. sympholidalis. Additionally, we
recovered a Malassezia MAG with no known matching species. a Using four genes occurring in single copy
in all representative Malassezia species, in the recovered MAGs as well as in S. cerevisiae and two species of
Basidiomycota, we constructed a phylogenetic tree with MAFFT and FastTree2. The tree recapitulates the
clustering suggested by Wu et al. [26], consisting of three clusters A, B and C. All recovered MAGs cluster
next or close to their assigned species (bold). The MAG representing the unknown species
(‘Novel_Malassezia_MAG’) is clustered within the Malassezia clade, confirming the previous annotation. b
For each MAG, we counted the Reads Per Kilobase of transcript per Million mapped reads (RPKM) if more
than 30% of the genome was present in a sample. Using this approach, we could detect M. globosa, M.
restricta and M. sp. across all individual subjects. The less prevalent M. sloofiae and M. sympholidalis could
only be found in 2 and 6 individuals, respectively. The ‘Novel_Malassezia_MAG’ could be found in four
subjects. c We analysed the MAG using anvi’o’s refine method. All clusters created by anvi’o based on k-mer
frequency and coverage have similar coverage and could be annotated as Malassezia using UniRef90.
Cluster E has a lower GC content but comparable coverage to other clusters
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(completeness 85.56% and contamination 0.79), the unclassified M. sp. (completeness

83.05% and contamination 2.23%) and M. slooffiae (completeness 81.21% and contam-

ination 2.37%). The average nucleotide identity (ANI) to the respective reference

genome was above 98% for all MAGs but M. sp. (ANI 93.7%).

We found five additional MAGs that we could not assign to any known Malassezia

species, but were identified by EukCC as likely to belong to the Malassezia genus. We

computed the mash distance between all MAGs and determined that they belong to

the same unknown species. After dereplication, the representative MAG, from here on

termed ‘Novel_Malassezia_MAG’, was estimated to have a completeness of 93.43% and

a contamination of 1.84%.

Wu et al. [26] reported that Malassezia, in contrast to other Basidiomycetes, should

contain the gene family that matches the Pfam entry DUF1214 (Pfam accession

PF06742). We could verify the presence of this gene family in all reference Malassezia

genomes except M. japonica and M. obtusa. We could also find this gene family in the

MAGs assigned to M. restricta, M. sloofia, M. Sp. and M. sympodialis, but not in the

‘Novel_Malassezia_MAG’ nor in the MAG assigned to M. globosa. As both MAGs are

predicted to be incomplete, this protein family could be missing by chance or due to

misclassification of the MAGs. To further characterise the novel and the recovered

Malassezia MAGs, we identified four SCMGs present in all Malassezia as well as in

Saccharomyces cerevisiae, Piloderma croceum and Ustilago maydis (see the “Methods”

section). We used members of these protein families to build a tree that included all

recovered non-redundant MAGs and all representative genomes from the Malassezia

clade, as well as the aforementioned fungi. In the resulting tree, rooted using S. cerevi-

siae as an outgroup, all MAGs cluster next to or close to their assigned reference

genome. The tree recapitulates the three cluster structure first described by Wu et al.

[26]. The ‘Novel_Malassezia_MAG’ representing an unknown species is located within

the Malassezia clade, and might be a member of clade B, confirming the taxonomic

assignment by Mash and EukCC (Fig. 3a).

To investigate the prevalence of the five recovered MAGs, we aligned the reads from

1488 skin metagenomes belonging to 15 individuals to the MAGs and computed the

Reads Per Kilobase of transcript per Million mapped reads (RPKM) of unique reads for

samples if 30% of the target MAG was covered. Using this approach, we identified M.

globosa, M. sp. and M. restricta in all individuals of this study (n = 15). The novel

Malassezia species was present in 4 different individuals, which was more prevalent

than M. sloofia (n = 2) and close to the prevalence of M. sympodialis (n = 6) (Fig. 3b).

We then inspected the potentially novel Malassezia species genome using anvi’o re-

fine [6] and identified five contig clusters (Fig. 3c). Each subcluster was taxonomically

analysed using matches to Uniref90 and could be associated to the genus Malassezia

with a majority vote of at least 60% of the sampled proteins (see the “Methods”

section). We also looked at the density of marker genes in each subcluster. Clusters A,

B, C and D contribute 24.7%, 15.6%, 19.3% and 7.3% respectively and have a similar

marker gene density between 13.7 and 16.5%/Mb. Cluster E contributes 28.0% com-

pleteness to the MAG overall, but has a lower marker gene density of only 9.2%/Mb

(Additional file 5: Table S4). While Cluster E contains more contigs with lower GC

than the other groups, the inclusion in this MAG is supported by the even coverage as

well as the taxonomic assignment to the Malassezia genus.
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Applying EukCC to a Bathycoccus MAG from TARA Ocean data

Having established that EukCC quality estimates were accurate in a well characterised

community, we then tested it on samples in which we expect a more diverse range of

eukaryotes, beyond fungi. To do so, we focused on the eukaryotic enriched samples

(size fractionated samples in the range 0.5 μm to 2mm (protists size fraction, study:

PRJEB4352)) from the TARA Oceans project [10]. As a prelude to investigating eukary-

otes from this biome, we randomly selected 10 out of the 912 available runs.

After assembly and binning of the sequences belonging to the run ERR1726523 (see

the “Methods” section), we identified a 13Mb bin that EukCC estimated to have a

completeness of 87.62% with a contamination of 0.32%. EukCC inferred a taxonomic

placement in the order Mamiellales (green algae). Using Mash, we compared this

MAG, from here on out termed ‘TARA_1’, to eukaryotic genomes in GenBank, as

well as to MAGs published by Delmont et al. [33], which were obtained by assembling

and binning data from the prokaryotic size fraction of the TARA Ocean project. The

best match within GenBank is the entry Bathycoccus sp. TOSAG39-1 (GCA_

900128745.1, 10 Mb), with a Mash distance of 0.041. The taxonomy of the GenBank

entry confirmed the EukCC inferred lineage and chosen SCMG set. In a pairwise

alignment between ‘TARA_1’ and TOSAG39-1 using dnadiff, 52.01% of the MAG cov-

ered 78.97% of the reference genome with an ANI of 96.08. The identified reference

genome was published by Vannier et al. [35] by merging four single-cell amplified

genomes (SAGs). Vannier et al. estimated their SAG to be 64% complete using

eukaryotic core genes from CEGMA. We estimated the quality of the SAG using

BUSCO 4.0 and EukCC, which assessed the completeness to be 56.2% and 59.65%

with a contamination of 7.4% and 14.04% respectively (See Table 1). The considerable

amount of contamination may have resulted from the merging of the SAGs. The

closest match of ‘TARA_1’ to the published TARA MAGs was the entry ‘TARA_PSE_

MAG_00140’ with a Mash distance of 0.006. When comparing ‘TARA_1’ to the

‘TARA_PSE_MAG_00140’ MAG using a pairwise genomic alignment, 89.8% of

‘TARA_1’ covers 94.0% of ‘TARA_PSE_MAG_00140’ with an ANI of 99.49%.

To check for assembly and binning errors, we again analysed the MAG using the bin

refinement method in anvi’o (Additional file 1: Fig. S6): the anvi’o clustering divides the

bin into two main clusters. Both clusters share similar GC content and coverage. From

each cluster, we inferred the taxonomic annotation by comparing a subsample of up to

200 proteins against Uniref90. For all analysed clusters, the consensus lineage ended at

the genus Bathycoccaceae, indicating a consistent MAG with no significant

contamination.

Table 1 Genome quality metrics for the three genomes. BUSCO 4.0 and EukCC produce similar
estimates for all three genomes. The MAG produced by Delmont et al. is substantially more
complete than the next best entry in GenBank. The ‘TARA_1’ MAG is more complete and more
continuous than both

EukCC BUSCO 4.0

Genome Compl. (%) Cont. (%) Compl. (%) Cont. (%) Size [Mb]* N50 [Kb]*

TOSAG39-1 59.65 14.04 56.2 7.4 10.0 14.1

TARA_PSE_MAG_00140 82.46 0.0 82.2 0.1 12.7 8.8

TARA_1 87.62 0.32 88.8 0.3 13.1 18.5

*Scaffold size/N50
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In summary, the genome quality estimates of our TARA_1 MAG compares

favourably to both the GenBank entry TOSAG39-1 or the MAG TARA_PSE_MAG_

00140, in terms of completeness and continuity. This example highlights that unsuper-

vised recovery of eukaryotic MAGs at scale is feasible, with quality estimates on a par

with carefully curated MAGs.

Discussion
Microbial eukaryotes represent a largely unexplored area of biodiversity. The use of

modern genomic and metagenomic approaches are beginning to provide access to the

genetic composition of these hitherto unknown organisms. However, in this study, we

have demonstrated that widely used tools for estimating eukaryotic genome quality

(completeness and contamination) do not work uniformly across all microbial eukary-

otes, which limits their application—for example within large scale metagenomic

pipelines.

Our results also highlight that the quality of the gene prediction step influences the

quality estimates given by BUSCO—using NCBI RefSeq annotations instead of

AUGUSTUS gene predictions raised the predicted average quality of the tested

genomes. We could show that BUSCO 3.1 was not suitable to be used in a metage-

nomic context, as the eukaryota SCMG set consistently underestimated genome

completeness within certain clades. This within-clade error cannot be explained by low

quality reference genomes, but rather is indicative of a suboptimal eukaryota set. This

issue has been overcome by BUSCO 4.0, which now offers an automated approach for

marker gene set selection, similar to what has been proposed for EukCC. We showed

that while BUSCO 4.0 has major advantages over BUSCO 3.1, BUSCO 4.0 still underes-

timates contamination across multiple clades.

To overcome many of these limitations, we have developed EukCC, a novel tool to

estimate microbial eukaryotic genome quality. EukCC uses a reference database to

dynamically select the most appropriate out of 477 single copy marker genes sets. This

set is then used to report genome completeness and contamination, as well as a taxo-

nomic placement. Comparing EukCC and BUSCO 4.0 proved to be difficult due to the

limited availability of novel microbial RefSeq genomes, which have not been included

in neither EukCC’s training set nor in OrthoDB v10. Even though the chosen bench-

mark was not independent for BUSCO 4.0 we showed, using simulated data, that

EukCC estimates genome quality across several taxonomic clades and performs on a

par with, or better than, BUSCO. In addition, EukCC provides a more conservative

contamination estimate across all tested clades, which is crucial to the field of metage-

nomics, where genomes are more likely to contain contaminating DNA. EukCC works

independently of user input and can thus be used to analyse potential eukaryotic

genomes from unknown species in an unsupervised environment. We showed that

EukCC can identify contamination from similar and more distantly related species

within a MAG. Nevertheless, it is worth noting that removal of contamination from

foreign species is a topic that has recently been addressed by others, with software solu-

tions such as CAT [36]. We think that removal of contigs from distantly related species,

say a fungal contig in a Chlorophyta MAG, will be possible based on such approaches

and that additional verification steps should always be considered when trying to assess

the quality of MAGs.
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Nevertheless, there is a clear connection between the number of known species in a

taxonomic group and the performance of EukCC. Some eukaryotic clades have very

few high-quality reference genomes. For example, at the time of writing, Apusozoa,

Rhizaria and Cryptophyta as well as Rhodophyta each have less than 10 reference

genomes. While the current version of EukCC is known to perform better for more

deeply sampled clades, we have demonstrated that the general framework can deliver

consistent and high-quality estimates across a broad taxonomic range. Thus, we aim to

update the database regularly in order to build on growing public data and improve

our performance across all clades.

Using EukCC, we are now able to systematically screen large libraries of previ-

ously ignored or unanalysed bins from published shotgun metagenomes. We have

demonstrated that by reanalysing published skin metagenomes, we could find a

novel species prevalent in 4 of the sampled individuals. This novel species belongs

to the well sampled Malassezia genus and could prove interesting in the context

of understanding the skin microbiome. We have additionally demonstrated that

current metagenomic techniques are also able to recover near complete eukaryotic

genomes from more complex biomes, such as marine environments. More import-

antly, we showed that the combination of tools such as EukRep and EukCC can

achieve comparable levels of genome quality compared with more manual ap-

proaches (as was performed for TARA_PSE_MAG_00140), by offering a scalable

approach for the generation of eukaryotic genomes from metagenomic datasets.

Conclusion
With EukCC, we present an easy to use tool to estimate genome quality metrics for

microbial eukaryotes and have demonstrated a substantial improvement in the applicability

of EukCC compared to other tools. While this tool was developed with application to

MAGs in mind, we do not see any limitation within EukCC to prevent it from being applied

to SAGs, or even isolate genomes. To demonstrate the applicability of EukCC, we have

identified two novel eukaryotic genomes from metagenomic samples and have subsequently

verified the quality of these genomes using a variety of approaches. EukCC provides the first

step of many to assess the quality of eukaryotic MAGs and offers a way to select those that

are likely to represent high-quality genomes.

Methods
Evaluation of BUSCO results

To evaluate BUSCO 3.1.0, we downloaded genomes and corresponding annotations

for 418 eukaryotic reference species from RefSeq (September 26, 2019), excluding

those belonging to bilateria or vascular plants. Each genome was annotated using

GeneMark-ES (version 4.38, parameters: ‘-v -fungus -ES -cores 8 -mincontig 5000

-sequence input.fa’). We then ran BUSCO (version 3.1) in using the ‘eukaryota_

odb9’ BUSCO set in ‘genome mode’ using AUGUSTUS (version 3.3.2) as well as in

‘protein mode’ for both the RefSeq annotated proteomes as well as the GeneMark-

ES predicted proteins. This procedure was then repeated for the ‘protist_ensemble’

BUSCO set. To compare the BUSCO results to EukCC, we defined completeness
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as 100 minus the fraction of missing BUSCOs and contamination as the fraction of

duplicated BUSCOs.

For Fig. 1b, all reported BUSCOs in all analysed genomes were displayed using

ComplexHeatmap [37] in R 3.5.1 [38] and clustered the rows using ‘klaR’ [39].

GeneMark-ES de novo protein prediction comparison

Following this, we compared RefSeq provided annotation and proteins predicted

from GeneMark-ES (parameters: ‘-v -fungus -ES -cores 8 -mincontig 5000 -se-

quence input.fa’). For each genome, we ran the BLASTp option from DIAMOND

[40] on the proteins used by EukCC to estimate genome quality matching against

the RefSeq annotated proteome of the same species. For the best hit, we aligned

both sequences using MAFFT [41]. Subsequently, we compared the length distribu-

tions between GeneMark-ES and RefSeq annotated sequences. Additionally, we

counted the number of gaps within the alignment occurring in either the reference

or the query sequence. Analyses were performed using R 3.5.1 and plots were gen-

erated using ggplot [42].

EukCC reference database creation

To build EukCC’s database, we downloaded the genomes of 754 eukaryotic species

from NCBI GenBank and RefSeq, all of which were either marked as representative

genomes (August 1, 2019) or used as UniProt reference proteomes (May 28, 2019) [43]

excluding those belonging to bilateria or vascular plants (Additional file 2: Table S1).

Following this, we predicted the proteome of each genome using GeneMark-ES and

annotated the resulting proteins using PANTHER families 14.1 with hmmer 3.2.1

(Additional file 1: Fig. S7 A)). During this process, 20 genomes were excluded due to

GeneMark-ES failing to produce an output, reducing the number of species to 734.

The failure was mostly caused by fragmented reference genomes, making it impossible

for GeneMark-ES to pass the training step.

Subsequently, using the annotated proteins of a taxonomically balanced subset of

species, we defined bit score gathering thresholds for each PANTHER profile HMM.

For this, we chose at most 30 genomes per major sub-clade of eukaryota (e.g. Opistho-

konta, Amoebozoa, Alveolata) and sampled evenly across all phyla below. Within these

species, we identified the bit score value maximising the number of single hits for each

profile HMM.

After applying the bit score thresholds across all annotated species, we searched

for profiles covering all species as single copy markers. As no single copy markers

spanning all species could be found, we used a greedy algorithm to define a

reference set of overlapping single copy marker genes. The resulting reference set

contained 55 profiles, covering each species within the training set as a single copy

marker between 3 and 34 times. The single copy proteins belonging to each profile

HMM within the reference set were aligned using MAFFT and horizontally

concatenated. Consequently, we used this alignment to build a reference tree using

FastTree2 with default settings [44].

Following this, we identified 477 sets of single copy genes with a single copy preva-

lence cut-off of 98 in each clade of at least 3 species.
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Overview of the EukCC algorithm

As a first step, EukCC uses Genemark-ES to predict proteins in the input genome

(Additional file 1: Fig. S7 B). The EukCC pipeline then performs a two stage analysis to

determine the best set of SCMGs for downstream analysis. The first stage uses the

reference set to define a first approximate taxonomic classification of the MAG to

enable the placement in the precomputed reference tree using pplacer version

v1.1.alpha19 [24]. For each protein, the best placement as indicated by the posterior

likelihood is chosen. Using these placements, EukCC relies on ete3 to compute the low-

est common ancestor (LCA) or the highest possible ancestor (HPA) for which a set of

single marker genes exist [45]. In a second stage, the HMMs defined in the chosen

SCMG set are scanned against the predicted proteome using hmmer. The fraction of

existing profiles is reported as completeness, and the fraction of duplicated markers is

reported as contamination. Finally, EukCC reports a lowest common ancestor lineage

of the input genome, based on the species within the marker set.

Evaluation data creation

In order to benchmark EukCC and BUSCO with known data, we created in silico

fragmented and contaminated genomes. For this we chose RefSeq genomes across

all relevant taxonomic clades, which were not included in the initial training data.

From each clade, we selected up to 4 species to evaluate completeness and contam-

ination. If a selection of species could be made, we first included species from a rank

not included in the training set, prioritising novel phyla over novel order and so

forth. As GeneMark-ES failed to predict proteins for all considered Cryptophyta

species the clade was omitted from the benchmark. We then created fragments by

stepping along chromosomes with step size chosen from a Poisson distribution

(rpois(n, λ = 100) and a minimum step size of 2000. Fragments were rejected or

included at random to create a genome of a target size fraction. Contaminating con-

tigs were sampled from different species from the same clade and were fragmented

in the same way and combined to make a test genome (Additional file 3: Table S2).

Additionally, we simulated contamination by sampling from genomes of a different

clade (Additional file 4: Table S3).

Benchmark and comparison of EukCC to BUSCO

Following the creation of the benchmark data, we ran BUSCO (version 3.1) in ‘genome

mode’ using the AUGUSTUS gene predictor (version 3.3.2) on the simulated genomes.

For each genome we used the most suitable set of BUSCOs for the data. For example,

when assessing a protist genome, we used the ‘protists_ensembl’ set, and for fungi, we

used the universal ‘fungi_odb9’ set. Notably, we used the protist set to evaluate the

Alveolata species, as BUSCO’s performance decreased when using the more specific

‘alveolata_stramenophiles_ensembl’ set. We then used the ‘shortsummary*’ files from

which we extracted the percentage of missing and duplicated marker genes. We defined

completeness as 100 minus the percentage of missing BUSCOs, thus also including

fragmented BUSCOs in the completeness score. Additionally, we ran BUSCO in ‘pro-

tein mode’ using proteins predicted by GeneMark-ES (parameters: ‘-v -fungus -ES

-cores 8 -mincontig 5000 -sequence input.fa’). BUSCO 4.0 (version 4.0.5) was run with
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the flag ‘--auto-lineage-euk’ and allowed to automatically assign the correct marker

gene set. EukCC was used with default parameters and database version 1. We dis-

carded any simulated MAG from the benchmark for which not all three methods could

produce a quality estimate. Finally, we obtained 678 results per evaluated algorithm,

which were aggregated with R using dplyr and plotted using ggplot.

Assembly and binning of skin metagenomic datasets

We downloaded 3963 shotgun metagenomic datasets from the skin metagenome study

PRJNA46333. Each dataset was assembled using metaSPAdes (version 3.12, default pa-

rameters in metagenomics mode [-meta]) and binned using CONCOCT (version 1.0)

as part of the metaWRAP (version 1.1) [46]. Subsequently, we estimated the genomic

composition in each bin using EukRep (version 0.6.5) and bins with more than 1Mb

eukaryotic DNA were selected for further analysis. Selected ‘eukaryotic’ bins were then

analysed using EukCC and compared to RefSeq and GenBank (both retrieved September

26, 2019) entries by comparing Mash distances (version 2.2.2 default parameters) and

subsequently using dnadiff (from the mummer package, version 3.23) for the top hit, if

the Mash distance was below 0.1 [47].

Tree building and analysis of skin MAGs

To construct a phylogenetic tree for the 6 selected skin MAGs, 19 reference genomes

of 16 Malassezia species and Saccharomyces cerevisiae, Ustilago maydis and the Gen-

Bank entry of Piloderma croceum, we identified 4 SCMGs genes used by EukCC found

in all genomes: PTHR10383, PTHR11377, PTHR12555 and PTHR15680. Using MAFF

T, in einsi mode, we aligned the protein sequences for each PANTHER entry before

building a concatenated alignment file, which was used as input to FastTree2 to build

the tree, using default settings. We visualised and rooted the tree using S. cerevisiae as

an outgroup with iTOL v5 [48]. Using hmmer 3.2.1 (hmmscan -cutga) we searched for

the Pfam [49] entry DUF1214 (Pfam accession PF06742, Pfam version 32) in the 6

MAGs and the 19 reference genomes. To further verify the quality of the MAG, we

clustered the contigs using anvi’o’s refine module and sampled up to 200 proteins from

each cluster. Each protein was compared against the UniRef90 database using DIA-

MOND (parameters: blastp -threads 10). Using the majority voted consensus lineage of

up to three hits per protein (e-value threshold of 1e−20) with a majority threshold of

60 and a subsequent global majority vote using the same threshold, we assigned taxo-

nomic lineages to each cluster.

Analysis of TARA Ocean data

We assembled and analysed metagenomes from the TARA Ocean study PRJEB4352

using the same protocol as for the skin metagenomic data. We assembled and binned

reads from ERR1700893, ERR1726523, ERR1726543, ERR1726560, ERR1726561,

ERR1726573, ERR1726589, ERR1726593, ERR1726609 and ERR1726612. The study we

selected has 912 runs associated, and we chose this subset of runs at random as we

were limited by the large amount of memory and CPU time required for each assembly

(for example, assembling ERR1726589 required 942Gb of RAM).
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