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Abstract

Background: The accuracy of transcript quantification using RNA-seq data depends
on many factors, such as the choice of alignment or mapping method and the
quantification model being adopted. While the choice of quantification model has
been shown to be important, considerably less attention has been given to comparing
the effect of various read alignment approaches on quantification accuracy.

Results: We investigate the influence of mapping and alignment on the accuracy of
transcript quantification in both simulated and experimental data, as well as the effect
on subsequent differential expression analysis. We observe that, even when the
quantification model itself is held fixed, the effect of choosing a different alignment
methodology, or aligning reads using different parameters, on quantification estimates
can sometimes be large and can affect downstream differential expression analyses as
well. These effects can go unnoticed when assessment is focused too heavily on
simulated data, where the alignment task is often simpler than in experimentally
acquired samples. We also introduce a new alignment methodology, called selective
alignment, to overcome the shortcomings of lightweight approaches without
incurring the computational cost of traditional alignment.

Conclusion: We observe that, on experimental datasets, the performance of
lightweight mapping and alignment-based approaches varies significantly, and
highlight some of the underlying factors. We show this variation both in terms of
quantification and downstream differential expression analysis. In all comparisons, we
also show the improved performance of our proposed selective alignment method
and suggest best practices for performing RNA-seq quantification.
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Background

Since its introduction in 2008 [1-3], transcriptome profiling via RNA-seq has become a
popular and widely used technique to profile gene- and transcript-level expression and
to identify and assemble novel transcripts. Expression estimation is often done with the
goal of subsequently performing differential expression analysis on the gene abundance
profiles. In response to improvements in RNA-seq quality and read lengths, as well as
significant improvements in the available quantification methods, it has also become
increasingly common to perform quantification and differential testing at the transcript
level. Recently, very fast computational methods [4-7] for transcript abundance estima-
tion have been developed which obtain their speed, in part, by forgoing the traditional
step of aligning the reads to the reference genome or transcriptome. These methods have
gained popularity due to their markedly smaller computational requirements and their
simplicity of use compared to more traditional quantification “pipelines” that require
alignment of the sequencing reads to the genome or transcriptome, followed by the
subsequent processing of the resulting BAM file to obtain quantification estimates.

In various assessments on simulated data [8—10], these lightweight methods have com-
pared favorably to well-tested but much slower methods for abundance estimation, like
RSEM [11], coupled with alignment methods such as Bowtie2 [12]. However, assessments
based primarily (or entirely) upon simulated data often fail to capture important aspects
of real experiments, and similar performance among methods on such simulated datasets
does not necessarily generalize to experimental data. Popular methods for transcript
quantification [4-7, 11, 13-16] differ in many aspects, ranging from how they handle
read mapping and alignment, to the optimization algorithms they employ, to differences
in their generative models or which biases they attempt to model and correct. These dif-
ferences are often obscured when analyzing simulated data, since aspects of experimental
data that can lead to substantial divergence in quantification estimates are not always
properly recapitulated in simulations.

We focus on the effect of read mapping on the resulting transcript quantification esti-
mates. Specifically, our goal is not to compare other aspects of transcript quantification,
but rather to isolate, as much as possible, the effect of read mapping methodology. Hence,
we have attempted to keep the quantification method consistent in our analysis pipelines,
while changing the alignment and mapping methodologies. To compare the effect of dif-
ferent alignment and mapping methods on RNA-seq transcript quantification and related
downstream analysis, we have picked tools from three different categories of mapping
strategies: (1) unspliced alignment of RNA-seq reads directly to the transcriptome, (2)
spliced alignment of RNA-seq reads to the annotated genome (with subsequent pro-
jection to the transcriptome), and (3) (unspliced) lightweight mapping (quasi-mapping)
of RNA-seq reads directly to the transcriptome. While numerous different lightweight
mapping approaches exist [4, 5, 7, 13, 17], and the degree to which they diverge from
alignment-based methods can differ, a key feature shared by such approaches is that they
do not validate predicted fragment mappings via an alignment score, which precludes
them from discerning loci where the best mappings would not admit a reasonable-
scoring alignment (i.e., spurious mappings). Furthermore, the focus on speed means
that such methods tend not to explore suboptimal mapping loci, despite the fact that
such loci might admit the best alignment scores and therefore be the most likely ori-
gin for a fragment. We show that differences in how reads are aligned or mapped can



Srivastava et al. Genome Biology (2020) 21:239 Page 3 of 29

lead to considerable differences in the predicted abundances. Specifically, we find that
lightweight mapping approaches, which are generally highly concordant with traditional
alignment approaches in simulated data, can lead to quite different abundance estimates
from alignment-based methods in experimental data. These differences happen across a
large number of samples, but the magnitude of the differences can vary substantially from
sample to sample. We also find that these differences appear even when exactly the same
optimization procedure is used to infer transcript abundances. Instead, these differences
are a result of the different mapping and alignment approaches returning distinct, and
sometimes even disjoint, mapping loci for certain reads.

Due to the absence of a ground truth in experimental data, it is difficult to categorically
specify which approaches produce more accurate estimates. However, by investigating
the divergence we observe among the quantifications produced by different methods, and
the differences in read mapping that lead to this divergence in quantifications, we uncover
some primary failure cases of different alignment and mapping strategies. This leads us to
compare and combine the results of different alignment strategies, and allows us to curate
a set of oracle alignments for experimental samples. Comparing various approaches
to the oracle provides further evidence for a hypothesis, raised in [18] and [14], that
lightweight mapping approaches may suffer from spurious mappings leading to a decrease
in the resulting quantification accuracy compared to alignment-based approaches. We
also demonstrate that, even among alignment-based approaches, non-trivial differences
arise between quantifications based upon mapping to the transcriptome (using Bowtie2
[12]) and quantifications based upon mapping to the genome and subsequently project-
ing these alignments into transcriptomic coordinates (using STAR [19]). Both of these
alignment-based approaches sometimes disagree with the oracle, but do so for different
subsets of fragments and to a varying degree among different samples.

Finally, we introduce an improved mapping algorithm, selective alignment (SA), that
is designed to remain fast, while simultaneously eliminating many of the mapping errors
made by lightweight approaches. SA is integrated into the Salmon [6] transcript quan-
tification tool. Our proposed method increases both the sensitivity and specificity of fast
read mapping. It relies upon alignment scoring to help differentiate between mapping
loci that would otherwise be indistinguishable due to, for example, similar exact matches
along the reference. Our approach also determines when even the best mapping for a
read exhibits insufficient evidence that the read truly originated from the locus in ques-
tion, allowing it to avoid spurious mappings. We also attempt to address one of the failure
modes of direct alignment against the transcriptome, compared to spliced alignment
to the genome: when a sequenced fragment originates from an unannotated genomic
locus bearing sequence similarity to an annotated transcript, it can be falsely mapped
to the annotated transcript since the relevant genomic sequence is not available to the
method. We describe a procedure that makes use of MashMap [20] to identify and extract
such sequence similar decoy regions from the genome. The normal Salmon index is then
augmented with these decoy sequences, which are handled in a special manner during
mapping and alignment scoring, leading to a reduction in such cases of false mappings.
We benchmark two variants of this approach: one in which we extract a small collection
of decoy sequences via the procedure mentioned above (designated as SA), and one in
which we align against the transcriptome and whole genome simultaneously, allowing us
to detect fragments that better map to a non-transcriptomic target. The latter approach,
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which essentially treats the whole genome as decoy sequence, is denoted as SAF. We
benchmark these approaches on both simulated data and a broad collection of experi-
mental RNA-seq samples and demonstrate that they lead to improved concordance with
the abundance estimates obtained via quantification following traditional alignment.

Results

Comparison between various alignment and mapping algorithms

For benchmarking, we used quasi-mapping and SA (with either the sequence similar
decoy regions or the whole genome), both available in the Salmon [6] program, where
quasi-mapping is a representative for lightweight mapping methods and SA is our pro-
posed method that performs sensitive lightweight mapping followed by an efficient
alignment-scoring procedure. For unspliced read alignment directly to the transcriptome,
we used Bowtie2 [12], which is an accurate and popular tool for unspliced alignment.
Similarly, we used STAR [19] as representative of methods that perform spliced read
alignment against the genome. We chose STAR, in particular, since it has the ability to
project the aligned reads to transcriptomic coordinates, which allowed us to use a consis-
tent quantification method, and also because it is part of the popular STAR [19]/RSEM
[11] transcript abundance estimation pipeline.

We used Salmon as the main quantification engine in our analyses since it supports
quantification from quasi-mapping, SA, and via the output of traditional aligners and
we wanted to use a single, consistent quantification method in our pipelines in order
to focus on and accurately compare the alignment strategies, minimizing the effect of
other confounding factors. To the best of our knowledge, Salmon is the only quantification
tool that has support for both lightweight mapping approaches and quantification using
traditional alignments. We used Salmon in alignment mode to process the output from
Bowtie2 and STAR. In tests on the initial simulated data, we also included RSEM. To
remove variability in the quantification methods that is ancillary to our focus on mapping
and alignment, we used the -useEM flag in Salmon for comparison against the EM-based
algorithm of RSEM. Likewise, to eliminate variability due to the target set of transcripts
being quantified, we passed the -keepDuplicates option to Salmon when indexing
for subsequent mapping using quasi-mapping or SA'.

Where mentioned, the “strict” and “RSEM” versions of Bowtie2 and STAR refer to
these tools being run with the flags recommended in the RSEM manual [21], which dis-
allow insertions, deletions, and soft clipping in the resulting alignments. The difference
between them is that the “strict” versions are quantified using Salmon and the “RSEM”
versions using the RSEM expression calculation method. Throughout the text, we refer
to the pipelines by the following shorthand (more details about the methods are given in
the “Analysis details” section, and Additional File 1: Table S1 and the full command line
options provided to each tool are given in the “Tools” section):

e Bowtie2—Alignment with Bowtie2 to the target transcriptome and allowing
alignments with indels, followed by quantification using Salmon in alignment mode.

I Though we performed indexing here with -keepDuplicates and quantification with -useEM, this is done only to
eliminate controllable sources of variability between methods so as to isolate, as much as possible, the effect of
differences in mapping. We generally recommend that duplicate transcripts are discarded during indexing and that the
offline phase of quantification is performed using the variational Bayesian EM.
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e Bowtie2 strict—Alignment with Bowtie2 to the target transcriptome and disallowing
alignments with indels (i.e., using the same parameters as those used by RSEM),
followed by quantification using Salmon in alignment mode.

e Bowtie2 RSEM—Alignment with Bowtie2 to the target transcriptome and
disallowing alignments with indels, followed by quantification using RSEM.

e STAR—Alignment with STAR to the target genome (aided with the GTF annotation
of the transcriptome) and projected to the transcriptome allowing alignments with
indels and soft clipping, followed by quantification using Salmon in alignment mode.

e STAR strict—Alignment with STAR to the target genome (aided with the GTF
annotation of the transcriptome) and projected to the transcriptome and disallowing
alignments with indels or soft clipping, followed by quantification using Salmon in
alignment mode.

e STAR_RSEM—Alignment with STAR to the target genome (aided with the GTF
annotation of the transcriptome) and projected to the transcriptome and disallowing
alignments with indels or soft clipping, followed by quantification using RSEM.

® quasi—quasi-mapping directly to the target transcriptome, coupled with
quantification using Salmon in non-alignment mode.

e SA—Selective alignment directly to the target transcriptome and a set of decoy
sequences (high similarity with the transcriptome), coupled with quantification using
Salmon in non-alignment mode (details in the “Decoy sequences” and
“Selective alignment” sections)

e SAF—Selective alignment (full) directly to the target transcriptome and the genome,
treated as decoy sequences, coupled with quantification using Salmon in

non-alignment mode (details in the “Selective alignment” section)

Performance on typical simulations

We used a Polyester [22]-simulated dataset to show the performance of various meth-
ods on synthetic data. The distribution of transcript expression for this simulation was
learned from an experimental (human) sample (SRR1033204, quantified using Bowtie2
with Salmon). To simulate technical variation, we ran each simulation 10 times using the
same input abundance distribution, but varying the random seed used by the simulator.
We computed the Spearman correlation of quantification estimates from all the pipelines
when compared against a known ground truth (in terms of read count) (Table 1). The
Spearman correlation is calculated over all transcripts that have non-zero expression as
predicted by at least one method (or in truth). Transcripts that are correctly and trivially
identified as unexpressed under all pipelines and the truth are filtered before calculating
the correlation. This procedure of calculating the Spearman correlation is followed in all
presented results and analyses.

We observed that, though there are differences in correlation, all pipelines had some-
what similar overall performance on this simulated dataset, with the exception of STAR,
which exhibited the lowest correlation. On this data, quasi-mapping performed better
than aligning to the genome (and then projecting to the transcriptome) and very simi-
lar to traditional alignment against the transcriptome (both with and without the strict
parameters for Bowtie2). We observed that SA and SAF performed marginally better than
aligning to the transcriptome using Bowtie2, except when quantified using RSEM, though
the differences in this scenario are very small. Finally, SAF performed very similarly to SA
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Table 1 Spearman correlation against ground truth for data simulated using Polyester

Method Spearman correlation with truth
Bowtie2 0.976 £ 0.001
Bowtie2Strict 0.976 £ 0.001
Bowtie2rsem 0.980 £ 0.000
SA 0.978 £ 0.000
SAF 0.977 £ 0.001
Quasi 0.976 £ 0.000
STAR 0.965 £ 0.001
STARStrict 0.963 + 0.001
STARrsem 0.967 £ 0.001

The counts were based on an experimental sample from human

in these simulations, though SA, using the smaller decoy set, performed marginally bet-
ter given that, in reality, all of the reads truly derive from annotated transcripts (with only
very minor modifications due to simulated sequencing error). We also simulated data
using the RSEM simulator, seeded from the same input sample, and observed broadly
similar trends Additional File 1: Table S2.

Overall, the analysis on this synthetic dataset gives an impression that quantifications
resulting from the different mapping approaches exhibit similar accuracy and that all
approaches quantify transcript abundances relatively well. While this is true for these sim-
ulated data, we show below that this observation does not generalize to experimental data.
We posit that this is because, though great advancements have been made in improving
the realism of simulated RNA-seq data, these simulations still fail to capture some of the
complexities of experimental data. We describe below one particular way in which the
realism of the simulated data can be increased by accounting for variations between the
sequenced reads and the transcriptome used for quantification.

Performance on simulations from a variant mouse transcriptome

An observation we made from the previous simulation was that disallowing indels using
the RSEM parameters (used for strict and RSEM versions) for Bowtie2 and STAR did
not adversely affect accuracy compared to using the default parameters of each method.
We hypothesized that this is because the reads are simulated exactly from the reference
transcriptome that is being used for alignment and quantification, and only sequencing
errors (which are taken to consist entirely of substitution errors) are introduced by the
simulator. Yet, in experimental data, the sample being quantified likely exhibits variation
with respect to the reference against which the reads are aligned. Some of these vari-
ants will be single nucleotide variants (SN'Vs), while others will be indels and yet others
may be larger structural variants. Thus, restricting alignments to disallow indels seems
undesirable, unless one is quantifying against a personalized reference that is known to
contain the variants present in the sample, which can potentially improve the accuracy of
transcript quantification [23, 24].

Similarly, another shortcoming of simulation methods is the inability to simulate
sequencing reads from intergenic and intronic regions of the genome, or from transcripts
that are not part of the provided annotation but which might be present in experimental
samples. Experimental datasets are generally more complex and include reads that orig-
inate from segments that are not part of the annotated transcripts. These can adversely
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affect methods that align reads against the transcriptome, instead of the genome, lead-
ing to inaccurate read mapping and, ultimately, a decrease in transcript quantification
accuracy.

To test the hypothesis that disallowing indels in the alignments will adversely affect
quantification accuracy when simulating from a reference transcriptome containing real-
istic variants compared to the reference, we performed the following experiment. We
obtained VCE files from the Sanger Mouse Genomes website? describing the variants
present in the PWK mouse strain. Using g2gtools [25], we generated a copy of the
GRCm38.91 transcriptome containing the variants (including indels) present in the PWK
strain and simulated reads from this transcriptome. The results presented in the first
column of Table 2 show that when reads are aligned against the PWK strain’s reference
and indels are disallowed, the quantification estimates are as accurate as those derived
from alignments allowing indels, as expected. However, when we aligned the reads back
to the original mouse reference transcriptome (version GRCm38.91), we observed that,
indeed, Bowtie2 performed better than Bowtie2_strict (second column of Table 2) and
that, generally, disallowing indels in alignments has a negative effect on quantification
accuracy.

To study the effect of sequencing reads from unannotated regions of the genome and
bring simulated data another step closer to experimental data, we added one more layer of
complexity to the simulation pipeline. Instead of simulating reads directly from the PWK
strain’s reference, we aligned reads from the experimental dataset (SRR327047) against
the PWK strain’s reference using HISAT?2 [26], then assembled transcribed regions of the
genome using reference-guided assembly with StringTie2 [27]. The original reads were
aligned against this assembly using Bowtie2 and quantified with Salmon. These quantifi-
cation estimates were then used to simulate 10 datasets, hence combining the effect of
several reference variations. The results from this analysis, presented in the last column
of Table 2, show that while all methods have lower accuracy on this dataset, as expected
given that considerable expression arises from outside of the annotated transcript set, the
SA-based methods tend to perform best, with higher quantification accuracy than the
other methods. Also note that disallowing indels lowers accuracy in this case as well.

To further analyze the influence of indels on quantification, we aligned the transcript
sequences from the PWK strain and the original reference using edlib [28] and counted
the total length of indels in each transcript compared to the unaltered transcript’s orig-
inal length (we refer to this quantity as the indel ratio). We then sorted the transcripts
in descending order by their indel ratios and evaluated at each cumulative subset the
difference in correlation with the truth between the quantifications using the alignment
method and its “strict” variant. We evaluated this quantity increasing the cumulative sub-
sets by 1000 transcripts at each step. We observed that the difference between methods is
highest in transcripts that have a larger indel ratio (Fig. 1). Hence, the effect of disallow-
ing indels in the alignment can be considerable for reads that originate from transcripts
that differ from the reference due to the presence of indels, and this can eventually lead
to such transcripts being substantially misquantified.

Due to both the theoretical concerns and the practical evidence shown here, we pro-
ceeded in representing the alignment-based methods by using Bowtie2 and STAR in our

Zhttps://doi.org/ftp://ftp- mouse.sanger.ac.uk/REL- 1410- SNPs_Indels/
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Table 2 Spearman correlation against ground truth for data simulated using Polyester, incorporating
variations into the simulations

Method PWK GRCmM38.91 StringTie2 assembly
Bowtie2 0.928 £ 0.001 0.919 £ 0.001 0.661 £ 0.001
Bowtie2Strict 0.928 £ 0.001 0.901 £ 0.001 0.653 £ 0.001
Bowtie2rsem 0.932 £ 0.001 0.905 £ 0.001 0.657 £ 0.001
SA 0.931 £ 0.001 0.924 £ 0.001 0.672 £ 0.001
SAF 0.930 £ 0.001 0.922 £ 0.001 0.678 £ 0.001
Quiasi 0.930 £ 0.001 0.909 +£ 0.001 0.654 £ 0.001
STAR 0.920 £ 0.001 0.912 £ 0.001 0.669 =+ 0.001
STARStrict 0.919 £ 0.001 0.887 £ 0.001 0.649 £ 0.001
STARrsem 0.923 £ 0.001 0.890 £ 0.001 0.652 £ 0.001

The first column shows results with reads simulated using the mouse PWK strain and aligned against the PWK strain reference as
well. The second column shows results with reads simulated using the mouse PWK strain but aligned against the GRCm38
reference. Hence, the simulated reads have variants and indels with respect to the reference. The third column shows results with
reads simulated using the StringTie2 assembled reference, with alignments against the PWK strain reference as input, and then
quantified against the GRCm38 reference. Hence, the simulated data contains reads from transcribed, unannotated regions as well

comparisons, in configurations that allow indels to occur in the alignments, and excluded
from our main analyses the “strict” versions of the pipelines. However, where mentioned
(Additional File 1: Figure S3), we have also performed the analysis and presented results
that include the RSEM quantification pipelines. In addition to highlighting the effect of
disallowing indels during alignment, these results are also expected to diverge some-
what from the other methods due to differences in the exact inference procedure and
underlying statistical model.

Randomly sampled experiments from NCBI database

It is crucial to evaluate the performance of the various tools on data from real experi-
ments, that can be vastly more complex than even state-of-the-art simulations, and that
can include processes, both known and unknown, that affect the underlying data in com-
plicated ways. Ideally, we would want to analyze datasets where we have orthogonal
measurements of similar accuracy to compare against RNA-seq data. However, there are
several problems that restrict us from using datasets combining multiple assays, such as
their typical focus on a small number of genes or transcripts with high sequence speci-
ficity, or their use in a particular experimental setup not suitable to our analysis. Hence, to
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analyze the accuracy of existing tools and study the effect of the artifacts (like the above)
on experimental datasets, we randomly selected 200 human RNA-seq experiments from
the NCBI database for further investigation. We then filtered the selected samples to
include only paired-end libraries having a minimum read length of 75 bp. After applying
these filters, we were left with a set of 109 samples. This consists of 69 bulk RNA-seq sam-
ples and 40 full-length single-cell RNA-seq samples. Though we anticipate that alignment
and mapping methodology may also influence tagged-end single-cell RNA-seq protocols,
we exclude such samples from our analyses here since the processing methodologies for
such protocols are considerably different from those used in bulk RNA-seq quantification
(and are typically performed at the gene level). However, we do include full-length single-
cell datasets in our analysis because the alignment and mapping methods we compare
here are frequently used in conjunction with existing transcript-level quantification tools
to process full-length single-cell data, as suggested by several existing studies [29, 30].
Before further processing, we applied adapter and (light) quality trimming using Trim-
Galore [31, 32]. We also observed that the overall mapping rates across samples tended
to be similar between all methods (Additional File 1: Figure S1), though Bowtie2 tends
to exhibit the highest sensitivity (i.e., aligns the most reads) on average. Subsequently, we
quantified all 109 samples using each of the remaining pipelines.

Since no ground truth transcript abundances were available for these 109 experimen-
tal datasets, it became more difficult to analyze the accuracy of the different pipelines.
However, we explored, manually, some of the cases where differences in mappings and
alignments led to divergence of quantification estimates between methods. Between
Bowtie2, quasi-mapping, and STAR, the mappings seemed to fall into one of two major
categories. In one case, Bowtie2 seemed to be appropriately reporting a more compre-
hensive set of best-scoring mappings than STAR and quasi-mapping. In the other case,
the resulting sequencing fragment seemed to clearly arise from some unannotated region
of the genome—either from intronic or from intergenic sequence—and it was spuriously
assigned by Bowtie2 and quasi-mapping to some set of annotated transcripts (though not
always the same set). This led to the following observation: when the fragment truly origi-
nates from the annotated transcriptome, Bowtie2 appears the most sensitive and accurate
method in aligning the read to the appropriate subset of transcripts, as is also supported
by the variant transcriptome simulations from the “Results” section. However, this same
sensitivity can sometimes lead Bowtie2 to spuriously align reads to the annotated tran-
scriptome when they are better explained by some other (unannotated) genomic locus.
In this latter case, STAR tends to report the correct alignment for the read and appropri-
ately refrains from reporting alignments to annotated transcripts. These complications, in
which reads are sequenced from underlying fragments that either overlap or are sequence
similar to annotated transcripts, are yet another factor that leads to divergent behav-
ior between different mapping and alignment approaches, but which is not commonly
considered in simulation.

These observations led us to combine information from both Bowtie2 and STAR to
derive an oracle method that avoids the obvious shortcomings, as listed above, of either
of the constituent methods. To derive the oracle alignments in each sample, we used the
following approach. First, we aligned the reads for the sample using both Bowtie2 and

3The effect of trimming on the overall results was relatively minimal (result not shown).
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STAR, and for STAR, we retained both the genomic and transcriptomic BAM files (i.e.,
we considered all of the alignments that STAR was able to produce to the genome, as
well as those that it was able to successfully project to the transcriptome). Subsequently,
we examined the reads that were aligned to the transcriptome using Bowtie2 and were
aligned to the genome using STAR, but which STAR did not project to the transcriptome.
For each such read, we examined the best-scoring transcriptomic alignment records pro-
duced by Bowtie2 as well as the best-scoring genomic alignment records produced by
STAR. We compared the quality of these alignments between the tools by first parsing
the extended CIGAR string (the MD tag) and assigning a score to each reported align-
ment. In our scoring scheme, we assigned 1 to every matched base while penalizing soft
clips, SNPs, and indels by assigning a score of 0. We reported the score of an alignment as
the sum of the number of properly matched bases along the ends of the read. If the tran-
scriptomic alignment of Bowtie2 was of equal or higher quality to the genomic alignment,
then we retained the transcriptomic alignment. Otherwise, we marked the fragment’s
alignment records for removal. We then processed the original Bowtie2 BAM file for the
sample, removing alignments for all fragments that have been marked for removal. The
result was a filtered version of the Bowtie2 BAM file in which spurious transcriptomic
alignments have been removed. We quantified the sample by providing Salmon with this
filtered BAM file, and refer to the resulting quantification estimates as the oracle estimates
for this sample.

While other complex alignment scenarios may occur, these oracle estimates represent
quantification based on the set of alignments that avoid the obvious shortcomings of the
different approaches being considered. Specifically, being based on alignment rather than
lightweight mapping, all alignments benefit from the improved sensitivity of Bowtie2’s
search procedure and are guaranteed to support a matching of the read to the reference
of at least the required quality. Further, since these alignments are derived from Bowtie2,
they likely correspond to a correct and comprehensive set of transcripts when the frag-
ment does, in fact, originate from the annotated transcriptome. Finally, in the case where
the fragment does not originate from an annotated transcript, and is instead the prod-
uct of transcription from an unannotated locus, novel splicing, or intron retention, the
corresponding alignment records have been removed using information from STAR’s
alignment to the genome, so that the fragment is not spuriously allocated to annotated
transcripts. This allows the oracle to overcome at least some of the shortcomings of the
approaches that comprise it. For example, on the complex simulated data where reads are
generated using the StringTie2-assembled transcripts, presented in Table 2, the average
Spearman correlation of oracle with the ground truth is 0.677, higher than either of the
individual alignment-based pipelines upon which it is based. This verifies that the ora-
cle is an accurate representative of the expected alignments. Thus, we treated the oracle
quantifications as a proxy for the true abundances in the experimental samples.

In terms of Spearman correlation between all methods, we observed the highest average
pairwise concordance between the oracle and SAF, in both the bulk and single-cell sam-
ples (Fig. 2). SAF had the highest rank in order of its correlation with the oracle across the
bulk and single-cell samples (histogram of the frequencies of these ranks in Fig. 3) and had
the closest mapping rate compared to the oracle (Additional File 1: Figure S1). Among the
alignment-based methods, STAR displayed higher correlation with the oracle—especially
in full-length single-cell samples—than did Bowtie2. This is a reversal of the trend that
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Fig. 2 Performance of each method on real bulk and single-cell datasets. The top half of the matrix shows
swarm plots of the pairwise correlations of the TPM values predicted by different approaches on the
experimental samples. The bottom half shows the average Spearman correlation across the 109 bulk and
single-cell samples

was observed with respect to the ground truth on the simulated data in “Results” section,
except for the simulation experiment that included generating reads from StringTie2-
assembled transcripts. Further, the overall correlations were lower, and the differences
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were larger in the full-length single-cell samples than in the bulk samples. In the single-
cell samples, the improvement provided by SAF over the alternative approaches is even
more substantial than in the bulk samples. This demonstrates the potential utility of
SAF as a new, efficient alignment method for full-length single-cell data. While a thor-
ough exploration into the underlying cause of the larger differences in performance in the
single-cell data is beyond the scope of the current work, one might hypothesize that, due
to the limited read depth in full-length single-cell protocols, it is conceivable that frag-
ment alignment accuracy is even more crucial in these data than in bulk RNA-seq, as
there are fewer other fragments to allow methods to statistically correct for or overcome
spurious or incomplete alignments. Also, while there is no immediate reason to believe
that similar issues related to mapping and alignment methodology might not also affect
the processing of data from tagged-end single-cell protocols, the subsequent processing
and analysis of that data is substantially different. Therefore, we have not explored such
data in this manuscript.

With respect to the concordance of the different approaches with each other, Bowtie2
tended to correlate highly with SA, while STAR tended to correlate highly with SAF,
though SA and SAF were, themselves, highly correlated. Also, Bowtie2 and STAR both
had a higher correlation with the oracle than they did with each other. This was some-
what expected since the oracle was created by considering the alignments of both Bowtie2
and STAR. However, this also suggested that the manners in which these approaches
diverged from the oracle were largely distinct (i.e., they made different types of mistakes
in alignment). The quantifications from lightweight mapping exhibited the lowest overall
correlation with the oracle. These results were also indicative of the types of divergence
between simulated and experimental datasets that we expected to observe. The trend
was similar when comparing TPM values after discarding transcripts shorter than 300 bp
(Additional File 1: Tables S3 and S4) and when comparing read counts predicted by each
method, instead of TPM, as shown in Additional File 1: Figure S2. For the purpose of ana-
lyzing the performance of a lightweight mapping algorithm other than quasi-mapping,
we also compared the estimates from kallisto [5] against the other methods on these 109
experimental datasets. It displayed the lowest overall correlations with the alignment-
based approaches (Additional File 1: Figure S3). This may be due, in part, to the fact that
it altered both the quantification and mapping methodology, and because there were no
options to control for structural constraints on the reported mappings (i.e., orphaned and
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dovetailed mappings). Thus, for consistency, we excluded it from the other analyses in the
manuscript. The figure also shows results on the 109 datasets of the two RSEM pipelines,
using alignments from Bowtie2 and STAR that disallow indels. These also have lower cor-
relation with the oracle, but perform better than the lightweight mapping methods. These
results may also highlight the loss in accuracy caused by restricting the read alignments
and disallowing indels, as required by RSEM.

Finally, while one may not typically regard any of the average correlations in Fig. 2
as poor, it is important to properly frame these differences as representing the aggre-
gate Spearman correlation, across the samples, each quantifying a large number of
transcripts. A correlation coefficient is a single coarse metric, and as demonstrated in
the “Results” section, even substantial quantification differences across thousands of tran-
scripts can nevertheless result in small differences in the global correlation. To explore
some of the transcripts with large differences in quantification across methods, we per-
formed differential transcript expression analysis across methods on the 109 samples,
using limma-trend [33]. The counts per million (CPM) for the top 100, 500, and 1000
transcripts is shown in Additional File 1: Figure S4. This highlighted the divergence of
the methods from each other, in terms of quantification, and revealed clusters of tran-
scripts that were differentially expressed under each method. Further, as described in the
“Quantification differences can affect differential gene expression analysis” section, such
differences can lead to considerable changes in which genes are found to be differentially
expressed.

Simulation fails to capture complex patterns of real experiments, even when seeded from
experimental abundances

In principle, if the specific transcript expression profile was the primary source of quan-
tification difficulty among the different approaches, we should be able to reproduce
the types of divergence we observed between different methods in the experimen-
tal data (i.e., Fig. 2) in simulation by simply creating simulations where the transcript
expression profile is seeded with the estimated abundance results obtained from the
experimental samples (using, e.g., the Bowtie2-derived quantifications). To test this
hypothesis, we used Polyester [22] to simulate 109 synthetic experiments where the
expression profiles in each simulated sample were matched to those of the corre-
sponding experimental sample’s transcript abundances generated by the Bowtie2-based
pipeline.

We quantified transcript abundance in all of these simulated samples using the same
methods we considered in the experimental data. For transcript counts from simu-
lated data, the correlation with the truth, and between methods, is shown in Fig. 4.
Shown in Additional File 1: Figure S5 is the correlation values calculated using the
predicted TPMs instead of read counts. Clearly, the correlations among methods were
markedly higher in the simulated data than in the experimental data (Fig. 2), and mul-
tiple methods even showed a correlation > 0.99. The variability between the samples
was also considerably lower than what we observed in the experimental data. This fur-
ther suggested that comparison of correlations on simulated data is likely to be only
a starting point in assessing different methods, as many salient differences that arise
in experimental data disappear when the comparisons are performed on simulated
data.
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The variation in correlation across the simulated samples was inconsistent with the
hypothesis that the distribution of transcript expressions alone is sufficient to simulate
quantification scenarios as complicated as those observed in experimental data. This sug-

gests that there are important aspects, apart from the underlying transcript expression
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profiles and simulation of read errors, that the simulation failed to capture. Though we
do not know all such features, some important biological features, like structural vari-
ations (SV), SNP variants, and small indel variants, which are sample-dependent rather
than reference-dependent, are missing. Furthermore, transcription and sequencing in
experimental RNA-seq samples are not limited to the fully spliced, annotated transcript
sequences present in a reference database, even for organisms as well-characterized as
human and mouse. Reads derived from unannotated genomic regions that bear resem-
blance to annotated transcripts, or which only partially overlap the annotated features,
can then be spuriously aligned to the annotated features, leading to inaccurate quantifi-
cation of their abundances. Since such effects can vary from sample to sample, they do
not affect the estimated expression of the annotated features in a uniform way and can
therefore affect subsequent analyses, such as differential expression testing.

We realize that sample-dependent features are difficult to simulate and that all of the
major features or processes affecting a sample may not even be known, but not includ-
ing such effects diminishes the realism of the simulated data, and this lack of complexity
can be observed in the divergence of the performance of different quantification pipelines
compared to how they performed in experimental samples. Identifying other factors
present in experimental datasets but lacking in simulations, and determining how to
faithfully simulate these factors, seems an important area for future research.

Quantification differences can affect differential gene expression analysis

One of the most common downstream uses of transcript and gene abundance estimates
is differential gene expression analysis. Errors in the transcript quantification phase can
lead to incorrect detection of differentially expressed genes across conditions. Therefore,
quantification is a crucial step for accurate differential gene expression (DGE) estima-
tion and other downstream analyses. To show the influence of quantification on DGE,
we performed a case study on three recently published datasets, where sequencing was
done for RNA profiling of differences between the healthy and diseased samples. The first
dataset is comprised of human ALS motor neurons and studies the effect of the SOD1A4V
mutation (2 patient-derived samples) versus (3) isogenic controls (PRJNA236453 [34]).
The second dataset contained 3 replicates each of uninfected and herpesvirus (HSV-1)-
infected samples (PRJNA406943 [35]). The third is a dataset that has recently been used
to study the effect of the zika virus on the transcriptome in human neural progenitor
cells (PRJNA313294 [36]). For consistency, we have used the same design as previous
analyses and included both the paired-end and single-end datasets. Hence, there are 2
control and 2 infected samples under each protocol. The design of this study will high-
light how misquantifications, possibly arising from incorrect alignments, can affect DGE
analysis.

We aligned and quantified reads from all samples using the SA, SAF, quasi-mapping,
STAR, and Bowtie2 pipelines. The transcript-level counts were summed to the gene level
using tximport [37], and differential expression analysis was performed using DESeq2
[38]. Genes were called as differentially expressed between the conditions, for each tool,
if they had an adjusted p value < 0.01 (i.e., an FDR (false discovery rate) of 0.01 was
used). The overlaps of the resulting gene sets were computed. While we had focused on
transcript-level analysis in the paper until now, here we looked at differences in gene-
level differential expression. This demonstrated that the quantification issues caused by
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lightweight mapping or misalignment of reads could be of relevance even when one is
performing gene-level analyses.

The results, visualized using UpSetR [39] and presented in Fig. 5, show that lightweight
mapping tended to miss the largest number of genes discovered as DE by other
approaches (i.e., the second-largest or third-largest set in all examples, after the con-
sensus set containing genes found by all approaches, was the set of genes found by all
approaches except for lightweight mapping). The mean adjusted p value of these genes
under quasi-mapping was 0.034, 0.069, and 0.05 in the three datasets, showing that
lightweight mapping tended to deviate by a large margin from the other methods. Fur-
ther, lightweight mapping also tended to discover a considerable number of distinct genes
that were called as differentially expressed by this approach but not by any of the other
approaches (alignment-based or selective alignment-based), and which may have repre-
sented false positives. In each sample, the number of genes with at least one transcript

wwwww

Itersection Si
Intersection Si

I{ A T

(a) (®)

111
I

=0

(c)
Fig. 5 Differentially expressed genes predicted using each method in 3 datasets. Comparison of sets of
differentially expressed genes, and their overlaps, computed using each method. The analysis was done on 3
datasets containing multiple replicates of control and infected samples, from human ALS motor neurons (a),
HSV-1-infected cells (b), and zika-infected cells. In each plot, the combination matrix at the bottom shows the
intersections between the sets and the bar above it encodes the size of the intersection
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shorter than 300 bp constituted less than 10% of the total number of genes called differ-
entially expressed only under the lightweight mapping-based quantification, so this effect
was unlikely to be driving these differences. In all cases, despite having a large overlap
in DE calls with the alignment-based methods, SA produced quantifications that yielded
the fewest isolated DE calls. A similar trend was observed when using an FDR of 0.05, as
shown in Additional File 1: Figure S6 and when including kallisto as a lightweight map-
ping method too, as in Additional File 1: Figure S7 These results suggested that, when
the sequenced reads tend to vary more from the reference, as might be the case in many
diseased cells, lightweight mapping methods can lead to misquantifications that can even-
tually lead to false positives and false negatives in downstream differential gene expression

studies.

Quantification differences can affect differential transcript expression analysis

Errors in quantification can affect differential expression analysis not just at the gene level,
but at the transcript level as well. In order to study this effect at the transcript level, we
used the third dataset from the previous section, with the zika-infected neural progenitor
cells. The other two datasets were only analyzed at the gene level, as previous analyses of
these datasets were carried out at the gene level, and they also have relatively low numbers
of replicates within each condition, limiting the power for transcript-level analysis. As
with the gene-level analysis, the alignment and quantification for all samples was done
using the SA, SAF, quasi-mapping, STAR, and Bowtie2 pipelines. Transcript differential
expression analysis was done using sleuth [40], and transcripts were called as differentially
expressed at an FDR of 0.01.

The results are presented in Fig. 6 and show, as with the gene-level analysis, that
lightweight mapping tended to be the biggest outlier in terms of missing transcripts
called as DE under all other methods. Here, we also observed a considerable set of
transcripts (89) discovered only by SAF and STAR, and not by any other approach.
For transcripts called as differentially expressed by the other methods but missed
by quasi-mapping, the mean adjusted p value was 0.027. At an FDR of 0.05, this
increased to 0.09, highlighting the difference between the quantification estimates
from lightweight mapping and alignment-based methods (results visualized in Addi-
tional File 1: Figure S8(a)). The results presented in Additional File 1: Figure S8(b)
show the distribution of the DE transcripts if we included kallisto as a mapping
and quantification method in this analysis. As before, the lightweight mapping meth-
ods, quasi-mapping and kallisto, tended to deviate from the alignment-based meth-
ods. We also observed that the number of DE transcripts is the lowest under these

methods.

Discussion and conclusion

We compared and benchmarked the effects of using different alignment and mapping
strategies for RNA-seq quantification and discussed the caveats implied by different
approaches. We observed that methods that perform traditional alignment of the reads
against the transcriptome can produce results that are sometimes markedly different from
the results produced by lightweight mapping methods. We also observed that performing
spliced alignment to the genome and then projecting these alignments to transcriptome
can also produce divergent results compared to directly aligning to the transcriptome.
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Fig. 6 Differentially expressed transcripts predicted using each method. Comparison of sets of differentially
expressed transcripts, and their overlaps, computed using each method. The analysis was done on a dataset
containing multiple replicates of control and zika-infected samples. In each plot, the combination matrix at
the bottom shows the intersections between the sets and the bar above it encodes the size of the intersection

At the same time, we proposed and benchmarked a new hybrid alignment method, SA,
which provides an efficient alternative to lightweight mapping that produces results much
closer to what is obtained by performing traditional alignment. This approach overcomes
the shortcomings of lightweight mapping both in terms of sensitivity and specificity, as
it is able to determine appropriate alignments when lightweight approaches return either
suboptimal mappings or no mapping, and it is also able to better distinguish the optimal
alignment loci among a set of otherwise similar sequences. Some key differences that
lead to the improved accuracy of SA are an increase in mapping sensitivity (i.e., more
initial mapping loci are explored), a more comprehensive and systematic mechanism for
scoring potential mapping loci (making use of the match chaining algorithm of [41]), and
an actual alignment scoring phase that provides precise information about the quality of
each retained mapping, allowing filtering out of spurious mappings that should not be
reported. Moreover, the SA approach can take as input a set of decoy sequences, enabling
it to avoid some of the spurious transcriptome mappings reported by Bowtie2, when, in
reality, the read aligns better to an unannotated genomic locus than to the annotated

transcriptome.
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The results of benchmarking the different approaches on multiple simulated and exper-
imental datasets lead to a number of conclusions. First, despite the fact that major strides
have been made in improving the realism of simulated RNA-seq data, there still remain
numerous ways in which simulated data fail to recapitulate the intricacies and challenges
of experimental data. One of these is the fact that simulations are almost always car-
ried out on precisely the same transcriptome that is used for quantification, while, in
experimental samples, individual variation exists between the sample being assayed and
the transcriptome being used for quantification. Another effect not commonly captured
in simulation, but prevalent in real data, is the sequencing of reads from unannotated,
alternatively spliced transcripts, from transcripts with retained introns, from otherwise
unannotated genomic loci sharing sequence similarity with annotated transcripts, and
from contamination with the sample that may share sequence similarity, to some extent,
with the target transcriptome. These effects, along with others that we have not fully char-
acterized in this manuscript, make alignment and quantification in experimental samples
much more challenging than in simulated data. Hence, we observed that when quanti-
fying across a broad sample of experimental datasets, the quantification results obtained
using different mapping and alignment approaches can demonstrate considerable vari-
ation. Together, these results suggest that quantification based purely on lightweight
mapping approaches can fail to achieve the accuracy that is obtainable by the same
inference algorithms when using traditional alignments and that these errors in quantifi-
cation can also affect downstream analyses, even at the gene level (as discussed in the
“Quantification differences can affect differential gene expression analysis” section). It
also suggests that there is practical room for improvement, even in the most accurate
existing alignment approaches, at least for the purpose of quantifying the abundance of
annotated transcripts.

While it has been previously reported [42] that pseudoalignment to the transcrip-
tome results in comparable quantification accuracy to alignment to the genome, the
analyses performed in this manuscript suggest that alignment to the transcriptome,
lightweight mapping to the transcriptome, and alignment to the genome yield quantifi-
cation results that are sometimes markedly different. There are a few reasons that the
analyses carried out in this paper lead to a different conclusion on this question. First,
the focus here is much more on experimental as opposed to simulated data. While we
found that differences between lightweight mapping and alignment do exist in simula-
tion, the magnitude of their effect on quantification is generally much smaller than is
observed in experimental data. Second, while lightweight mapping to the transcriptome
and alignment to the genome do yield different quantification results, we also consid-
ered traditional alignment to the transcriptome, expanding upon the different common
approaches that are taken when aligning reads prior to transcript quantification. Finally,
Yi et al. [42] preprocess both alignments and pseudoalignments into equivalence-class
counts (the count of fragments deemed compatible with different subsets of transcripts).
Then, from these reduced statistics, abundance estimation is performed. This transfor-
mation discards factors that contribute to conditional fragment assignment probabilities
like alignment scores (where applicable), fragment lengths, fragment positions, etc. In the
analysis presented here, we accounted for such conditional fragment probabilities in the
online phase of transcript quantification and incorporated them (approximately) into the
sufficient statistics via the use of range-factorized equivalence classes [43]. Discarding
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such conditional probabilities could potentially diminish true differences that exist in
the underlying mappings that may, depending on the complexity of the quantification
model, have an effect on quantification estimates. All of these factors may account for
the sometimes considerable differences in quantification accuracy observed downstream
of different lightweight mapping and alignment procedures. While we focused on quan-
tification and differential expression, the observations made in this manuscript about the
sensitivity and accuracy of different alignment approaches may extend to other down-
stream analyses as well, such as trans-acting expression quantitative trait locus (eQTL)
detection [44].

Considering only the results on simulated data, one might prefer quantification based
on alignment or lightweight mapping of sequencing reads directly to the transcriptome,
rather than performing alignment to the genome followed by projection to the tran-
scriptome. One would also observe only small differences between lightweight mapping
and alignment to the transcriptome. However, our analyses in experimental data sug-
gested that the increased complexity in real RNA-seq experiments leads to more divergent
behavior. In both the bulk and full-length single-cell samples analyzed, SAF yielded the
highest overall correlation with the oracle, despite the fact that the oracle is derived
from a combination of the Bowtie2 and STAR alignment results. Among the methods
based on traditional alignment, alignment to the genome (using STAR, and projecting
the resulting alignments to the transcriptome) seemed to display the best concordance,
on average, with the quantifications resulting from oracle alignments. SA yielded simi-
lar but slightly better accuracy than alignment to the transcriptome using Bowtie2. This
is likely, in part, because it is accounting for the sequence similar decoys that can lead
alignment to only the target transcriptome astray. The main benefit of SAF is that it
aligns to a reference index that contains both the fully spliced transcript sequences as
well as the entire underlying genome (as potential decoy sequence). This allows SAF to
obtain the type of sensitivity that is exhibited by approaches like Bowtie2 and SA when
the read truly arises from the annotated transcriptome, but also allows it, like STAR, to
avoid spuriously aligning a read to an annotated transcript when it is better explained by
some other genomic locus. In the experimental data, both alignment-based approaches
and selective alignment methodologies performed better than quasi-mapping, though the
manner in which these methods differ from quasi-mapping, and from each other, was not
identical.

When trying to choose an approach, a choice can be made by the user performing the
analysis based on any time-accuracy tradeoff they wish to make. In terms of speed, we
observed that quasi-mapping is the fastest approach, followed by SA and SAF and then
STAR. Bowtie2 was considerably slower than all three of these approaches. However, in
terms of accuracy, we found that SAF yielded the best results, followed by alignment to the
genome (with subsequent transcriptomic projection) using STAR and SA (using carefully
selected decoy sequences). Bowtie2 generally performed similarly to SA, but without the
benefit of decoy sequences, seemed to admit more spurious mappings. Finally, lightweight
mapping of sequencing reads to the transcriptome showed the lowest overall consis-
tency with quantifications derived from the oracle alignments. The analyses carried out
in this manuscript suggest that, with respect to accurate quantification of annotated
transcripts, alignment scoring is an important component, but the various pre-existing
alignment approaches excelled in different cases. SA takes steps toward addressing the
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shortcomings of existing alignment-based approaches without making large compromises
on speed. This is done by indexing parts of the genome that are sequence similar to the
transcriptome or, as in the case of SAF, the entire genome in addition to the annotated
transcriptome, hence exhibiting the sensitivity of Bowtie2 in transcriptomic alignment,
while avoiding the spurious alignment of reads that do not truly originate from some
annotated transcript, like STAR. This approach seemed to provide the highest overall
accuracy, at least for the purposes of quantifying an annotated set of transcripts.

Materials and methods

Decoy sequences

Alignment against the genome and transcriptome both have their advantages and disad-
vantages, as discussed earlier. To avoid aligning genomic reads against the transcriptome,
without the need to index the complete genome, requires finding regions with high
sequence similarity between them. To obtain similar sequences within a reference, we
mapped the spliced transcript sequences against a version of the genome where all
exon segments were hard-masked (i.e., replaced with N). We performed this mapping
using MashMap [20], with a segment size 500 and minimum percent identity of 80%.
The sequence similar regions were merged (per-chromosome) using BedTools [45] and
concatenated, giving a decoy sequence for each chromosome. These decoys were then
included during the Salmon indexing phase, as described below. A script to obtain
these decoy sequences for any reference, given the genome, transcriptome, and annota-
tion is available at https://github.com/COMBINE-Ilab/SalmonTools/blob/master/scripts/
generateDecoyTranscriptome.sh.

Selective alignment

Selective alignment is based on the pufferfish indexing data structure first described in
[46]. Moreover, the index is augmented with the relevant decoy sequence (either restricted
decoy sequence as described in the “Decoy sequences” section or the entire genome)
which is marked during indexing and handled in a special manner during alignment
scoring.

The mapping approach works in 5 distinct phases (for paired-end reads). First, exact
matches between the read and transcriptome are collected. Second, the set of transcripts
to be considered for further processing are extracted. Third, exact match chaining and
chain scoring, using the algorithm of [41], is used to determine the relevant putative
mapping loci for the read. Fourth (for paired-end reads), the mappings for the first and
second read of the pair are matched to determine the mapping loci for the whole frag-
ment. Finally, the computed mapping loci are scored using extension alignment scoring
[41, 47] before, after, and between the exact matches belonging to the highest-scoring
chain for each mapping. In this final step, information about the decoy sequences is used
to determine which mappings are considered valid and which are not (details are provided
below).

In the first phase of the mapping algorithm, uni-MEMs [48] are collected between
the sequenced fragment (with each read end treated separately) and the index. The uni-
MEMs are found via k-mer lookup and then are extended maximally until the end of a
unitig is encountered, the end of the read is encountered, or a mismatch is encountered.
If uni-MEM extension terminates because it reaches the end of a unitig or because of a
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mismatch, search advances in the read and subsequent k-mers are queried in the index to
collect other uni-MEMs shared between the read and the index. This process is repeated
until the end of the read and results in a collection of uni-MEMs—matches between the
read and the index that can be efficiently decoded into the implied matches between the
read and the reference.

In the second phase, uni-MEMs are projected to their corresponded reference loci, and
the exact matches are collated by reference and orientation. Let M denote the number
of matches for the transcript, orientation pair with the maximum number of matches for
the current read. An optional (user-determined) filtering policy is applied, whereby any
transcript and orientation pair that does not have at least tM matches is discarded from
further consideration. The value of 7 is a user-specified fraction, set as 0.65 by default.
This optional filtering policy, termed as “filtering before chaining,” is disabled by default,
but can be enabled via the command-line option -hitFilterPolicy BEFORE. Note
that it was not enabled in our experiments and the default was used.

Next, matches along each transcript, orientation pair are sorted and compacted. This
compaction is necessary since it is possible to have matches that are directly adjacent on
both the read and reference, but which were not extracted as a single exact match dur-
ing the first phase because the underlying uni-MEM terminated. This compaction phase
eliminates such fragmentation due to uni-MEM termination and reduces the number of
exact matches that must be considered by the chaining algorithm. Candidate mapping
locations are determined by applying the chaining algorithm of minimap2 [41] to the
exact matches for each transcript passing the previous filter. If multiple equally good posi-
tions for a read along a transcript, in terms of their chaining score, are discovered, they
are all propagated downstream in the mapping procedure until mappings for paired-end
reads are merged. Likewise, if a read is determined to map to a transcript in both the
forward and reverse-complement orientation, then all equally best mapping loci in both
orientations are propagated downstream in the mapping procedure. Let S be the best
chaining score obtained for any mapping of the current read. An optional filter is applied
where any mapping with a chaining score less than t’S is discarded from further consid-
eration. By default, this filter, termed as “fitering after chaining,” is enabled and 7’ is set as
0.65.

For paired-end reads, the pairs are merged by determining, for each transcript, the
locations of the read ends that respect the expected mapping constraints (e.g., that the
leftmost position of the reverse complement read is to the right of the leftmost position of
the forward-strand read, and the distances between the reads are less than the maximum
allowed insert size). If passed the appropriate flag -allowDovetails, then dovetailed
[49] mappings are allowed, but they are prioritized below any non-dovetailed mapping.

All putative mappings are scored using the ksw2 [41, 47] library for alignment exten-
sion. We note that we compute only the optimal alignment score, and not the details of the
alignment itself (i.e., the CIGAR string), which improves the speed of this mapping vali-
dation. To avoid redundant computation of the same alignment problem (which is quite
prevalent when mapping directly to the transcriptome, as many alignments to alterna-
tively spliced transcripts will be identical), SA maintains a per-read alignment cache. This
alignment cache is a hash table where the key is a hash of the reference transcriptome
substring where the read is predicted to align, and the value is the previous align-
ment score computed for such a substring. Thus, if multiple transcripts would produce
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identical alignments for the same read, because the read maps to identical regions of these
transcripts, SA is able to avoid this redundant work.

Finally, all of the relevant alignments are grouped by their associated alignments scores.
Any alignments that fall below the (user-provided) threshold (default of 0.65 of the max-
imum obtainable alignment score) for a minimum valid alignment score are discarded.
During alignment scoring, the score of the best alignment for a given fragment to any
decoy sequence as well as to any non-decoy sequence is computed and stored. If the best
alignment score to a decoy sequence is strictly greater than the best alignment score to
a non-decoy sequence, then all of the fragment’s mappings are considered invalid and
the fragment is not considered for quantification. Otherwise, any alignments to decoy
sequences are filtered out, and the remaining alignments to valid transcripts are fur-
ther processed by Salmon using range-factorized equivalence classes [43], which allows
the relevant information about the scores for the different alignments of the read to be
appropriately summarized and used for quantification.

Handling of decoy-aligned fragments

Once processed by the above procedure, each fragment can be classified as having one
of three distinct statuses; it can be (i) aligned to the transcriptome, (ii) best-aligned
to the decoy sequence, or (iii) unaligned to any indexed sequence under the current
parameters. For the purposes of quantification, statuses (ii) and (iii) are treated equiv-
alently. If a read is best-aligned to the decoy sequence, or completely unaligned within
the index, it is discarded for the purposes of quantification and does not contribute to
the abundance of the annotated transcripts. For the purposes of providing metadata for a
quantification run, Salmon does retain a count of the number of fragments that were best-
aligned to decoy sequence, and this information is available in themeta_info.jsonfile
it produces.

While the fragments that are best-aligned to decoy sequences are discarded for the pur-
poses of quantification, they may differ in character from sequences that were entirely
unaligned, and they may be useful for subsequent analysis, perhaps with an expanded
annotation. To aid users in more easily analyzing decoy-aligned sequences, decoy align-
ments are included in the SAM file produced by Salmon when the -writeMappings
flag is provided. Alignments to decoy sequences are tagged in the SAM output with the
XT:A:D tag, to allow them to be more easily identified and filtered from standard align-
ments to annotated transcripts. Finally, while there may be many cases in which the
selective alignments to decoy sequences are useful in subsequent analysis, it is impor-
tant to note that selective alignment is not splice-aware. Therefore, only fragments with
reasonable-quality contiguous alignments to decoy sequences will be reported as such in
the SAM file.

Analysis details

A note on the difference between SA and SAF

This manuscript introduces the idea of selective alignment over a reference sequence
indexed using the pufferfish [46] data structure, implemented in the Salmon program.
The index takes as input a set of decoy sequences, which are not part of the refer-
ence transcriptome and are, therefore, not quantified. In our analyses, we considered
the performance of the selective alignment algorithm when paired with two different
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sets of decoys as input. In the first approach, referred to as SA in the manuscript, the
index is built on the transcriptome and regions of the genome that have high sequence
similarity with the transcriptome. In the second approach, referred to as SAF, the com-
plete genome is included in the pufferfish index as a set of decoys. Hence, the index for
SA contains a smaller portion of the genome, whereas the SAF index contains the full
genome. To aid in the adoption of these enhanced indices, we provide documentation
on how to construct them, and we also make use of refgenie [50] to help distribute
pre-build SA and SAF indices for commonly studied organisms. We also note that selec-
tive alignment replaces the quasi-mapping algorithm previously used in the Salmon

program.

A note on orphan and dovetail mappings

We attempted to normalize for some mapping-related differences between methods that
have little to do with the ability of the aligner to appropriately find the correct loci
for a read, and instead have to do with constraints placed on what constitutes a valid
mapping. Specifically, when projecting to the transcriptome, STAR disallows orphan
mappings (cases where one end of a fragment aligns to a transcript but the other end
does not). Likewise, it is recommended practice in existing alignment-based quantifi-
cation tools [11, 15, 16], when using Bowtie2, to discard discordant and orphaned
alignments. Thus, in our analyses, we disallowed orphaned mappings so that, in paired-
end datasets, the pair is discarded if only one end of a fragment is mapped, or if the
fragment ends only map to distinct transcripts. To be consistent with the default behav-
ior of Bowtie2, the configurations of quasi-mapping and SA were also set to disallow
dovetailed mappings (mappings where the first mapped base of the reverse comple-
ment strand read is upstream of the first mapped base of the forward strand read).
While Bowtie2’s scoring function (when performing global alignment) does not allow
insertions or deletions to occur at the beginning or end of the read, we attempted to
minimize the effect of this structural constraint on alignments by setting the -gbar
parameter to 1.

A note on genomic alignment, as used in this manuscript

We explored differences that arise between quantification based on alignment of the
sequencing reads to the genome and the transcriptome. We considered genomic align-
ment here to be the process of alignment to the genome—with the benefit of a known
annotation—with subsequent projection to the transcriptome. That is, genomic align-
ment is characterized based on running STAR (with appropriate parameters) to align the
reads to the genome, and then making use of the transcriptomically projected alignments
output by STAR via the ~-quantMode TranscriptomeSAM flag (as would be used
in, e.g., a STAR[19]/RSEM[11]-based quantification pipeline). Such an approach is nec-
essarily concerned only with how well STAR is able to align the sequenced reads to the
annotated transcriptome of the organism being assayed, and our assessment is concerned
only with the accuracy of quantification of known and annotated isoforms. Importantly,
spliced alignment of RNA-seq reads to the genome can be a useful tool in tackling a
broader range of problems and in a larger set of cases than can unspliced alignment to a
known transcriptome. For example, spliced alignment of sequencing reads to the genome
can be done in the absence of an annotation of known isoforms and can be used to help
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identify novel exons, isoforms, or transcribed regions of the genome, while unspliced
alignment to a pre-specified set of transcripts does not admit this type of analysis. Fur-
ther, alignment directly to the genome can easily cope with events like intron retention,
which are more difficult to account for when using methods that align reads to the
transcriptome.

A note on the influence of short transcripts on quantification

The human GENCODE v29 reference includes transcripts as short as 8 bp, which is much
shorter than a single sequencing read or the typical fragment length in most RNA-seq
experiments. While RNA-seq might not be the appropriate method to quantify these
transcripts, depending on the alignment method, they may have mapped reads and obtain
non-zero expression values. In our analyses, we observed that lightweight mapping meth-
ods that do not perform end-to-end alignment tend to assign reads to shorter transcripts
when there is an exact match. This effect has been explored in some detail by [51]. In
such a scenario, it is hard to judge the true origin of the read, and while this may lead to
some differences between mapping and alignment-based methods, we showed that the
differences in quantification estimates for short transcripts account for only a very small
fraction of the overall differences between methods. Since it is difficult to judge how these
shorter transcripts, and the reads aligning to them, should be handled, we simply high-
lighted this issue and refrained from suggesting a particular strategy or attempting to
determine which method performed better or worse on transcripts shorter than 300 bp.

Tools

We used Salmon v0.15.0 for quasi-mapping and Salmon v1.0 for SA and SAF, Bowtie2 ver-
sion 2.3.4.3, STAR version 2.6.1b, tximport version 1.12.3, DESeq2 version 1.24.0, kallisto
version 0.45.1, edgeR version 3.24.3, limma version 3.38.3, RSEM version 1.2.28, Trim
Galore version 0.5.0, bedtools v2.28.0, HISAT?2 version 2.1.0, StringTie2 version 2.1.1,
sleuth version 0.30.0, and MashMap v2.0. All simulated datasets were generated using
Polyester version 1.18.0.

For quality trimming the reads, we used the following command:

trim_galore -g 20 -phred33 -length 20 -paired < fastqg files

For indexing, we use the following extra command line arguments, along with the
regular indexing and threads parameters:
STAR -genomeFastaFiles < fasta file> -sjdbGTFfile < gtf
file> -sjdbOverhang 100
Bowtie2 default
salmon -k 23 -keepDuplicates
kallisto -k 23
For quantification, we use the following extra command line, along with regular index
and threads, with each tool we compare against:

SA and SAF -mimicBT2 -useEM

quasi -rangeFactorizationBins 4 -discardOrphansQuasi -useEM
-noSA

Bowtie2 -sensitive -k 200 -X 1000 -no-discordant -no-mixed
-gbar 1
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Bowtie2_strict -sensitive -dpad 0 -gbar 99999999 -mp 1,1 -np
1 -score-min L,0,-0.1 -no-mixed -no-discordant -k 200 -I 1

-X 1000
Bowtie2_RSEM -sensitive -dpad 0 -gbar 99999999 -mp 1,1 -np

1 -score-min L,0,-0.1 -no-mixed -no-discordant -k 200 -I 1
-X 1000

STAR -outFilterType BySJout -alignSJoverhangMin 8
-outFilterMultimapNmax 20 -alignSJDBoverhangMin 1
-outFilterMismatchNmax 999 -outFilterMismatchNoverReadLmax
0.04 -alignIntronMin 20 -alignIntronMax 1000000
-alignMatesGapMax 1000000 -readFilesCommand zcat
-outSAMtype BAM Unsorted -quantMode TranscriptomeSAM
-outSAMattributes NH HI AS NM MD -quantTranscriptomeBan
Singleend

STAR_strict -outFilterType BySJout -alignSJoverhangMin 8
-outFilterMultimapNmax 20 -alignSJDBoverhangMin 1
-outFilterMismatchNmax 999 -outFilterMismatchNoverReadLmax
0.04 -alignIntronMin 20 -alignIntronMax 1000000
-alignMatesGapMax 1000000 -readFilesCommand zcat
-outSAMtype BAM Unsorted -quantMode TranscriptomeSAM
-outSAMattributes NH HI AS NM MD -quantTranscriptomeBan
IndelSoftclipSingleend

STAR_RSEM -outFilterType BySJout -alignSJoverhangMin 8
-outFilterMultimapNmax 20 -alignSJDBoverhangMin 1
-outFilterMismatchNmax 999 -outFilterMismatchNoverReadLmax
0.04 -alignIntronMin 20 -alignIntronMax 1000000
-alignMatesGapMax 1000000 -readFilesCommand zcat
-outSAMtype BAM Unsorted -quantMode TranscriptomeSAM
-outSAMattributes NH HI AS NM MD -quantTranscriptomeBan
IndelSoftclipSingleend

RSEM default

kallisto default or -rf-stranded as appropriate
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