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Abstract

Background: The three-dimensional genome organization is critical for gene
regulation and can malfunction in diseases like cancer. As a key regulator of genome
organization, CCCTC-binding factor (CTCF) has been characterized as a DNA-binding
protein with important functions in maintaining the topological structure of
chromatin and inducing DNA looping. Among the prolific binding sites in the
genome, several events with altered CTCF occupancy have been reported as
associated with effects in physiology or disease. However, hitherto there is no
comprehensive survey of genome-wide CTCF binding patterns across different
human cancers.

Results: To dissect functions of CTCF binding, we systematically analyze over 700
CTCF ChIP-seq profiles across human tissues and cancers and identify cancer-specific
CTCF binding patterns in six cancer types. We show that cancer-specific lost and
gained CTCF binding events are associated with altered chromatin interactions,
partially with DNA methylation changes, and rarely with sequence mutations. While
lost bindings primarily occur near gene promoters, most gained CTCF binding events
exhibit enhancer activities and are induced by oncogenic transcription factors. We
validate these findings in T cell acute lymphoblastic leukemia cell lines and patient
samples and show that oncogenic NOTCH1 induces specific CTCF binding and they
cooperatively activate expression of target genes, indicating transcriptional
condensation phenomena.

Conclusions: Specific CTCF binding events occur in human cancers. Cancer-specific
CTCF binding can be induced by other transcription factors to regulate oncogenic
gene expression. Our results substantiate CTCF binding alteration as a functional
epigenomic signature of cancer.

Keywords: CTCF, 3D genome organization, Integrative analysis, Gene regulation,
Transcription factor, Enhancer, T cell lymphoblastic leukemia, NOTCH1
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Background
The eukaryotic genome is known to fold into a hierarchical three-dimensional (3D)

structure organized by numerous chromatin and transcription factor (TF) proteins [1].

High-throughput technologies such as Hi-C have helped delineate components of 3D

genome organization, including topologically associating domains (TADs) [2–4] and

DNA loops [5]. Studies have shown that various protein factors have roles in chromatin

folding that is required for proper gene expression [3, 6–9]. One such factor is CCCT

C-binding factor (CTCF), a DNA-binding protein that induces chromatin looping and

binds at TAD boundaries [10]. CTCF is integral to cell survival as total knockouts in

mice are lethal in early embryogenesis and heterozygous knockouts are predisposed to

cancer [10–12]. Our previous studies using T cell acute lymphoblastic leukemia (T-

ALL) models have shown that cell-type conserved constitutive CTCF binding sites fre-

quently occur at chromatin domain boundaries and facilitate interactions between TF-

bound distal enhancers and their target genes [13]. We demonstrated that TAD bound-

ary intensity associates with CTCF levels, which might also serve to isolate super-

enhancers [14]. While CTCF binding at TAD boundaries is usually conserved across di-

verse cell types and throughout development [15], we and others have shown that

CTCF binding within TADs can also exhibit tissue specificity [14, 16–18].

The functional importance of CTCF is highlighted in disruptions to CTCF binding

coupled with alterations in gene expression, which have been widely observed [19–22].

Deletions of insulator CTCF binding sites can cause aberrant chromatin interactions

and differential expression of genes within TADs in developmental disorders and can-

cers [19, 20, 23–26]. Many cases of CTCF disruption have been associated with changes

in DNA methylation such as in isocitrate dehydrogenase (IDH) mutant gliomas [21],

succinate dehydrogenase (SDH)-deficient gastrointestinal stromal tumors (GIST) [22],

and immunoglobulin or T cell receptors [18]. Additionally, the CTCF gene itself or its

binding sequence can be mutated and has been suggested to be a haploinsufficient

tumor suppressor [12]. CTCF mutations affecting the DNA-binding zinc finger do-

mains compromise binding to the genome [27] and can occur in cancer [20, 28–30] or

abnormal limb development [19]. Mispositioning of even one CTCF binding locus can

trigger interactions leading to oncogene activation [20].

While specific CTCF binding sites have been shown to affect gene expression in de-

velopment, physiology, and cancers [31–35], most others have seemingly little effect on

chromatin interaction or gene expression [9, 36]. To date, there are few comprehensive

analyses of global and cancer-specific CTCF binding patterns and their functional links

to disease-related phenotypes. Here, we performed an integrative analysis of a large

number of genomic profiles for CTCF as well as other TFs, chromatin marks, chroma-

tin accessibility, gene expression, DNA methylation, somatic mutation, and in situ Hi-C

to infer CTCF binding site functions. In six different cancer types, we identified cancer-

specific gained and lost CTCF binding sites and showed that gain of CTCF binding in

cancer associates with increased chromatin interactions and cancer-specific gene activa-

tion, while loss of CTCF binding occurred at promoters of genes present with lower ex-

pression in cancer compared to normal cells. We validated our findings in T-ALL and

found that gained CTCF binding sites are potentially incurred by the activity of onco-

genic TFs such as NOTCH1. These findings show that cancers exhibit an oncogenic

CTCF binding signature that is intimately tied to chromatin topology and dysregulated
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Fig. 1 (See legend on next page.)
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gene expression. The putative causative link to oncogenic transcriptional program sug-

gests that altered CTCF binding is an important component of the mechanism of can-

cer pathogenesis.

Results
Cancers exhibit unique CTCF binding patterns in the genome

CTCF binding sites are among the most stable regulatory elements in the human gen-

ome across cell types, compared to gene promoters and distal enhancers (Fig. 1a). To

comprehensively study the genomic repertoire of CTCF binding, we collected 771

high-quality CTCF ChIP-seq datasets from the public domain. These datasets cover

over 200 human cell types, including normal tissues and multiple cancer types

(Additional file 1: Fig. S1a, Additional file 2: Table S1). We collectively identified 688,

429 distinct CTCF binding sites by merging shared peaks called from each dataset

(Additional file 1: Fig. S1b,c). To study the binding occupancy pattern across cell types,

we assigned an occupancy score to each CTCF site by tallying the ChIP-seq datasets

exhibiting peaks within the site (Additional file 1: Fig. S1b). We obtained a broad

spectrum of CTCF binding site distribution from sample-specific to cross-sample con-

served (constitutive) (Fig. 1b) and focused on the 285,467 high-confidence CTCF bind-

ing sites with occupancy score ≥ 3. We identified 22,097 constitutive CTCF binding

sites, which were defined as binding present in at least 80% of all 771 datasets deter-

mined by an empirical model (Fig. 1b, Additional file 1: Fig. S1d).

To identify cancer-specific CTCF binding patterns, we surveyed six cancer types: T

cell acute lymphoblastic leukemia (T-ALL), acute myeloid leukemia (AML), breast can-

cer (BRCA), colorectal cancer (CRC), lung cancer (LUAD), and prostate cancer

(PRAD). These cancers have CTCF ChIP-seq data available in both cell lines and corre-

sponding normal tissues (Additional file 3: Table S2). We compared both CTCF occu-

pancy frequencies and normalized CTCF binding levels in samples from each cancer

type versus all other samples (Fig. 1c, Additional file 1: Fig. S1e-i) as well as their corre-

sponding normal tissue (Additional file 1: Fig. S1j-p) to account for variations due to

sample specificity. We categorized a CTCF binding event as lost in a cancer if it had a

(See figure on previous page.)
Fig. 1 Identification of cancer-specific CTCF binding patterns in the human genome. a Distribution of
coefficient of variation of chromatin accessibility at different genomic features, calculated using DNase-seq
data from over 60 cell lines from ENCODE. b Distribution of occupancy score for all 688,429 union CTCF
binding sites (blue), and percentage of CTCF sites that contain a CTCF motif at each occupancy score
(orange). c Distribution of CTCF binding occupancy score in 8 ChIP-seq datasets for T-ALL cell lines (y-axis)
and the occupancy frequency score in the other 763 ChIP-seq datasets (x-axis). Color density in each unit
represents the number of CTCF binding sites with designated scores. d CTCF ChIP-seq signals at a 2-kb
region surrounding T-ALLlost (top) and T-ALLgained (bottom) binding sites in normal CD4+ T cells and the T-
ALL cell lines Jurkat and CUTLL1, and SMC3 signals at the same regions in CUTLL1. e Example of CTCF
ChIP-seq signals around a T-ALL-specific lost CTCF binding site. f Example of CTCF ChIP-seq signals around
a T-ALL-specific gained CTCF binding site. g Number of identified gained (left) and lost (right) CTCF binding
sites in each of the 6 cancer types and number of shared sites between each pair of cancer types. Color
density of each element represents the level of similarity measured by Jaccard index. h Genomic
distribution of identified lost (left) and gained (right) CTCF binding sites in the 6 cancer types. Promoter
regions are defined as ± 2 kb from any TSS in the genome. i Differential chromatin accessibility (ATAC-seq)
in TCGA patient samples at identified cancer-specific lost (blue), gained (red), and constitutive (gray) CTCF
binding sites in each of the 4 cancer types compared to all other TCGA samples. *, p < 0.05, **, p < 0.001, by
two-tailed unpaired Student’s t test
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lower occupancy score and lower binding level in the cancer cell lines compared to the

corresponding normal tissue and to all other samples. A site was characterized as

gained in a cancer if it had a higher occupancy score and higher binding level in the

cancer cell lines compared to the corresponding normal tissue as well as to all other

samples (see detailed statistical assessment in “Methods”). Using this approach, we

identified lost and gained CTCF binding sites in each of the six cancer types

(Additional file 4: Table S3) and confirmed that most identified lost/gained sites have

significantly reduced/elevated CTCF binding levels (FDR ≤ 0.05, fold change ≥ 2) in that

cancer compared to all other samples (Additional file 1: Fig. S2a), with absolute effect

sizes ranging between 0.93 and 1.87 and an average of 1.46 (Additional file 1: Fig. S2b,

c). As an example, the CTCF binding patterns at 102 lost and 72 gained sites identified

in T-ALL are shown in Fig. 1d–f, comparing normal CD4+ T cell with two T-ALL cell

lines, Jurkat and CUTLL1 [34, 35, 37–40]. SMC3, component of the cohesin complex,

exhibits weak/substantial signals at lost/gained CTCF sites in CUTLL1, respectively, in-

dicating the CTCF binding alteration is a functional event (Fig. 1d).

Comparing specific lost/gained CTCF sites from the six cancer types, we observed

that different cancer types share few commonly gained sites (Jaccard index < 0.03),

much less than shared all CTCF sites between each other (Jaccard index between 0.33

and 0.71), indicating cancer-type specificity of the identified CTCF sites (Fig. 1g,

Additional file 1: Fig. S2d, Additional file 5: Table S4). Interestingly, although com-

monly lost sites comparing each pair of cancer types are also few, 7 cases out of 15

pair-wise comparisons do show a significant commonality of CTCF binding loss under

the background of all constitutively bound sites (Additional file 5: Table S4, P < 0.01, by

Fisher’s exact test). It is worth noting that the large difference across cancer types on

the number of lost/gained CTCF sites identified under the same statistical criteria is

possibly due to the various number of available samples for different cancer types

(Additional file 1: Fig. S1e-o) and the wide range of CTCF peak numbers across sam-

ples (Additional file 1: Fig. S1a). Across cancer types, most altered sites contain CTCF

motifs in the binding sequences (Additional file 1: Fig. S3a), consistent with the motif

occurrence association with the global occupancy distribution (Fig. 1b). Lost sites are

enriched at gene promoter regions (< 2 kb from any transcription start site, TSS), while

gained sites are primarily located at distal and non-coding regions (Fig. 1h), regardless

of CTCF motif presence or absence within the binding sites (Additional file 1: Fig.

S3b). This suggests that different cancers may employ similar mechanisms leading to

CTCF binding loss or gain.

We further explored these lost and gained CTCF binding events identified from can-

cer cell lines in patient samples, to confirm that these unique patterns are not cell line-

specific phenomena. In two T-ALL patient samples, 78 of the 102 lost sites (T-ALLlost)

were also depleted in at least one sample, and 33 of the 72 gained sites (T-ALLgained)

are present in at least one sample (Additional file 1: Fig. S3c). As CTCF binding posi-

tively correlates with chromatin accessibility [41] (Additional file 1: Fig. S3d,

Additional file 6: Table S5), we systematically surveyed ATAC-seq data in BRCA,

COAD, LUAD, and PRAD patient samples from The Cancer Genome Atlas (TCGA)

[42] and consistently observed that lost or gained CTCF sites identified from cell lines

exhibit lower or higher chromatin accessibility, respectively, compared to the entire

TCGA cohort (Fig. 1i)(P < 0.001 by t-test, except LUADlost), regardless of CTCF motif
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occurrence (Additional file 1: Fig. S3e,f), indicating that unique losses or gains in CTCF

binding exist extensively in cancer patients.

Unique CTCF binding sites link to patterns of chromatin interaction

As CTCF was known to induce DNA looping and is enriched at TAD boundaries

[1], we then interrogated the relationship between altered CTCF occupancy and

chromatin conformation in cancer. We performed in situ Hi-C in Jurkat, healthy

donor CD4+ T cells, and patient T-ALL cells [5, 43, 44]. Differential analysis of

our Hi-C data revealed that T-ALLlost sites and T-ALLgained sites have decreased or

increased contact frequencies with their flanking regions, respectively, in T-ALL

compared to normal T cells, using constitutive CTCF sites as controls (Fig. 2a,b,

Additional file 1: Fig. S4a) (P < 0.05 by t-test). These findings were corroborated in

our two T-ALL patient samples (Fig. 2c–f, Additional file 1: Fig. S4b,c) and in

other malignancies such as CRC (P < 0.001 by t-test) (Fig. 2g,h, Additional file 1:

Fig. S4d, Additional file 6: Table S5), regardless of presence or absence of CTCF

motifs (Additional file 1: Fig. S5). Together, these results suggest that cancer-

specific alterations to CTCF binding highly associate with changes in local chroma-

tin contacts relative to their normal physiological state.

In addition to regulating chromatin conformation, CTCF occupancy was suggested to

act as a boundary against spreading of histone modifications between loops and TADs

[2, 5]. Therefore, we assessed whether cancer-specific CTCF binding is implicated in

histone modification patterns. Using publicly available ChIP-seq data, we examined the

activating histone marks H3K4me1, H3K27ac, and the repressive mark H3K27me3 and

found that cancer-specific gained CTCF binding associates with increased levels of en-

hancer marks H3K4me1 and H3K27ac (P < 0.001 by t-test), while lost CTCF sites

Fig. 2 Gained/lost CTCF binding events associate with chromatin dynamics. a, c, e, g Volcano plots
showing differential chromatin interaction levels between cancer and normal cells at cancer-specific lost
(blue), gained (red), and constitutive (gray) CTCF binding sites, measured by Hi-C. Each point represents the
interaction changes between a CTCF binding site and 5-kb bins located within 500 kb from the site.
Horizontal dotted line represents p value cutoff of 0.05, by two-tailed paired Student’s t test. b, d, f, h
Boxplots showing differential interaction frequencies between cancer and normal matched tissues for each
group of CTCF binding sites. *, p < 0.05, **, p < 0.001, by two-tailed unpaired Student’s t test
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correlate with decreased level of these two enhancer marks (P < 0.05 by t-test)

(Additional file 1: Fig. S6). Decreased H3K4me1 and H3K27ac at lost sites were also

observed in T-ALL patient samples (P < 0.001 by t-test) (Additional file 1: Fig. S7). We

did not observe a consistent trend of change in the H3K27me3 level at either gained or

lost CTCF sites.

Fig. 3 Gained/lost CTCF binding events associate with differential gene expression in cancer. a CTCF ChIP-
seq signals (x-axis) and gene expression levels (y-axis) for one CTCF site-gene pair in 54 cell types with
matched data available. R2 is calculated as the association score. Sqrt, Square root; TPM, transcript count per
million reads; RPKM, read count per kilobases per million reads. b Schematic of categories of intra-
chromatin-domain and inter-chromatin-domain gene-CTCF pairs. c Distribution of highly correlated CTCF-
gene pairs (defined as R2 > 0.25) as a function of the distance between the CTCF binding site and the
gene’s TSS. Pairs located within the same CTCF domain (intra-domain, blue) and across different CTCF
domains (inter-domain, gray) are plotted separately. P values were obtained using two-tailed Fisher’s exact
test. Dashed line represents P = 0.01. d, e Top: Percentage of highly correlated CTCF-gene pairs in which the
gene sits within the same domain as a cancer-specific lost (d) or gained (e) binding site, with constitutive
sites as control. “Promoter” refers to genes whose promoter region (TSS ± 2 kb) contains a CTCF binding
site from a certain category. “Promoter ctrl” refers to genes whose promoter region contains a constitutive
CTCF binding site as the control for cancer-specific gained/lost sites. “Intra-domain” refers to genes whose
chromatin domain contains a CTCF binding site. “Domain ctrl” refers to genes whose chromatin domain
contains a constitutive CTCF site as the control for those with cancer-specific gained/lost sites. Bottom:
Percentage of differentially expressed genes (|log2FC| > 1, FDR < 1e−5) contained within the corresponding
group of either Promoter or Intra-domain highly correlated CTCF-gene pairs in the corresponding cancer
type. *, p < 0.05, **, p < 0.001, by two-tailed Fisher’s exact test. f, g Percentage of genes that are upregulated
(top, log2FC > 1, FDR < 1e−5) or downregulated (bottom, log2FC < − 1, FDR < 1e−5) located in the
chromatin domains containing certain group of lost (f) or gained (g) CTCF sites. *, p < 0.05, **, p < 0.001, by
two-tailed Fisher’s exact test
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Cancer-specific CTCF binding gain and loss associate with differential gene expression

within chromatin domains

To study the effects of CTCF binding on gene expression, we used an unbiased ap-

proach and compiled a comprehensive list of all possible combinations of CTCF site

and gene pairs that are located within the same chromosome [4, 12, 13]. We measured

both CTCF binding level and gene expression level for each CTCF-gene pair and calcu-

lated their correlation across 54 cell types for which both CTCF ChIP-seq and RNA-

seq data are available (Additional file 6: Table S5). The coefficient of determination

(R2) value can represent the association between CTCF binding and gene expression

(Fig. 3a). Upon dividing the CTCF-gene pairs into two groups based on whether the

paired loci are in the same or different divergently oriented constitutive CTCF-bound

chromatin domains [13] (Fig. 3b, hereafter referred to as “chromatin domains”), we

found that pairs in the same domain are more likely to be highly correlated (R2 > 0.25,

Additional file 1: Fig. S8a), regardless of genomic distance (Fig. 3c). This indicates that

any effect of CTCF binding in regulating gene expression tends to be confined within

chromatin domains [13]. These domains are highly consistent with TADs identified

from Hi-C maps [45] (Additional file 1: Fig. S8b,c).

We then tested whether those CTCF binding sites specifically lost or gained in cancer

associate with expression of genes within the same chromatin domains. If a CTCF

binding site is located in a gene promoter region, we directly used that gene as the pro-

moter candidate target. Otherwise, we assigned all genes located within the same do-

main as the CTCF site as intra-domain candidate target genes. Using this rubric, we

found that cancer-specific lost CTCF binding events tend to have higher correlation

(R2 > 0.25) with their promoter target genes (Fig. 3d top, gray bars), which are also

more likely to be downregulated in cancer (Fig. 3d bottom, gray bars). Genes that

strongly associate (R2 > 0.25) with cancer-specific gained CTCF binding sites, on the

other hand, tend to be upregulated in cancer (Fig. 3e, black bars). In general, even with-

out considering CTCF-gene pair correlations, genes surrounding lost CTCF binding

sites within the same chromatin domain tend to be down regulated (Additional file 1:

Fig. S8d), while genes surrounding gained CTCF binding sites are more likely to be ac-

tivated (Additional file 1: Fig. S8e). This relationship also holds in at least one of the

two T-ALL patient samples (Fig. 3f,g). Furthermore, we found that genes highly corre-

lated with intra-domain BRCAgained CTCF sites are enriched for the essential genes

identified using CRISPR-screen data from the breast cancer cell line T47D [46], sug-

gesting that gained CTCF is involved in cancer functions (Additional file 1: Fig. S8f).

Cancer-specific CTCF binding patterns associate partially with differential DNA

methylation and rarely with sequence mutations

We next sought to identify determinants of cancer-specific CTCF binding. To date, the

primary identified effectors of variation in CTCF binding at specific loci in cancers in-

clude altered DNA methylation at a CTCF motif [20, 21, 30, 47] or mutations affecting

the CTCF binding sequence [30]. Prior studies have shown that CTCF binding nega-

tively correlates with DNA methylation [15, 48]. We collected reduced representation

bisulfite sequencing (RRBS) data from T-ALL, BRCA, and CRC and whole-genome bi-

sulfite sequencing (WGBS) data from LUAD and PRAD for their DNA methylation
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profiles in cancer cells and corresponding normal tissues, and focused on the subsets of

lost or gained CTCF binding regions that have sufficient bisulfite sequencing reads to

call DNA methylation levels (Fig. 4a,b). We calculated the differential levels of DNA

methylation over a 300-bp region centered at each CTCF binding site. We noticed that

the majority of lost CTCF binding sites are associated with increased DNA methylation

(Fig. 4a) and many gained CTCF sites are associated with DNA methylation reduction

(Fig. 4b), consistent with existing knowledge. Meanwhile, we also observed that in al-

most every cancer type, several lost CTCF sites (up to 68% for LUAD) do not associate

with DNA methylation increase for at least 20%, and many (22%–85%) gained sites do

not show at least 20% of DNA methylation decrease, regardless of whether the data are

RRBS or WGBS. Such patterns are also consistently observed at both motif-present

CTCF sites (Additional file 1: Fig. S9a) and motif-absent CTCF sites (Additional file 1:

Fig. S9b). We then examined the genome-wide association between CTCF binding spe-

cificity and differential DNA methylation in each cancer type and found a consistent

correlation across the genome (Fig. 4c). We concluded that a considerable portion of

cancer-specific CTCF binding alteration events associate with DNA methylation change

in the binding regions.

Stable CTCF binding is highly specific to the presence of its DNA-binding motif and

can be compromised by mutations affecting the consensus motif sequence [20, 30]. We

performed whole genome sequencing (WGS) in T-ALL samples with an average se-

quencing depth of ~ 37× (Additional file 1: Fig. S10a), and found very few genetic alter-

ations at gained or lost binding loci that can change the CTCF motif (Additional file 1:

Fig. S10b). Using WGS data for AML, BRCA, COAD, LUAD, and PRAD patient sam-

ples from the International Cancer Genome Consortium (ICGC) [49], we consistently

observed that few CTCF loss or gain associates with mutations altering the consensus

binding sequence (Additional file 1: Fig. S11). Compositing all mutations in each cancer

type around CTCF binding sites, we did not observe an enrichment of mutation rate at

the center of the cancer-specific lost/gained sites relative to the flanking 400-bp regions

(Additional file 1: Fig. S12a-d). Although it was shown that integrated pan-cancer mu-

tations from ICGC exhibit an enrichment at constitutive CTCF sites [20] (Additional

file 1: Fig. S12e), such enriched mutation rate pattern was not observed at lost/gained

CTCF sites from any cancer type (Additional file 1: Fig. S12f,g). These data show that

cancer-specific CTCF binding events can rarely be attributed to DNA sequence

mutations.

Cancer-specific gained CTCF co-activates target genes with oncogenic transcription

factors

CTCF has been shown to co-bind DNA with other factors to establish DNA loops and

control gene expression [19, 50]; thus, we looked for TFs potentially involved in

cancer-specific CTCF gain events that associate with dynamic chromatin interaction

and increased gene expression. Direct DNA sequence motif search in the lost/gained

sites did not yield any motifs unambiguously enriched other than CTCF itself (Add-

itional file 1: Fig. S13, Additional file 7: Table S6). Therefore, we sought to compare

our in situ Hi-C [4, 5, 14, 51, 52] data in T-ALL with normal CD4+ T cells to identify

genomic regions within the same chromatin domain that interact more frequently with
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T-ALLgained CTCF sites (Additional file 1: Fig. S14a,b), and used BART [53] to identify

putative transcriptional regulators that preferentially bind in these regions. BART ana-

lysis predicted MYB, RUNX1, and NOTCH1 as the top 3 ranked TFs with binding sites

enriched in these regions (Fig. 5a, Additional file 8: Table S7). MYB has been shown as

a key factor in T-ALL with super-enhancer functions together with TAL1 and RUNX1

[54, 55], while NOTCH1 is known to be a major oncogenic driver in T-ALL that also

has super-enhancer functions [13]. Potential oncogenic TFs in CRC were also identified

using the same approach (Additional file 1: Fig. S14c, Additional file 8: Table S7).

Fig. 4 Patterns of differential DNA methylation near cancer-specific lost/gained CTCF sites. a,b ChIP-seq
signals and differential DNA methylation levels surrounding specific lost (a) or gained (b) CTCF binding sites
in cancer versus normal tissues for each of the 5 cancer types. Pie charts represent numbers of CTCF sites
with (light blue) or without (gray) sufficient DNA methylation signals from bisulfite sequencing data. For
sites with sufficient DNA methylation signals, heatmaps show CTCF ChIP-seq signals cover 2-kb regions
centered at each site. Differential DNA methylation level at a 300 bp region centered at each CTCF binding
site was calculated and presented as a waterfall plot. Purple bars represent increased and green bars
represent decreased DNA methylation levels (with values in a range from 0 to 100). Rows in corresponding
ChIP-seq and DNA methylation plots are ranked identically. c Association between CTCF binding specificity
and differential DNA methylation for each cancer type. All CTCF sites with sufficient DNA methylation
coverage in each cancer type were ranked based on their differential CTCF binding level in cancer
compared to other samples and grouped into 100 equal-count bins. For each bin, the percentages of sites
associated with DNA hypomethylation (green), unchanged methylation (gray), and hypermethylation
(purple) were stacked in a column. Top color bar represents the median differential binding level of the
CTCF sites in a bin, quantified as the T-test statistic
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Indeed, compared to normal CD4+ T cells, gained CTCF sites in T-ALL interact more

frequently with “dynamic” NOTCH1 binding sites, previously defined as those sensitive

to gamma-secretase inhibitor (γSI) treatment followed by inhibitor washout [13]

(Additional file 1: Fig. S14d). Furthermore, beyond the identified T-ALLgained CTCF

sites, we found a genome-wide positive correlation between CTCF binding specificity

in T-ALL and co-occurrence of NOTCH1 binding within the chromatin domain, using

all CTCF sites in T-ALL as a background (Additional file 1: Fig. S14e). Indeed, both

NOTCH1 (odds ratio = 2.1; P = 7e−3) and dynamic NOTCH1 sites (odds ratio = 3.4;

P = 3.6e−5) are significantly enriched in chromatin domains containing T-ALLgained
CTCF sites (Fig. 5b, Additional file 1: Fig. S14f), although NOTCH1 and CTCF do not

co-occupy the same loci (Additional file 1: Fig. S14g). Specifically, 56 (78%) out of 72

T-ALLgained CTCF sites share the chromatin domain with at least a NOTCH1 site, and

19 (26%) share a domain with at least a dynamic NOTCH1 site (Fig. 5b, Additional file

1: Fig. S14f). These T-ALLgained CTCF sites are also associated with increased levels of

H3K27ac in T-ALL (P = 7.8e−47 by t-test), indicative of potential enhancer function

Fig. 5 T-ALLgained CTCF binding associates with oncogenic NOTCH1 binding and increased chromatin
interaction. a BART-predicted transcription factors binding in genomic regions that have increased
interaction with T-ALLgained CTCF sites comparing Jurkat cells with normal CD4+ T cells. b Percentage of
chromatin domains including different groups of CTCF binding that contain a NOTCH1 binding site or a
dynamic NOTCH1 binding site. *, p < 0.05, **, p < 0.001, by two-tailed Fisher’s exact test. c, d T-ALLgained sites
associate with an increased H3K27ac level in Jurkat cells. c Volcano plot showing the differential H3K27ac
level between Jurkat cells and normal CD4+ T cells measured by ChIP-seq; each point represents a 10-kb
region surrounding a CTCF binding site. d Regions containing dynamic NOTCH1 binding sites are highlighted
in red. e Example of Hi-C interaction maps and ChIP-seq tracks around a T-ALLgained CTCF binding site
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(Fig. 5c,d). An example locus with TF binding patterns is shown in Fig. 5e, with its 3D

chromatin organization Hi-C maps on larger scales shown in Additional file 1: Fig. S15.

CTCF and NOTCH1 require each other to activate their oncogenic targets in T-ALL

The association between T-ALLgained CTCF binding and dynamic NOTCH1 binding

suggests that CTCF might cooperate with NOTCH1 to activate gene expression in T-

ALL. To test for dependency of T-ALLgained CTCF binding on NOTCH1, we treated

Jurkat cells with γSI for 72 h to inhibit the release and nuclear translocation of the

intracellular, transcriptionally active domain of NOTCH1, and then washed out the in-

hibitor to allow for recovery of intracellular NOTCH1 levels for 16 h. CTCF ChIP-seq

showed that γSI treatment abrogated CTCF binding at most (66%) T-ALLgained sites

(P = 1.5e−4, by t-test), and 68% of those γSI-sensitive binding events recovered upon

γSI washout (Fig. 6a). Meanwhile, chromatin accessibility decreased at T-ALLgained
CTCF sites with γSI treatment compared to DMSO (P = 7.8e−4 by t-test) and signifi-

cantly reversed after γSI washout (P = 2.2e−3 by t-test) (Fig. 6b). These results suggest

that functional NOTCH1 binding is required for CTCF binding at T-ALLgained sites.

As NOTCH1 and CTCF do not physically interact with each other (Fig. 6c) and do

not co-bind at the same genomic loci (Additional file 1: Fig. S14g), we hypothesized

that NOTCH1 may mediate the creation of an accessible chromatin configuration to

allow for CTCF binding. Recent studies have shown that chromatin remodelers affect

CTCF binding [56, 57], and NOTCH1 can interact with the catalytic subunit of the

mammalian SWI/SNF chromatin remodeling complex BRG1 (SMARCA4), as well as

other members of the BAF and PBAF chromatin remodeling complexes [58]. We con-

firmed the NOTCH1-BRG1 interaction in our T-ALL cell lines (Fig. 6c), which indi-

cates that NOTCH1 may induce chromatin remodeling. Interestingly, BRG1 binding in

the AML cell lines EOL1 and MOLM13 presents with higher enrichment at AMLgained
CTCF sites than at constitutive CTCF sites (P < 1e−66) (Fig. 6d, Additional file 1: Fig.

S16a) [59], although CTCF itself has lower binding levels at their corresponding gained

sites in both AML and T-ALL than at constitutive sites (P = 0 for AML; P = 4.4e−9 for

T-ALL) (Fig. 6e, Additional file 1: Fig. S16b,c), suggesting that BRG1 might preferen-

tially localize to gained CTCF sites. Future work testing BRG1 function at T-ALLgained
sites could provide insights into whether BAF-mediated chromatin remodeling indeed

occurs at these gained CTCF sites. Thus, a potential mechanism by which NOTCH1

permits T-ALLgained CTCF binding could occur through BAF complex recruitment to

open chromatin for CTCF binding.

The aforementioned findings suggest a potential role for T-ALLgained CTCF in onco-

genic transcription mediated by NOTCH1. To test whether CTCF is required for

NOTCH1’s oncogenic transcription function, we knocked down CTCF with short hair-

pin RNAs (shRNA) in T-ALL cells (CUTLL1). Genes in the same chromatin domains

containing T-ALLgained CTCF binding sites, especially those genes with higher expres-

sion in T-ALL compared to normal CD4+ T cells, were significantly affected by CTCF

silencing (odds ratio = 11.3, P = 4.6e−7) (Fig. 6f), indicating that T-ALLgained CTCF sites

are the most disrupted in our silencing study. Interestingly, BART analysis revealed that

the shCTCF-downregulated genes are most likely regulated by NOTCH1 (P = 4.6e−5

from BART) (Fig. 6g). Thus, reducing CTCF levels may disrupt NOTCH1’s ability to
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activate its target genes. Indeed, 71% of NOTCH1 target genes in CUTLL1 are down-

regulated in shCTCF cells (Fig. 6h). Genes downregulated in shCTCF cells are also sig-

nificantly enriched for genes downregulated in γSI-treated cells (odds ratio = 2.2, P =

2.6e−11) (Additional file 1: Fig. S16d), and reactivated after γSI washout (odds ratio =

3.2, P = 3.1e−38) (Additional file 1: Fig. S16e). These data show that CTCF is required

for NOTCH1 to regulate its target genes. Additionally, we found that genes located in

Fig. 6 T-ALLgained CTCF binding facilitates oncogenic NOTCH1 transcriptional activity. a Scatter plot of CTCF
sites in T-ALL quantifying CTCF level changes in GSI and GSI washout experiment. Differential CTCF ChIP-
seq signal (log2 fold change) in GSI washout vs. GSI (y-axis) is plotted against differential CTCF ChIP-seq
signal in GSI vs. DMSO (x-axis). Red dots are T-ALLgained sites. b ATAC-seq levels at T-ALLgained CTCF sites in
Jurkat cells at DMSO, GSI treated for 72 h, and GSI washout for 16 h. *, p < 0.05, **, p < 0.001, by paired two-
tailed Student’s t test. c FLAG-NOTCH1 immunopurified proteins from control and NOTCH1-FLAG-
expressing CUTLL1 cells were resolved on SDS-PAGE gels and interacting partners are visualized by western
blot. IgG was immunopurified as a negative control. IB, immunoblot; IP, immunoprecipitation. d, e ChIP-seq
signals for BRG1 (d) and CTCF (e) surrounding constitutive (gray), AMLlost (blue), and AMLgained (red) CTCF
binding sites in AML cell line EOL1. Normalized ChIP-seq read counts (RPKM) covering 2-kb regions
centered at CTCF binding sites were plotted per 10-bp non-overlapped bins. f Percentage of genes in
different groups that are downregulated (log2FC < − 0.26, FDR < 0.001) in shCTCF experiment in CUTLL1.
Black: Genes located in the T-ALLgained-CTCF-containing chromatin domains. Red: Genes located in the T-
ALLgained-CTCF-containing domains that are also upregulated (log2FC > 0.26, FDR < 0.001) in T-ALL
compared to normal T cell. *, p < 0.05, **, p < 0.001, by two-tailed Fisher’s exact test. g BART-predicted TFs
that target the downregulated genes (log2FC < − 0.58, FDR < 0.01) upon CTCF silencing experiments in
CUTLL1. h MA plot showing differential gene expression after shCTCF treatment in CUTLL1. Most NOTCH1
target genes (red) are downregulated. i Differential gene expression between CUTLL1 and normal T cells.
Group A: genes located in dynamic-NOTCH1-containing domains. Group B: genes located in domains
containing both dynamic-NOTCH1 and T-ALLgained CTCF binding sites. *, p < 0.05, **, p < 0.001, by two-tailed
unpaired Student’s t test
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chromatin domains containing both dynamic NOTCH1 and T-ALLgained CTCF sites

are most upregulated in T-ALL compared to normal CD4+ T cells (effect size = 0.42,

P = 1.7e−3) (Fig. 6i). Of these T-ALL-upregulated genes, those located in chromatin do-

mains with increased interaction between dynamic NOTCH1 sites and T-ALLgained
CTCF sites are the ones whose expression is the most downregulated upon CTCF si-

lencing (effect size = − 0.63, P = 0.26) (Additional file 1: Fig. S16f). Our collective find-

ings suggest that NOTCH1 and CTCF cooperatively activate oncogenic transcriptional

programs in T-ALL.

Discussion
Through integrative analysis of multi-level genomic data collected from the public do-

main, we presented a comprehensive CTCF binding repertoire in the human genome,

from which we identified specific CTCF binding patterns in six distinct cancer types.

We characterized a series of genomic and epigenomic features of cancer-specific CTCF

binding events using multi-omics profiling techniques including WGS, TF and histone

modification ChIP-seq, RNA-seq, ATAC-seq, bisulfite sequencing, and in situ Hi-C. In

contrast to previous studies that primarily focused on the effects of mutations or other

modifications to CTCF itself or its binding sites [20, 21, 30, 47, 60, 61], we identified

unique CTCF binding patterns in specific cancer types that can arise regardless of mu-

tations or DNA methylation changes. Cancer-specific CTCF recruitment likely results

from other TFs that indirectly open chromatin and alter chromatin conformation.

CTCF at these sites functions cooperatively with other TFs to facilitate enhancer-

promoter interactions and to activate oncogenic transcriptional programs. In T-ALL,

we identified such a cooperative program occurring between NOTCH1 and CTCF, in

which NOTCH1 binding is required for gained CTCF binding in the same chromatin

domain. This potentially occurs through NOTCH1-induced opening of chromatin at

the CTCF binding sites. Gained CTCF binding then cooperates with NOTCH1 to acti-

vate transcription of its target genes. Interestingly, we observed substantial enrichment

of BRG1 at gained CTCF binding sites (Fig. 6d), as well as a direct protein-protein

interaction between NOTCH1 and BRG1 (Fig. 6c). Although previous studies suggested

that CTCF and BRG1 might physically interact [56], we did not find this to be the case

in T-ALL (Additional file 1: Fig. S16g). Also, although direct pathway or gene ontology

analysis on all genes near these identified lost/gained CTCF sites did not yield much in-

sights into cancer functions (Additional file 1: Fig. S17), we did observe a clear pattern

of differential gene expression associated with CTCF binding alteration.

The dynamic interactions involving multiple factors and novel CTCF binding within

a single chromatin domain may indicate the formation of phase-separated transcrip-

tional condensates at super-enhancers [62–64]. In T-ALL, NOTCH1 binding drives the

establishment of super-enhancers [13]. Thus, T-ALLgained CTCF binding may be re-

cruited by clusters of TFs and co-activators including chromatin remodeling complexes

within phase-separated transcriptional condensates around super-enhancers. The po-

tential for NOTCH1 as a master TF to direct the formation of 3D spatial clusters has

been reported recently [65]. Transcriptional condensates maintain a highly active envir-

onment, which is consistent with the enrichment of H3K27ac observed near T-

ALLgained CTCF sites (Fig. 5c). By inducing the frequency of chromatin contacts, gained

CTCF binding may function to maintain the condensation state that helps drive

Fang et al. Genome Biology          (2020) 21:247 Page 14 of 30



transcription. A schematic model of the relationships between dynamic NOTCH1 bind-

ing, CTCF gain, and activation of NOTCH target genes in T-ALL is shown in Fig. 7.

Our work in T-ALL found that gains in CTCF binding are located in distal enhancer

regions, while cancer-specific CTCF binding loss events are enriched at gene promoter

regions and correlate with repressed transcription of these promoters and decreased

chromatin interactions. Recently, an enhancer-docking mechanism described by Schui-

jers et al. [66] proposed that a single CTCF binding upstream of a promoter can func-

tion as a docking site for multiple distal enhancers; in this way, multiple enhancers

loop to a single CTCF site to activate a single target gene promoter [66]. Loss of such a

docking CTCF site then removes the ability to form these multiple enhancer loops,

thus greatly reducing the ability to activate transcription. While our observations of

cancer-specific lost CTCF sites are consistent with this “enhancer docking” model, fur-

ther studies are required to understand the causal relationships between CTCF binding

loss and gene repression.

Overall, our characterizations of identified gained/lost CTCF sites do not distinguish

presence or absence of the CTCF motif. We do not discriminate CTCF binding sites

based on the motif occurrence, based on a fundamental assumption that ChIP-seq data

directly provide information about TF-DNA interactions, regardless of motif occur-

rence. We do not exclude the possibilities that many CTCF binding events may be

through indirect interactions, but the function of these CTCF binding sites in inducing

chromatin interactions and facilitating gene regulation is by and large similar, as shown

in our analyses. In addition, it is worth noting that motif occurrence alone is not

enough for TF binding. We identified 877,981 CTCF motif hits across the whole hu-

man genome. Among these hits, 639,704 (72%) are located outside any of the 688,429

union CTCF binding sites curated from ChIP-seq data. This indicates that there could

still be large potential for CTCF to bind at novel loci across the genome, to play new

roles in uncharacterized cell types or physiological states.

Our study is built upon integrative computational analyses of multi-source public

data coupled with our multi-omics experimental validations using T-ALL as a model

system. As a pan-cancer study, our work is limited by data availability and quality.

Fig. 7 Schematic model of CTCF facilitated oncogenic transcriptional activation in T-ALL. a Without gained
CTCF binding, intracellular NOTCH1 transcriptional complexes recognize RBPJ, the DNA-binding sequence
motif, and recruit SWI/SNF / BAF complexes. b With gained CTCF binding, NOTCH1, BAF complexes, and
CTCF protein molecules cooperatively alter the chromosome conformation and form a transcriptional
condensate (dashed circle) to regulate expression of the target gene
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Various numbers of available datasets might cause the large difference on the numbers

of identified lost/gained CTCF sites across cancer types. Coverages and depths of bisul-

fite sequencing might lead to potential underestimation of differential DNA methyla-

tion. Although we validated that specific CTCF binding can be induced by other TFs,

the causal relations between CTCF binding alteration and DNA methylation change

still require further investigation in T-ALL. Also, our identified cancer-specific lost or

gained CTCF sites are only a restricted portion in functional cancer epigenomes. To

maintain a high specificity of CTCF binding patterns for each cancer type, we might

have missed more general and commonly shared CTCF binding patterns across mul-

tiple cancers, which could be worth revisiting in the future. Our findings pave the way

for further mechanistic studies of causal relationships between CTCF binding alteration

and oncogenic TF activities in leukemia as well as other cancers. Following our pro-

posed model, oncogenic drivers can lead to novel CTCF binding at distinct enhancer

regions in the genome, thus creating a signature pattern of CTCF binding. Having ob-

served evidence supporting this model in T-ALL, we believe that studying aberrant

CTCF binding events in other cancer types can further our understanding of the under-

lying oncogenic transcriptional regulatory networks specific to that cancer. In conclu-

sion, a unique aberrant CTCF binding pattern represents a novel epigenomic signature

of cancer that can be independent of mutations or DNA methylation changes. Our

work provides insights into a new angle of mechanistic research on cancer

epigenomics.

Methods
Experimental procedure

Patient xenografting and cell culture

The human T-ALL cell lines include CUTLL1 (gift from Adolfo Ferrando,

Columbia University) and JURKAT (American Type Culture Collection (ATCC),

Manassas, VA, #CCL-119) [37, 67]. Cells were cultured in RPMI1640 medium

with L-glutamine and 25 mM HEPES (Corning) supplemented with 10% heat-

inactivated fetal bovine serum (Sigma-Aldrich), 10 U/mL of penicillin-

streptomycin (Gibco), and 1× glutaMAX (Gibco) in a humidified incubator at

37 °C and 5% CO2. The cells are periodically tested for the presence of myco-

plasma using the Lonza Walkersville MycoAlert Mycoplasma Detection Kit (last

test in January 2020). The cell lines are kept in culture for a maximum of 20

passages and are authenticated using short-tandem repeats profiling (JURKAT) or

using PCR to detect the TCRb-NOTCH1 translocation (TCRBJ2S4CUTLL1F:5′-

GGACCCGGCTCTCAGTGCT-3′, NOTCH1CUTTL1R:5′-TCCCGCCCTCCAAA

ATAAGG-3′). Last cell authentication was performed in February 2020. Human

CD4+ T cells were purchased from AllCells. Primary human samples were col-

lected with informed consent and analyzed under the supervision of the Institu-

tional Review Board of Padova University, the Associazone Italiana di Ematologia

e Oncologia Pediatrica, and the Berlin-Frankfurt-Münster (AIEOP-BFM) ALL

2000/2006 pediatric clinical trials. Informed consent to use leftover material for

research purposes was obtained from all of the patients at trial entry in accord-

ance with the Declaration of Helsinki.
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Antibodies and reagents

Western blots were performed using the following antibodies: Actin and CTCF from

Millipore Sigma (clone C4; 07–729) and cleaved NOTCH1 (Val1744) from Cell Signal-

ing Technology (4147). ChIP-seq were performed using the following antibodies: CTCF

from Millipore Sigma (07-729), H3K27Ac (8173S), and H3K27me3 (9733S) from Cell

Signaling Technology, and H3K4me1 (07-473) from Millipore.

In situ Hi-C

In situ Hi-C was performed on CD4+ T cells, Jurkat, CUTLL1, and patient xenografts

as previously described [5]. In brief, cells were crosslinked with 1% formaldehyde for

10 min at room temperature. Per Hi-C reaction, 5 million cells were lysed and nuclei

were permeabilized. DNA was digested with MboI from New England Biolabs

(R0147M). Digested fragments were labeled with biotinylated d-ATP from Jena Bio-

science (NU-835-BIO14-S) and ligated. After RNase treatment and Proteinase K treat-

ment to reverse crosslinks, nuclei were sonicated using a Covaris E220 to produce an

average fragment length of 400 bp. Streptavidin beads from Thermo Fisher Scientific

(65001) were used to pull down biotin-labeled fragments. Following purification and

isolation of DNA, final libraries were prepared using the NEBNext® Ultra™ II DNA Li-

brary Prep Kit for Illumina® and sequenced via paired end sequencing at a read length

of 150 bp on an Illumina HiSeq 2500 to produce on average 400 million reads per

sample.

ChIP-seq profiling

CD4+ T cells, Jurkat, CUTLL1, and patient xenografts were crosslinked with 1% for-

maldehyde and 1% fetal bovine serum in PBS for 10 min at room temperature. The re-

action was quenched with 0.2M glycine at room temperature for 5 min. Cells were

then washed with PBS and pelleted.

For CTCF ChIPs, immunoprecipitation was performed based on a protocol described

previously [68]. A pellet containing 50 million cells was lysed with 5 mL of lysis buffer

(50 mM HEPES-KOH, pH 7.5, 140 mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% NP-40,

0.25% Triton X-100) for 10 min at 4 °C. Nuclei were pelleted at 1350×g for 7 min and

resuspended in 10 mM Tris pH 8, 1 mM EDTA, and 0.1% SDS. Chromatin was sheared

with a Covaris E220 system to an average fragment length of 400 bp and spun at 15,

000 rpm for 10 min to remove insoluble chromatin and debris. The supernatant was in-

cubated with 20 μL of Dynabeads Protein G for 30 min before discarding the beads.

One percent of the total volume was saved as input and the rest was incubated with

anti-CTCF antibody overnight. In total, 100 μL of Dynabeads Protein G was added for

2 h. Bound fragments were washed twice with 1 mL of low salt buffer (20 mM Tris-HCl

pH 8.0, 150 mM NaCl, 2 mM EDTA, 1% w/v Triton X-100, and 0.1% w/v SDS), once

with high salt buffer (20 mM Tris-HCl pH 8.0, 500 mM NaCl, 2 mM EDTA, 1% w/v

Triton X-100, and 0.1% w/v SDS), once with lithium chloride buffer (10 mM Tris-HCl

pH 8.0, 250 mM LiCl, 1 mM EDTA, 1% w/v NP-40, and 1% w/v deoxycholic acid), and

twice with TE (10 mM Tris pH 8, 1 mM EDTA).

For histone ChIPs, cells were lysed in 375 μL of nuclei incubation buffer (15 mM Tris

pH 7.5, 60 mM KCl, 150 mM NaCl, 15 mM MgCl2, 1 mM CaCl2, 250 mM sucrose, 0.3%
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NP-40, 1 mM NaV, 1 mM NaF, and 1 EDTA-free protease inhibitor tablet (Roche)/10

mL in H2O) for 10 min on ice. Nuclei were washed once with digest buffer (10 mM

NaCl, 10 mM Tris pH 7.5, 3 mM MgCl2, 1 mM CaCl2, 1 mM NaV, 1 mM NaF, and 1

EDTA-free protease inhibitor tablet (Roche)/10 mL in H2O) and resuspended in 57-μL

Digest Buffer containing 4.5 units MNase (USB) for 1 h at 37 °C. MNase activity was

quenched for 10 min on ice upon the addition of EDTA to a final concentration of 20

mM. Nuclei were pelleted and resuspended in 300-μL Nuclei Lysis Buffer (50 mM Tris-

HCl pH 8.0, 10 mM EDTA pH 8.0, 1% SDS, 1 mM NaV, 1mM NaF, and 1 EDTA-free

protease inhibitor tablet (Roche)/10 mL in H2O) before sonication with a Bioruptor

Pico (Diagenode) for 5 min (30 s on, 30 s off). Lysate was centrifuged at max speed for

5 min to remove debris. Nine volumes of IP Dilution Buffer (0.01% SDS, 1.1% Triton

X-100, 1.2 mM EDTA pH 8.0, 16.7 mM Tris-HCl pH 8.0, 167 mM NaCl, 1 mM NaV, 1

mM NaF, and 1 EDTA-free protease inhibitor tablet (Roche)/10 mL in H2O) were

added to the supernatant. In total, 50 μL of Dynabeads Protein G was added and the

sample was incubated at 4 °C for 30 min, rotating. One percent of the sample was kept

as input, and the remaining sample was split into 3 tubes. In total, 50 μL of Dynabeads

Protein G conjugated to 15 μL of the appropriate antibody was added to each tube

prior to overnight incubation at 4 °C, rotating. Bead-bound complexes were washed for

5 min each in 1mL of low-salt buffer, high-salt buffer, LiCl buffer, and twice with TE.

To elute bead-bound complexes, beads were resuspended in 50 μL of elution buffer

(100 mM NaHCO3, 1% w/v SDS) and incubated at 65 °C for 15 min, shaking at 1000

RPM on a thermomixer (Thermo Scientific). Elution was repeated a second time, and

then 100 μL RNase Buffer (12 μL of 5M NaCl, 0.2 μL 30 mg/mL RNase, and 88 μL TE)

was added to each ChIP and input sample. Samples were incubated at 37 °C for 20 min,

followed by the addition of 100 μL of proteinase K buffer (2.5 μL 20mg/mL proteinase

K, 5 μL 20% SDS, and 92.5 μL TE) overnight at 65 °C. An equal volume of phenol:

chloroform solution was added and mixed thoroughly. The mixture was transferred to

MaXtract High Density tubes (Qiagen) and centrifuged for 8 min at 15,000 rpm. The

upper phase was transferred to new tubes and mixed with 1.5 μL 20 mg/mL glycogen,

30 μL 3M sodium acetate, and 800 μL ethanol. Samples were incubated at − 80 °C until

frozen and then centrifuged at 15,000 rpm for 30 min at 4 °C. The supernatant was re-

moved and pellets were washed in 800 μL 70% ice-cold ethanol and spun for 10 min at

4 °C at 15,000 rpm. Following careful removal of ethanol, pellets were air-dried and re-

suspended in 30 μL of 10 mM Tris at pH 8.

IP and input DNA were then quantified using a Qubit 3.0 fluorometer. Libraries were

prepared using the KAPA HyperPrep Kit (KK8505) and sequenced with an Illumina

NextSeq 500 to an average depth of 28 million reads per sample.

RNA-seq profiling

RNA was isolated from 3 million cells per sample using the Bio-Rad Aurum™ Total

RNA Mini Kit and quantified with the Agilent RNA 6000 Nano Kit with the Agilent

Bioanalyzer. Libraries were prepared by rRNA depletion using the Illumina TruSeq®

Stranded mRNA Library Prep Kit for a low concentration of starting sample and se-

quenced by single end sequencing on an Illumina NextSeq 500 to an average depth of

18 million reads per sample.
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DNA methylation profiling

Genomic DNA was isolated using the AllPrep DNA/RNA Micro Kit (Qiagen). To as-

sess genome-wide DNA methylation status, we performed mRRBS [69]. Following

fluorometric quantification using a Qubit 3.0 instrument, we digested genomic DNA

with the restriction enzyme MspI (New England Biolabs) and size selected for frag-

ments approximately 100–250 base pairs in length using solid phase reversible

immobilization (SPRI) beads (MagBio Genomics). Resulting DNA underwent bisulfite

conversion using the EZ DNA Methylation-Lightning Kit (Zymo Research). We created

libraries from bisulfite-converted single-stranded DNA using the Pico Methyl-Seq Li-

brary Prep Kit (Zymo Research), which were then pooled for sequencing on an Illumina

NextSeq 500 instrument using the NextSeq 500/550 V2 High Output reagent kit (1 ×

75 cycles) to a minimum read depth of 50 million reads per sample.

Whole genome sequencing

Three million cells from cell lines or patient samples were pelleted and resuspended in

1 mL of Cell Lysis Solution (Qiagen) mixed with 500 μg of RNase A. The lysis reaction

was carried out at 37 °C for 15 min. In total, 333 μL of Protein Precipitation Solution

(Qiagen) was added to each sample which was then vortexed and then centrifuged at

2000×g for 10 min. The supernatant was mixed with 1 mL of isopropanol until DNA

strands precipitated from solution. Upon discarding the supernatant, the DNA pellet

was washed with 1 mL of 70% ethanol and centrifuged at 2000×g for 1 min. The ethanol

was then poured out and the pellet was air-dried for 15 min before resuspension in 50

to 100 μL of DNA Hydration Solution (Qiagen). DNA was sequenced with paired-end

Illumina sequencing at 30× coverage.

Immunoprecipitation

A total of 100 million cells for each immunoprecipitation reaction were pelleted and in-

cubated in Buffer A (10 mM HEPES pH 8.0, 1.5 mM MgCl2, 10 mM KCl, 0.5 mM DTT)

for 10 min on ice. Cells were then lysed upon 12 strokes with a 7-mL loose pestle tissue

grinder (Wheaton, 357542) and centrifuged at 2000 rpm for 7 min. Nuclear pellets were

resuspended in 5 volumes of TENT buffer (50 mM Tris pH 7.5, 5 mM EDTA, 150 mM

NaCl, 1% Triton X-100, 5 mM MgCl2) and treated with benzonase for 30 min before 5

passages through a 25 g × 5/8 in. syringe. The insoluble fraction was removed following

centrifugation at 2000 rpm for 7 min and incubated overnight with Dynabeads Protein

G hybridized with antibody. A total of 2 million cells were removed for input. Beads

and nuclei lysates were washed 6 times with TENT buffer and then eluted in 0.1M gly-

cine pH 2.5 with 100mM Tris pH 8.0 prior. NuPAGE LDS sample buffer was added to

eluates and inputs, which were then incubated at 70 °C for 15 min before analysis by

western blot.

Public data collection

Public CTCF ChIP-seq data were collected from Cistrome Data Browser [70] (for peak

files) and NCBI GEO [71] (for fastq files, Additional file 2: Table S1). Histone modifica-

tion ChIP-seq data were collected from NCBI GEO and ENCODE [72] (for bam files).

Public RNA-seq data in multiple cell types were collected from ENCODE (for fastq
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files). DNA methylation profiling data were collected from ENCODE (for bed bed-

Methyl files) and NCBI GEO. Hi-C data were collected from NCBI GEO and ENCODE

(for fastq files). ATAC-seq data were collected from NCBI GEO (for fastq files). Whole

genome sequencing data for BRCA, COAD, LUAD, and PRAD samples were collected

from International Cancer Genome Consortium (ICGC) Data Portal [49]. Detailed in-

formation including accession IDs of all public datasets collected in this work can be

found in Additional file 6: Table S5.

Data processing

ChIP-seq data analysis

Sequence alignment for ChIP-seq data in fastq files was performed using the same

standard analysis pipeline as used in Cistrome DB [70], for consistence and reproduci-

bility. All sequence data genomic alignment were performed using the Chilin [73] pipe-

line with default parameters ($ chilin simple -p narrow [--pe] -s hg38 --threads 8 -t

IN.fq -i PRENAME -o OUTDIR). Briefly, sequence reads were aligned to the human

reference genome (GRCH38/hg38) using BWA [74] ($ bwa aln -q 5 -l 32 -k 2 -t 8

INDEX IN.fq > PRENAME.sai $ bwa {samse | sampe} INDEX PRENAME.sai IN.fq >

PRENAME.sam). Sam files were then converted into bam files using samtools [75] ($

samtools view -bS -q 1 -@ 8 PRENAME.sam > PRENAME.bam). For CTCF ChIP-seq

datasets, MACS2 [76] was used to call peaks under the FDR threshold of 0.01 ($ macs2

callpeak --SPMR -B -q 0.01 --keep-dup 1 -g hs -t PRENAME.bam -n PRENAME --out-

idr OUTDIR). Peaks with fold enrichment of at least 4 were retained. Bigwiggle files

were generated using BEDTools [77] and UCSC tools [78] ($ bedtools slop -i PREN

AME.bdg -g CHROMSIZE -b 0|bedClip stdin CHROMSIZE PRENAME.bdg.clip $ LC_

COLLATE=C sort -k1,1 -k2,2n PRENAME.bdg.clip > PRENAME.bdg.sort.clip $ bed-

GraphToBigWig PRENAME.bdg.sort.clip CHROMSIZE PRENAME.bw). Finally, only

the CTCF ChIP-seq samples that have at least 2000 peaks were included in the down-

stream integrative analysis.

ATAC-seq data analysis

Trim Galore [79] was used to trim the raw sequencing reads ($ trim_galore --nextera

--phred33 --fastqc --paired R1.fq R2.fq -o OUTDIR). Reads were aligned to the human

reference genome (GRCH38/hg38) using Bowtie2 [80] ($ bowtie2 -p 10 -X 2000 -x

INDEX -1 R1.fq -2 R2.fq -S PRENAME.sam). Sam files were then converted into bam

files using samtools [75] ($ samtools view -bS -q 1 -@ 8 PRENAME.sam > PRENAME.-

bam). Bedtools was used to convert bam files into bed format ($ bamToBed -i PREN

AME.bam -bedpe > PRENAME_PE.bed). Reads mapped to mitochondria DNA were

discarded from downstream analysis.

RNA-seq data analysis

RNA-seq datasets were processed using Salmon [81] ($ salmon quant --gcBias -i

INDEX -l A -p 8 {-1 R1.fq -2 R2.fq| -r IN.fq} -o OUTDIR). Transcriptome index was

built on the human reference genome (GRCH38/hg38). Transcript-level abundance es-

timates were summarized to the gene level using the “tximport” [82] package for differ-

ential expression analysis. DESeq2 [83] was used to identify differentially expressed
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genes, and different thresholds used in different analysis were listed correspondingly in

the manuscript.

Hi-C data analysis

Hi-C data were processed using HiC-Pro [84] ($ HiC-Pro -i INDIR -o OUTDIR -c

CONFIG -p). Contact maps were generated at a resolution of 5 kb. Raw matrix data

were normalized using the approach described in Normalization of Chromatin

Interactions.

DNA methylation data analysis

DNA methylation data (for T-ALL cell lines and T-ALL patients) were demultiplexed

with bcl2fastq followed by trimming of 10 base pairs from the 5′ end to remove primer

and adaptor sequences using TrimGalore [79]. Sequence alignment to the GRCh38/

hg38 reference genome and methylation calls were performed with Bismark [85] ($ bis-

mark --multicore 8 --bowtie2 -q -N 1 INDEX INFILE.fq). Coverage (counts) files for

cytosines in CpG context were generated using Bismark [85, 86] ($ bismark_methyla-

tion_extractor --multicore 8 --comprehensive --bedGraph INFILE_bismark_bt2.bam).

Whole genome sequencing data analysis

Mutations were identified for two T-ALL cell lines (Jurkat and CUTLL1) and two T-

ALL patient samples from the whole genome sequencing data. We aligned the Illumina

short-read sequences to the human reference genome (GRCH38/hg38) using BWA

[74] mem. We used SAMBlaster [87] to identify the discordant pairs, split reads, and

flag the putative PCR duplicates. We used SAMBAMBA [88] to convert the SAM

aligned into the BAM format, and samtools [75] was used to sort those aligned to cre-

ate a BAM file corresponding to each sample.

We used VarDict [89] to identify the variants that overlapped the union CTCF bind-

ing sites. We used all the default parameters except “-f 0.1” which was used to identify

variants that were supported by greater than 10% of the reads at that location. We an-

notated the variants using Variant Effect Predictor (VEP) [90] and used custom scripts

to identify the variants that influence TF binding.

We again used VarDict [89] to identify the variants in the CTCF and NOTCH1 genes

for the four samples. We used all the default parameters except “-f 0.1” which was used

to identify variants that were supported by greater than 10% of the reads at that loca-

tion. We annotated the variants using Variant Effect Predictor (VEP) [90], and then fil-

tered it to identify the mutations that were either (a) not seen in more than 1% of any

normal human population, or (b) had a CADD score of deleteriousness > 20, or (c) was

present in the COSMIC database.

Integrative modeling and statistical analysis

Identification of CTCF binding repertoire in the human genome

For CTCF ChIP-seq, we collected a total of 793 datasets, including 787 public datasets

and 6 datasets we generated (Additional file 2: Table S1). In total, 771 CTCF ChIP-seq

datasets with peaks more than 2000 were used in this study. Each dataset can yield

MACS2-identified CTCF peaks in the range between 2050 and 198,021, with a median
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of 46,451 and a total of 36,873,077 peaks (Additional file 1: Fig. S1a). The distribution

of the interval lengths between adjacent CTCF peak summits of all 36,873,077 peaks

from the 771 datasets has an inflection point at ~ 150 bp (Additional file 1: Fig. S1c) in-

dicating the boundary between the same binding site and different binding sites [91].

Therefore, we used 150 bps as the cutoff to merge CTCF peaks. In practice, we ex-

tended ± 75 bps from each peak summit to generate a 150-bp region centered at the

summit to represent each peak and merged all overlapping peak regions to generate a

union set of CTCF binding sites, which contains 688,429 non-overlapping sites. Each

binding site was assigned a CTCF occupancy score, defined as the tally of ChIP-seq

datasets that exhibit a peak within the site. Accordingly, we defined the occupancy fre-

quency as the ratio of the occupancy score over the total number of CTCF ChIP-seq

datasets. To further ensuring the robustness of the identified CTCF binding sites, we

selected 285,467 high-confidence sites with occupancy score ≥ 3 for downstream ana-

lyses. CTCF motifs within the union binding sites were searched by FIMO [92] with

Jaspar [93] matrix (ID: MA0139.1), with a p value threshold of 1e−4. One motif with

the smallest p value was retained for each CTCF binding site.

Identification of constitutive CTCF binding sites

The distribution of occupancy scores of all 285,467 CTCF binding sites (Additional file

1: Fig. S1d, blue curve) shows that the majority of the CTCF binding sites occur in only

a few datasets, and the number of binding sites decreases with increasing occupancy

score when the occupancy score is small. However, there are CTCF binding sites that

are highly conserved across almost all datasets (e.g., binding sites with occupancy score

greater than 600). We use a power law function to fit the distribution curve (blue)

shown in Additional file 1: Fig. S1d to determine the cutoff for constitutive CTCF sites.

We denote Oi as the number of observed CTCF binding sites with occupancy score

equal to i, and Ei as the number of expected CTCF sites with occupancy score equal to

i. The power law fitting to data Oi can be described as (Additional file 1: Fig. S1d,

green):

Ei ¼ 85767�ði − 1:37Þ − 1:25

We define the cutoff A for constitutive CTCF binding sites as:

A≔ min ij
P771

i Oi − Eið Þ
P771

i Ei
> 5

( )

In other words, the total observed CTCF sites with occupancy score greater than A

should be 6 times more than expected. We then determined A = 615, and used an oc-

cupancy frequency cutoff of 80% to define 22,097 constitutive CTCF binding sites,

which corresponds to the occupancy score ≥ 616 in all 771 CTCF ChIP-seq datasets.

Identification of cancer-specific gained/lost CTCF binding sites

We used the following 2 criteria to identify cancer-specific lost CTCF binding sites: (1)

The CTCF binding site should have a lower occupancy frequency for datasets of that

cancer type compared to the occupancy frequency for all datasets and (2) CTCF bind-

ing level (quantified as normalized ChIP-seq read counts) at the site is lower in cancer
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datasets than in other datasets. For gained CTCF sites, we used the vice versa set of cri-

teria. Briefly, for each CTCF binding site in each cancer type, the occupancy score in

the cancer datasets were calculated along with its occupancy score in all 771 datasets.

CTCF binding levels were obtained from a normalized read count matrix in which the

ChIP-seq read counts (RPKM) were first calculated for union CTCF binding sites in all

datasets and then followed by quantile normalization. We used unpaired two-tailed

Student’s t test to quantify the difference of binding levels between different groups of

datasets, and the p value was then adjusted using the Benjamini-Hochberg procedure

[94]. In addition, binding occupancy scores and binding levels were compared between

cancer datasets and datasets from the matched normal tissue or cell types, in order to

take into account the potential confounding factor of tissue specificity rather than can-

cer specificity. Detailed criteria for identifying cancer-specific CTCF binding sites are

described below:

� Cancer-specific lost CTCF binding sites: (1) occupancy frequency ≤ 0.2 in cancer

datasets; (2) occupancy frequency ≥ 0.7 in 771 datasets; (3) occupancy frequency ≥

0.5 (with occupancy score ≥ 2) in matched normal tissue datasets; (4) CTCF levels

are lower in cancer compared to all other datasets (statistic score < 0), (5) CTCF

levels are lower in cancer compared to matched normal tissue datasets (statistic

score < 0), (6) averaged CTCF binding signals (RPKM) < 5 in cancer datasets.

� Cancer-specific gained CTCF binding sites: (1) occupancy frequency ≥ 0.5 (with

occupancy score ≥ 2) in cancer datasets, (2) occupancy frequency ≤ 0.2 in 771

datasets, (3) occupancy score = 0 in matched normal tissue datasets, (4) CTCF

levels are significantly higher in cancer compared to all other datasets (FDR ≤ 0.01),

(5) CTCF binding levels are significantly higher in cancer compared to matched

normal tissue datasets (FDR ≤ 0.01), (6) averaged CTCF binding signals (RPKM) > 2

in cancer datasets.

The specific gained and lost CTCF binding sites for each cancer type are shown in

Additional file 4: Table S3.

Quantification of differential chromatin accessibility

We used the processed data from Ref. [42] that include a matrix of normalized ATAC-

seq insertion counts within the TCGA pan-cancer peak set to assess the differential

chromatin accessibility around CTCF binding sites. For each cancer type among BRCA,

CRC, LUAD, and PRAD, the pan-cancer ATAC-seq peaks that overlap with identified

cancer-type-specific lost or gained CTCF binding sites were used for downstream ana-

lyses. The ATAC-seq differential score for each peak was quantified as the fold change

of the average of the normalized ATAC-seq insertion counts from patient samples in

the corresponding cancer type versus from patients in other cancer types, and the

ATAC-seq differential score was then assigned to the peak overlapped CTCF binding

site.

For consistency, we applied the same approach used for TCGA ATAC-seq data to

analyze the collected ATAC-seq data from T-ALL cell line Jurkat and normal CD4+ T

cells. A data matrix was generated using ATAC-seq raw read counts on union CTCF
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binding sites for all Jurkat and T cell datasets. Quantile normalization was applied on

the log2 scaled matrix (pseudo count = 5). The ATAC-seq differential score was mea-

sured as the fold change of the averaged normalized ATAC-seq counts between data-

sets of Jurkat versus CD4+ T cell at each CTCF binding site.

Normalization of chromatin interactions

Given a Hi-C contact map A = {aij}, the score aij reflects mapped reads between two

genomic regions i and j. Suppose the bin size is 5 kb, regions i and j will have a gen-

omic distance of ∣i − j ∣ × 5kb. Since the contact probability between two bins de-

creases with increasing genomic distance [95], we normalized the contact map as

follows: for any given genomic distance dk = k × 5kb, we quantify a normalization factor

Sdk as the averaged interactions among all bin pairs with the same genomic distance dk

in a same chromosome, e.g., Sdk ¼ ðP j − i¼kaijÞ=n , where n is the total number of bin

pairs with distance dk. The interaction score aij between two bins with distance dk was

then normalized by Sdk as a
0
ij ¼ aij=Sdk . Using this approach, we normalized the matrix

A into A0 ¼ fa0
ijg within each chromosome.

Detection of differential chromatin interactions

We denoted the normalized Hi-C contact maps in the cancer dataset and the normal

dataset as C = {cij} and N = {nij}, respectively. For a given CTCF binding site x (with co-

ordinate xc) and a pre-defined genomic distance L, the chromatin interactions between

x and its nearby non-overlapped 5-kb bins with genomic distance up to L are collected

from C and N respectively. Specifically, interaction scores between x and its nearby 5-

kb bins in C are collected as IC = {cij} , while either i or j equals to ⌊xc/5kb⌋, and 0 < (j

− i) × 5kb ≤ L. Similarly, the interaction scores between x and its nearby 5-kb bins in N

were collected as IN = {nij}. A paired two-tailed Student’s t test was then applied on IC

and IN to quantify the differential interaction between cancer and normal cells sur-

rounding CTCF binding site x.

Association of CTCF binding with gene expression

In total, 54 cell types for which both CTCF ChIP-seq data and RNA-seq data are pub-

licly available were selected (Additional file 6: Table S5) for investigating the association

between CTCF binding and gene expression for each CTCF-gene pair in the same

chromosome. To obtain the CTCF binding level, a read count matrix was generated

using reads per kilobase per million (RPKM) on union CTCF binding sites from ChIP-

seq data. The read count matrix was scaled with square root of RPKM followed by

quantile normalization. Gene expression level was measured for each gene using the

square root of transcripts per million (TPM) from RNA-seq data. For each CTCF-gene

pair, we quantified the association between the CTCF site and the gene across all 54

cell types using the correlation coefficient R between the normalized CTCF binding

level and gene expression (Fig. 3a). CTCF-gene pairs were deemed “highly correlated”

with R2 greater than 0.25, e.g., correlation coefficient greater than 0.5 or less than − 0.5,

and the highly correlated CTCF-gene pairs contribute to 1.3% of all CTCF-gene pairs

(Additional file 1: Fig. S8a).

Fang et al. Genome Biology          (2020) 21:247 Page 24 of 30



Identification of constitutive CTCF-bounded chromatin domains

For each CTCF binding site, we defined its associated chromatin domain as the gen-

omic region that (1) includes this specific CTCF binding site, (2) is bounded by a pair

of constitutive CTCF binding sites with motifs of opposite orientations, and (3) occu-

pies a minimum of 100 kb and a maximum of 1MB region on each side of the CTCF

binding site. Figure 3b contains schematic of how constitutive CTCF-bounded chroma-

tin domains were defined.

Detection of DNA methylation changes surrounding CTCF binding sites

DNA methylation changes were detected within a 300-bp region centered at each

CTCF binding site. Regions with at least 3 CpGs covered by at least 5 reads (≥ 5×) in

both cancer cell lines and corresponding normal tissues were retained. A 300-bp region

was detected as differentially methylated if the averaged differential methylation levels

of all CpGs (≥ 5×) within this region were greater than 20% [96].

Detection of mutation rate and differential motif score

For each CTCF binding site, the raw mutation count was calculated as the occurrence

of mutation events in all samples/patients at each single base pair within a 400-bp re-

gion centered at the CTCF binding site. The mutation rate for a group of CTCF bind-

ing sites was calculated as the averaged mutation count over the number of CTCF

binding sites for each base pair within the 400-bp region.

Motif score was measured by scoring the CTCF position weight matrix (Jaspar [93],

Matrix ID: MA0139.1) to a 19-bp DNA sequence centered at the CTCF motif or CTCF

binding site using log likelihood ratios (with background nucleotide frequency as

[0.275,0.225, 0.225, 0.275] for A,C,G,T). The differential motif score was calculated by

comparing motif scores for the reference and the mutated sequences.

DNA sequence motif analysis

DNA sequence motif enrichment analysis was performed using MDSeqPos (version

1.0.0) on Cistrome [97] with default parameters (-cisrome -Homo Sapien or Mus mus-

culus). De novo motif analyses were performed using HOMER (version 4.10) [98] with

findmotifs.pl module and MEME (version 5.1.1) [99] with the following parameters:

meme -dna -mod zoops -maxw 20 -evt -0.01.

Identification of CTCF intra-domain differentially interacted regions

For a given set of CTCF binding sites, the chromatin interaction changes between a

CTCF site and each of its intra-domain non-overlapped bins, measured from normal-

ized Hi-C contact maps in cancer cells over matched normal cells, were collected for

each of the CTCF binding sites (Additional file 1: Fig. S14b). Regions with decreased in-

teractions (log2 FC < −1, averaged log2 interaction > 0) with cancer-specific lost CTCF

binding sites, and regions with increased interactions (log2 FC > 1, averaged log2 inter-

action > 0) with cancer-specific gained CTCF binding sites were used for downstream

transcription factor (TF) enrichment analysis.
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Transcription factor enrichment analysis

A revised version of the BART algorithm [53] was used for TF enrichment analysis.

Briefly, a collection of union DNase I hypersensitive sites [100] (UDHS) was previously

curated as a repertoire of all candidate cis-regulatory elements in the human genome,

and 7032 ChIP-seq datasets were collected for 883 TFs [53], with each TF having one

or more ChIP-seq datasets from multiple cell types or conditions. A binary profile was

generated for each TF on UDHS indicating whether the TF has at least one peak from

any of its ChIP-seq datasets locate within each of the UDHS. Binding enrichment ana-

lysis was applied for each TF by comparing the TF binding on a subset of UDHS over-

lapping the selected genomic regions versus the TF binding on UDHS. p value was

obtained using two-tailed Fisher’s exact test.
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