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Abstract
To provide a comprehensive mechanistic interpretation of how known trait-associated
SNPs affect complex traits, we propose a method, Primo, for integrative analysis of
GWAS summary statistics with multiple sets of omics QTL summary statistics from
different cellular conditions or studies. Primo examines association patterns of SNPs to
complex and omics traits. In gene regions harboring known susceptibility loci, Primo
performs conditional association analysis to account for linkage disequilibrium. Primo
allows for unknown study heterogeneity and sample correlations. We show two
applications using Primo to examine the molecular mechanisms of known
susceptibility loci and to detect and interpret pleiotropic effects.
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Background
In the post-genomic era, genome-wide association studies (GWAS) have identified tens of
thousands of unique associations between single nucleotide polymorphisms (SNPs) and
human complex traits [1, 2]. Most of the trait-associated SNPs have small effect sizes and
many reside in non-coding regions [3, 4], obscuring their functional connections to com-
plex traits. It is known that trait-associated SNPs are more likely to also be expression
quantitative trait loci (eQTLs) [5]; thus, many of these SNPs likely affect complex traits
through their effects on expression levels and/or other “omics” traits. Extensive evalua-
tions of genetic effects on omics traits such as gene expression [6], protein abundance [7],
DNA methylation [8], histone modification [9, 10], and RNA splicing [11] have revealed
an abundance of quantitative trait loci (QTLs) for omics traits (omics QTLs) throughout
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the genome. These findings suggest that integrating data from omics and multi-omics
QTL studies with GWAS would help to elucidate functional mechanisms that under-
lie trait/disease processes. Moreover, the integrative analysis of omics and multi-omics
traits would also enhance confidence in detecting true omics associations while reducing
false-positive findings by observing co-occurrence of associations in multiple different
data types and borrowing information across multi-omics data sources. The increasing
availability of summary statistics for complex traits and omics QTL studies in many con-
ditions and cellular contexts [6, 12–14] provides a valuable resource to conduct integrative
analyses in a variety of settings and presents an unprecedented opportunity to gain a
system-level perspective of the regulatory cascade, whichmay highlight targets for disease
prevention and/or treatment strategies.
To integrate GWAS and omics QTL summary statistics, several methods have been

proposed to identify trait-associated loci that share a common casual variant with omics
QTLs (often referred to as “colocalization”) [15–18]. Most of these methods allow for
integration of GWAS summary statistics with one or few sets of QTL summary statistics
[15, 17, 18]. There are also methods that have been proposed to directly test the molecu-
lar mechanisms through which genetic variation affects traits by integrating GWAS and
eQTL summary statistics [19, 20]. By applying the integrative methods to multi-omics
data, some QTL pairs such as eQTL and methylation (me)QTL pairs have also been iden-
tified with evidence of a shared causal mechanism [16, 21]. Integrating studies of multiple
complex and omics traits could produce a more comprehensive picture of how cellular
processes contribute to variation in complex traits.
Compared to integrating GWAS with single omics QTL statistics, studying multi-

omics QTLs increases the chances of detecting the regulatory mechanisms underlying
trait/disease-associated SNPs. The effect of any particular SNP may be strong for some
omics traits and weak or absent for others. For example, protein (p)QTLs exist for genes
lacking an apparent eQTL [22], suggesting post-transcription regulation [23]. And there
could be multiple different omics QTLs in a gene region with different functions. As
another example, SNPs affecting RNA splicing (splicing QTLs) may not be eQTLs in a
gene region [11]. Moreover, QTL effects may vary across molecular phenotypes [24], tis-
sue types [6], cell types [25, 26], or other contexts [27, 28]. For example, lead SNPs for
eQTLs (eSNPs, and a “lead SNP” is the SNP with the smallest association P value with
a particular trait in the region) often vary by tissue type [6]. Jointly analyzing the omics
QTL association summary statistics to more than one type of omics trait from differ-
ent conditions/studies could yield a more complete portrait of the regulatory landscape.
Given the increasing availability of summary statistics for omics QTLs from different
studies/conditions/cell contexts, novel methods and tools are needed to integrate GWAS
with many relevant sets of omics QTL summary statistics for an improved understanding
of the mechanisms of trait-associated SNPs.
Jointly analyzing multiple complex and omics traits can also be viewed as an approach

for identifying shared mechanisms that underlie multiple complex traits—pleiotropic
effects. Pleiotropy is ubiquitous in the genome [29, 30]. Since pleiotropic effects often
occur among related diseases and traits [31–33], shared mechanisms are likely to exist.
By integrating omics QTL summary statistics from multiple trait-relevant tissue types
with GWAS statistics, one can also boost power in detecting pleiotropic effects while
simultaneously providing mechanistic interpretations.
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Given the rich availability of omics and multi-omics QTL summary statistics and their
dynamic effects in different cellular conditions, in order to provide a comprehensive
mechanistic interpretation of known trait-associated SNPs, it is desirable to develop
new methods that can integrate multiple sets of GWAS statistics and omics QTL statis-
tics from different conditions/studies while accounting for study heterogeneity, potential
sample correlations, and linkage disequilibrium (LD). Additionally, as the number of
traits/studies/conditions being considered grows, it will be more likely to detect joint
associations by chance, necessitating proper multiple testing adjustment. To address
those challenges, in this work, we develop a method to integrate summary statistics from
multiple GWAS and omics QTL studies, and implement the method in an R package—
Primo (Package in R for Integrative Multi-Omics association analysis). Figure 1a provides
an overview of the algorithm.
Primo is flexible in many aspects: it allows unknown and arbitrary study heterogeneity

and can detect coordinated effects from multiple studies while not requiring the effect
sizes to be the same, it allows the summary statistics to be calculated from studies with
independent or overlapping samples with unknown sample correlations, and it is not an

Fig. 1 An overview of Primo and an illustration of interpretations of results. a The main steps of the Primo
algorithm for assessing joint associations. b Steps of the Primo algorithm to provide mechanistic
interpretations of known complex trait-associated SNPs. c An example—the Qmatrix and interpretations of
association patterns for an analysis of complex trait, eQTL, meQTL, and pQTL studies for j = 1, 2, 3, and 4,
respectively. The red box shows how association patterns can be collapsed into groups of interest (here,
summing probabilities across the patterns in the red box would yield the probability of association with the
complex trait and at least one omics trait). d An example of the estimated marginal null and alternative
densities of a moderated t-distribution (top) and χ2 or −2 log(P) values (bottom) for a study j
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omnibus test for association, but rather can be used to calculate the probability of each
SNP belonging to each type (or groups) of interpretable association patterns (e.g., the
probability of a trait-associated SNP also being associated with at least one/two cis omics
traits). For gene regions harboring known susceptibility loci, the conditional association
analysis of Primo examines the conditional associations of a known trait-associated SNP
with other complex and omics traits adjusting for other lead SNPs in a gene region. It
moves beyond joint association towards colocalization and provides a thorough inspec-
tion of the effects of multiple SNPs within a region to reduce spurious associations due to
LD (Fig. 1b).
We conduct extensive simulations to evaluate the performance of Primo under various

scenarios in analyzing multiple sets of summary statistics from studies with correlated
samples. We apply Primo to examine the omics trait association patterns for known
SNPs associated with breast cancer risk by integrating multi-omics QTL summary statis-
tics from the Genotype-Tissue Expression (GTEx) project [6] and The Cancer Genome
Atlas (TCGA) [34] with GWAS statistics from The Breast Cancer Association Consor-
tium (BCAC) [35]. We also apply Primo to detect known trait-associated SNPs with
pleiotropic effects to two complex traits in gene regions harboring susceptibility loci for
at least one trait, while also providing mechanistic interpretations by integrating publicly
available GWAS summary statistics [36–39] with multi-tissue eQTL summary statistics
from GTEx. In this work, we focus on only trait-associated SNPs and aim to provide
comprehensive mechanistic interpretations of how known GWAS SNPs affect complex
traits. It should be noted that the goal of the analyses is not to identify true causal
SNPs. However, the Primo algorithm is generally applicable to integrative association
analysis, and when applied in other contexts, the interpretations of the results may be
different.

Results
Primo as a general framework for assessing joint associations across data types

Here, we first introduce the general Primo association framework (Fig. 1a) and then dis-
cuss the tailored development in using Primo to provide mechanistic interpretations of
known trait-associated SNPs (Fig. 1b), moving from association to colocalization. As a
general integrative association method, Primo takes as input multiple sets of association
summary statistics from different studies of different data types. The multiple sets of
summary statistics could be one set of GWAS statistics and multiple sets of omics/multi-
omics QTL statistics, or two or more sets of GWAS statistics of related traits and multiple
sets of omics/multi-omics QTL statistics from trait-relevant tissue types, or could even
be from studies beyond the complex and omics trait associations of germline variation.
Consider anm × J matrix of association statistics, T, consisting of the summary statis-

tics for the associations of m SNPs with J types of traits from J studies with independent
or correlated samples. Note that here, a “study” refers to a study of SNPs’ associations to
a particular trait in a particular condition/cell type/tissue type. For each SNP (here a row
in the matrix T), the underlying association status to the jth (j = 1, . . . , J) trait is binary.
Considering all SNPs in the genome, there are a total of K = 2J possible association pat-
terns to J traits. We use a K × J binary matrix,Q, to denote all of the possible association
patterns. And qkj = 1 implies the presence of association with the jth trait in the kth
association pattern, and qkj = 0 implies no association.
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For each SNP i, there must be one and only one true underlying association pattern.
Primo calculates the probability of a given SNP being in each of the K mutually exclusive
association patterns by borrowing information across SNPs in the genome and across J
traits. More specifically, let ai denote the true association pattern for SNP i. Then, the
probability that SNP i belongs to association pattern k is given by:

P (ai = k|Ti,πk) = πkDk(Ti)
∑K

b=1 πbDb(Ti)
, (1)

where Ti is a vector of J association statistics and is also the ith row in the T matrix,
πk represents the overall proportion of SNPs in the genome belonging to the kth asso-
ciation pattern (k = 1, . . . ,K), and Dk(·) is the multivariate density function of J sets of
statistics, conditioning on the kth association pattern. Here, πk captures the biological co-
occurrence frequency of the kth association pattern in the genome, with

∑
k πk = 1. For

example, in Fig. 1c, π16 is the proportion of SNPs in the genome that are associated with
all of the three omics traits and the complex trait.
In estimating a mixture distribution of K components, the performance of estimation

and subsequent inference depend on how well different mixing components separate
from each other. When K is moderate to large, it is challenging to simultaneously esti-
mate the distributions of mixing components (Dk ’s) and the mixing proportions (πk ’s).
Different from previous work [40], Primo first estimates the pattern-specific multivariate
density function Dk for each of the association pattern by borrowing information across
SNPs and traits. See the “Methods” section for detailed estimation procedures when J
sets of association statistics were calculated from independent or correlated samples as
well as discussion of two versions of the method for integrating t-statistics or P val-
ues, respectively. Then, Primo estimates πk ’s via the Expectation-Maximization algorithm
[41]. When Dk ’s are reasonably estimated, the one-step estimates of πk ’s can well capture
the overall proportions of different association patterns and there is no need to re-iterate
and re-estimate Dk ’s and πk ’s. Based on (1), we can obtain the posterior probabilities of
SNP i being in each of the K possible association patterns.
Note that the t-statistic-based Primo—Primo(t)—and the P-value-based Primo—

Primo(P)—may produce slightly different results due to different estimation algorithms
of the Dk ’s. Primo(t) requires both effect sizes and standard errors as input. When those
statistics are not available, or when F tests or other second-order tests are used in asso-
ciation analysis, or when one-sided tests are preferred if a same direction of association
effects is expected for biological reasons, then users may instead use Primo(P).
An advantage of Primo is that one may collapse many association patterns based on

biological interpretations and obtain the posterior probabilities of groups of patterns of
interest by summing over the probabilities of those mutually exclusive patterns. As illus-
trated in Fig. 1c, when J = 4, there are 16 possible association patterns. We may collapse
the association patterns into interpretable groups. For example, here, we are interested in
the trait-associated SNPs that are also associated with at least 1 omics trait. And we can
obtain the probability estimate by summing over the posterior probabilities of patterns
10–16. When J is large, some specific patterns might not be present in the genome. With
collapsed patterns, this would not be an issue, and both interpretability and robustness of
the results are enhanced.
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For a pattern of interest, we can also calculate the estimated false discovery rate (FDR)
[42] for multiple testing adjustment:

estFDR(λ) =
∑

i

(
1 − P̂i

)
1
(
P̂i ≥ λ

)

#
{
P̂i ≥ λ

} , (2)

where λ is the probability threshold and P̂i is the estimated probability of SNP i being in
the (collapsed) pattern of interest.

Mechanistic interpretations of trait-associated SNPs via Primo conditional association

analysis in gene regions harboring susceptibility loci

In order to elucidate the molecular mechanisms of known trait-associated SNPs, one
may examine the omics trait associations of those SNPs by integrating GWAS and omics
QTL summary statistics. However, a major challenge in such analyses is the complex LD
structure among SNPs in the same gene region.
To assess whether a GWAS SNP is associated with omics traits not due to it being in

LD with other lead omics SNPs, we propose to conduct conditional association analysis
within gene regions harboring susceptibility loci, with summary statistics of the GWAS
SNP and other lead omics SNPs as input. Here, we consider a GWAS SNP i of interest and
a set of lead omics SNPs I ′ in the gene region, where I ′ is a set of indices. We can model
the joint association statistics for SNPs i and I ′ in study j using a multivariate normal
distribution and further calculate the conditional density functions of SNP i adjust-
ing for other lead omics SNPs given their most plausible association patterns. See the
“Methods” section for details. Then, with the estimated πk ’s , we can assess the proba-
bilities of associations for SNP i in (1). Figure 2 shows a conceptual illustration of the
conditional association analysis. If the GWAS SNP is an independent meQTL and pQTL,
it remains associated with methylation and protein after adjusting for other lead SNPs in
the region, and if the GWAS SNP is associated with cis expression levels because it is in
LD with the lead eSNP, it will be no longer significantly associated with expression after
adjusting for the lead eSNP.With conditional association analysis, we can reduce spurious
associations due to LD.
As a summary, to elucidate the molecular mechanisms of trait-associated SNPs, we first

obtain the estimates of key parameters (πk ’s, Dk ’s) by borrowing information across all
SNPs and across traits/studies. Then, we focus on each gene region harboring known
trait-associated SNPs and conduct a SNP-level association analysis to all traits for all SNPs
in the gene region, followed by a conditional association analysis for each GWAS SNP
of interest accounting for LD with other lead omics SNPs. If a GWAS SNP is no longer
associated with a particular omics trait after conditioning on the lead omics SNPs, we
will not consider it as being truly associated with the omics trait, i.e., the GWAS SNP
is not affecting the complex trait via modulating the omics trait. Estimated FDR can be
calculated as described.
In the “Methods” section, we also discuss extensions of Primowhen the number of traits

being considered is large (> 15). We implemented Primo in Rcpp. It is computationally
efficient and can analyze the associations of 30 million SNPs to five sets of complex and
omics traits within 30 min on a single machine with 32 GB of memory and a 3-GHz
processor.



Gleason et al. Genome Biology          (2020) 21:236 Page 7 of 24

Fig. 2 A conceptual illustration of the conditional association analysis of Primo. Consider a joint analysis of
GWAS summary statistics and summary statistics of eQTL, meQTL, and pQTL. In a gene region harboring
trait-associated SNPs, there is a GWAS SNP of interest (red/blue dot) and two other confounding SNPs—the
lead SNPs for eQTL and meQTL (green cross). Before conditional association analysis, the GWAS SNP is
estimated to be associated with cis expression, methylation, and protein levels. After adjusting for the two
lead omics SNPs, the GWAS SNP is no longer associated with cis expression levels (blue dot) but is still
estimated to be a me- and pQTL

Simulation studies to evaluate the performance of Primo

We evaluated the performance of Primo in a variety of simulated scenarios. In each sce-
nario, we simulated genotypes and phenotypes for 1000 subjects and calculated the test
statistics for associations of SNPs with J traits. To simulate phenotypes from the simulated
genotypes, we grouped SNPs into gene regions of m′ = 500 SNPs. In each gene region,
the phenotypes of J traits for subject s were generated based on additive genetic models.
SNPs’ effect sizes under the alternative were simulated from a normal distribution with
mean 0 (allowing effect sizes to be positive or negative), and error terms are potentially
correlated. Test statistics were estimated using single-variant linear regression. The sim-
ulated data structure and test statistic distributions mimic what we have observed in the
eQTL data from GTEx. For each simulated dataset, we ran two versions of the Primo
algorithm, Primo(t) and Primo(P), respectively. We repeated each simulation 100 times
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and compared the performance of the two versions of Primo versus competing methods
(if applicable).

Accurate estimation of proportions (π ) even for very sparse joint associations

It is known to be challenging to estimate πk ’s when associations are sparse, i.e., πk ’s
being very close to zero for patterns with associations. In scenarios 1a and 1b, we
showed that in analyzing correlated sets of summary statistics, when true associations
are sparse and very sparse, respectively, Primo can well estimate the πk ’s. In each sce-
nario, we simulated test statistics for J = 3 traits for 10 million SNPs, first under
independence and then with pairwise (Pearson) correlation of 0.2 between traits. Non-
zero effect sizes were simulated from a standard normal distribution. In scenario 1a,
we simulated true πk = (7 × 10−4, 2 × 10−4, 1 × 10−4) for SNPs being associated
with only one, exactly two, and all three traits, respectively. Scenario 1b simulated even
sparser associations for the third trait, with πk = (7 × 10−6, 2 × 10−6, 1 × 10−6) for
SNPs being associated with only the third, the third and first or second, and all three
traits, respectively. Table 1 shows true πk ’s and the average estimates for πk ’s by Primo
based on t-statistics or P values. In Additional file 1: Table S1, we also show the per-
formance of estimation of πk ’s when the marginal alternative proportions θ1j ’s are highly
mis-specified. As shown, Primo estimates the πk ’s with reasonable accuracy even when
the associations are very sparse and when the marginal alternative proportions θ1j ’s are
under-specified.

Comparisonwith existingmethods for jointly analyzing associations to three traits

In scenario 2, we simulated genotypes and phenotypes with pairwise sample correlations
of 0.2 among J = 3 studies for 1 million SNPs. The proportions of SNPs associated with
only one, exactly two, and all of the three traits were 5 × 10−3, 5 × 10−4, and 5 × 10−4,
respectively. Non-zero effect sizes were simulated from a N

(
0, σ 2) distribution, with

Table 1 Average estimates of π̂

Scenario Method
πk(%)

qk = (0 0 0) (1 0 0) (0 1 0) (0 0 1) (1 1 0) (1 0 1) (0 1 1) (1 1 1)

1a

Independent

True 99.720 0.070 0.070 0.070 0.020 0.020 0.020 0.010

Primo(t) 99.712 0.074 0.074 0.074 0.019 0.019 0.019 0.010

Primo(P) 99.749 0.065 0.065 0.065 0.016 0.016 0.016 0.007

Correlated

True 99.720 0.070 0.070 0.070 0.020 0.020 0.020 0.010

Primo(t) 99.712 0.073 0.073 0.073 0.019 0.019 0.019 0.011

Primo(P) 99.749 0.065 0.065 0.065 0.016 0.016 0.016 0.007

1b

Independent

True 99.839 0.070 0.070 0.0007 0.020 0.0002 0.0002 0.0001

Primo(t) 99.832 0.073 0.073 0.0031 0.019 0.0002 0.0002 0.0001

Primo(P) 99.857 0.063 0.063 0.0014 0.016 0.0002 0.0001 0.0001

Correlated

True 99.839 0.070 0.070 0.0007 0.020 0.0002 0.0002 0.0001

Primo(t) 99.832 0.073 0.072 0.0029 0.019 0.0002 0.0002 0.0001

Primo(P) 99.857 0.063 0.063 0.0013 0.016 0.0002 0.0002 0.0001

Scenario 1a simulates sparse associations for J = 3 traits. Scenario 1b simulates even sparser associations for the third trait
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σ 2 = 0.25, 0.5, and 1.0 each in one third of gene regions. We then calculated the SNP-level
test statistics and P values as input for Primo.
Here, we compared the true and estimated FDRs and power to detect associations to

all three traits and to at least one trait, based on Primo versus two competing methods,
“moloc” [16] and Fisher’s method [43]. The results with correctly specified, under-
specified (by 10-fold), and over-specified (by 10-fold) marginal non-null proportions
(θ1j ’s) are shown in Table 2. When θ1j ’s are well-specified (scenario 2a in Table 2), Primo
nicely controlled the FDR even in the presence of unknown study/sample correlations—
highlighting one advantage of Primo in integrating potentially correlated multi-omics
data. Note that moloc and Primo are not directly comparable as moloc aims to assess
whether multiple traits of interest share a causal variant in a gene region, while Primo
first identifies SNPs’ joint associations to multiple traits and then reduces spurious asso-
ciations due to LD. Nevertheless, we show comparisons between Primo and moloc in the
simulated setting. Since moloc does not output the posterior probabilities for all SNPs
in every association pattern, we are only able to compare the power and FDR of Primo
versus moloc in detecting associations to all three traits. We observed that Primo gener-
ally enjoys substantial power improvement, which is not surprising because the goal of
moloc is more restrictive. As shown in Table 2, the estimated FDR (estFDR) is very close
to the true FDR for Primo. Fisher’s method, as a combination method for testing omnibus
hypotheses, can only be used to detect SNPs with associations to at least one trait and is
not applicable to detect associations to all traits. The estimated FDR [42, 44] for Fisher’s
method based on nominal P values is not well controlled due to correlations among test
statistics, as expected. At similar power levels, the FDRs observed across simulations of
Fisher’s method are also much higher than those of Primo.
In this simulation, the true θ1j ’s are 2.5 × 10−3. In scenario 2b, we under-specified θ1j

to be θ1j /10. As shown in Table 2 (A), although power might decrease to some extent,
the FDRs are reasonably controlled. In scenario 2c, when θ1j ’s are over-specified by an
order of magnitude as 10 × θ1j , we observed slightly inflated FDRs. As such, we suggest
to obtain reasonable estimates for θ1j ’s based on the current data and the literature, or

Table 2 Simulation results evaluating the performance of Primo. PP posterior probability, estFDR
estimated FDR. (A) When J = 3 with correlated samples, we compared Primo versus moloc and
Fisher’s method in detecting associations to at least 1 trait and associations to all traits and when
parameters are correctly, under-, and over-specified. (B) When J = 5 with correlated samples, we
evaluated the performance of Primo
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under-specify θ1j ’s to be more conservative. When θ1j ’s are correctly or under-specified in
a certain range, Primo is robust to parameter specification.

The performance of Primo in jointly analyzingmore than three traits

In scenario 3, we simulated genotypes and phenotypes with pairwise sample correlations
of 0.2 among J = 5 studies for 1 million SNPs. Non-zero effect sizes were simulated
from a standard normal distribution. πk = 5 × 10−4 for the patterns where SNPs are
associated with one trait, and πk = 1 × 10−4 for the patterns where SNPs are associated
with two, three, four, and all of the five traits, respectively. We then calculated the SNP-
level test statistics and P values as input for Primo. The results of Primo analyses are
presented in Table 2 (B). Overall, Primo yields good control of FDRs and high power in
detecting various patterns of joint associations, even for a moderately large number of
sets of summary statistics and in the presence of study correlations.

Evaluation of the performance of Primo conditional association analysis accounting for LD

and sample correlations

In this section, we simulated association statistics for correlated SNPs inmoderate to high
LD and evaluated the performance of the proposed conditional association approach in
the presence of LD. To simulate genotype data with a realistic LD structure, we used the
sim1000G package [45] to simulate 1 million variants for 1000 subjects using chromo-
somes 8, 9, and 10 in the CEU 1000 Genomes population [46]. We divided the genotypes
into regions of 1000 consecutive SNPs in order to form gene regions. Within each region,
we randomly selected one SNP with MAF >0.1 to be the “known trait-associated SNP”
and randomly selected two “confounding SNPs” in moderate to strong LD with both the
trait-associated SNP and each other (pairwise r ∈[ 0.5, 0.8]). Within each gene region, we
then generated J = 4 traits. The first trait is a “complex trait” for all 1000 subjects, and the
three other traits are “omics traits” with sample sizes of 500, 300, and 200, respectively,
resampled from the 1000 subjects. In 20% of the LD blocks, the true underlying associa-
tion pattern for the trait-associated SNP is (1,0,1,0) while the association patterns for the
two confounding SNPs are (1,1,0,0) and (0,1,1,1), respectively. These LD blocks represent
gene regions with no SNP truly associated with all traits but with multiple SNPs in LD
with different association patterns. The effect sizes in these blocks ranged from 0.1 to 0.4.
We further simulated another 20% of LD blocks where the true underlying association
pattern for the trait-associated SNP is (1,1,1,1) while the association patterns for the two
confounding SNPs are (0,1,0,0) and (0,0,1,0), respectively. These LD blocks represent gene
regions with one true causal SNP associated with all traits as well as two confounding
SNPs in high LD with it. For the remaining 60% of the LD blocks, no SNPs are associated
with any traits. Then, we obtain the single-variant association statistics T for 1 million
SNPs with J = 4 traits.
We applied Primo with T as input to identify SNPs associated with all traits. For each

index SNP detected as significant at the probability cutoffs of 0.8 and 0.9, we further
conducted conditional association analysis, conditioning on its two confounding SNPs in
moderate to high LD. The trait-associated SNPs that no longer have the highest probabil-
ities in the pattern of (1, 1, 1, 1) after conditional association analysis were not considered
to be positive findings. In the calculations of the FDRs, we use the same denomina-
tors before and after conditional association analysis for fair comparison. That is, the
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denominators are the number of identified SNPs with associations to all traits at a given
cutoff before the conditional associating analysis. After conditional analysis, the numer-
ator (i.e., # false positive) of the true FDR is the number of SNPs that are not truly
associated to all traits, yet continue to show the highest probability in the pattern of
(1, 1, 1, 1) after conditional association analysis. In the calculation of the numerator of the
estimated FDR, for each SNP i that is no longer significant after conditional analysis, its
contribution to the numerator

(
1 − P̂i

)
1
(
P̂i ≥ λ

)
in the formula (2) is corrected to be 1

since we considered it as an estimated false discovery.
Table 3 summarizes the results over 100 simulations. As shown in the table, when SNPs

are in LD, we observed some slightly inflated FDRs without conditional association anal-
ysis even when θ1j ’s are correctly specified (scenario 4a). In contrast, after accounting for
LD, true FDRs are reduced and are well controlled by the estimated FDRs. In scenarios 4b
and 4c, we under-specified and over-specified θ1j ’s by 10-fold. Overall, Primo after condi-
tional association analysis could yield nice control of FDR andmaintain good power when
θ1j ’s are correctly or under-specified.

Application I: Understanding the mechanisms of breast cancer susceptibility loci

With over 100,000 breast cancer cases and a similar number of controls, BCAC [35] has
recently reported 174 common genetic variants associated with breast cancer risk. In
order to understand the underlying mechanisms of those susceptibility risk loci and their
potential cis target genes, a recent study [47] conducted cis-eQTL analysis using both
normal and tumor breast transcriptome data and identified multiple genes likely to play
important roles in breast tumorigenesis.
In addition to transcription, SNPs may affect cis-epigenetic features, protein abun-

dances, and other omics traits. Functional relationships may exist among those omics
traits. Therefore, we propose to jointly examine the susceptibility risk loci and their
effects on multiple omics traits in tumor and normal tissues in order to better
understand the mechanisms through which risk-associated SNPs act in different con-
ditions. Moreover, this analysis will enhance our understanding of the regulatory
cascade and their roles in breast tumorigenesis. The regulatory SNPs with “cascading
effects” [22, 48] on gene regulation and downstream gene products are of particular
interest.
In this work, we applied Primo to integrate GWAS summary statistics from BCAC with

the eQTL, meQTL, and pQTL association summary statistics obtained from 1012, 762,
and 74 breast tumor samples, respectively, from TCGA [34, 49] (see Additional file 1)
and eQTL summary statistics obtained from 396 normal breast mammary samples from
GTEx [50]. A total of 162 of the GWAS SNPs reported by Michailidou et al. [35] reached
genome-wide significance

(
P < 5 × 10−8) in the meta-analysis. And there are 158 of

these SNPs with MAF > 1% in TCGA data. And the 158 breast cancer GWAS SNPs are
the SNPs we examined for mechanistic interpretations, while we used genome-wide sum-
mary statistics from all SNPs to obtain estimations of key parameters. Note that one SNP
could be mapped to multiple genes and multiple CpG sites. We assessed the probabilities
of 32 (25, for GWAS and 4 omics QTLs) association patterns for each SNP-gene-CpG-
protein quartet. In the conditional association analysis of gene regions harboring at
least one GWAS SNP, we selected the lead SNP for each omics trait in the region and
adjusted for any lead SNP outside a 5 kb distance of and with LD R2 < 0.9 with the
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GWAS-reported SNP (those with R2 > 0.9 or within 5 kb were considered likely to share
a causal variant or too close to assess individual associations, respectively).
At the 80% probability cutoff and after conditional association analysis (estimated FDR

of 4.2, 9.6, 20.2, and 13.2%), there were 52, 26, 9, and 1 GWAS SNPs out of 158 examined
being associated with at least 1, 2, 3, or 4 omics traits, respectively. The three GWAS SNPs
(rs11552449, rs3747479, and rs73134739) in the three genes (DCLRE1B, MRPS30, and
ATG10, respectively) reported in Guo et al. [47] had high probabilities of being an eQTL in
both tumor and normal tissues (with probabilities of 61.1, 95.6, and>99.9%, respectively).
In the KLHDC7A gene region, the GWAS SNP rs2992756 (indicated by red dot in Fig. 3)
is associated with the expression, methylation, and global protein abundance levels of the
cis-gene KLHDC7A. Figure 3 shows the plot of − log10(P) values of associations to breast
cancer risk and the three omics traits (with expression traits in both tumor and normal
tissue types) of KLHDC7A for the SNPs in the gene region. Note that the GWAS SNP
is only moderately associated with the gene expression levels in the normal GTEx breast
tissue with a P value of 0.0034, highlighting the need to study omics QTLs under different
conditions.

Fig. 3 An example of a known breast cancer susceptibility locus being associated with multi-omics traits. At a
posterior probability threshold of 80%, Primo identified SNP rs2992756 as being associated with all four omics
traits for the gene KLHDC7A. Here shows the − log10(P) values by position on chromosome 1 in the region of
the gene KLHDC7A for all SNPs including the breast cancer susceptibility locus (rs2992756, red dot) in GWAS
(top panel) and eQTL, meQTL, and pQTL analyses in tumor tissue (the next three panels, respectively) and
eQTL analysis in normal tissue (bottom panel) for the gene and protein KLHDC7A and CpG site cg05040210
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Due to limited sample sizes (74) in the pQTL analysis, only 1 out of the 158 exam-
ined breast cancer susceptibility loci was associated with cis-protein abundance levels
with high confidence, although the cis-gene expression levels and cis-protein abundances
for those loci were often highly correlated with an averaged (Pearson) correlation coeffi-
cient of r = 0.396 and a median of r = 0.411. There were 16 out of 158 susceptibility loci
uniquely associated with cis-methylation levels but not expression levels in either tumor
or normal tissue, echoing a recent work showing both unique and shared causal mech-
anisms of epigenome variations and transcription [21]. We analyzed the CpG targets of
meQTLs identified by Primo for enrichment in several genomic features. As shown in
Fig. 4, CpG targets of multi-omics QTLs (breast cancer susceptibility loci associated with
methylation as well as gene expression and/or protein abundance) were enriched in CpG
Island Shores (P < 0.05) and depleted in Open Seas (P < 0.01). CpG targets of multi-
omics QTLs were enriched in exons (P < 0.01) while CpG targets of meQTL-only loci
were enriched in introns (P < 0.001). In promoter regions, CpG targets of multi-omics
QTLs were enriched (P < 0.01) while CpG targets of meQTLs not also associated with
gene expression levels were depleted (P < 0.001), consistent with the involvement of
promoter regions in transcription. This also shows that the integration of GWAS and
multi-omics traits can provide additional insights in understanding the complex and
dynamic mechanisms.

Application II: Detecting SNPs with pleiotropic effects and elucidating their mechanisms

Many genetic variants are associated withmore than one complex trait [29, 30, 51]. Identi-
fying such pleiotropic variants and elucidating the molecular mechanisms which underlie
these multi-trait associations may enhance our understanding of the etiology of complex
traits and provide additional insights into clinical treatment development [51]. In this
section, we applied Primo to detect SNPs with pleiotropic effects to two complex traits in

Fig. 4 Enrichment of CpG targets of breast cancer susceptibility loci among genomic features. a Distribution
with relation to islands of CpG targets of Primo-identified multi-omics QTLs and meQTL-only susceptibility
loci compared with distribution of all CpGs on 450k array. Numbers represent counts of CpGs in each
relationship to islands. b Fold enrichment or depletion of genomic features among CpG targets of
multi-omics QTL (cyan) and meQTL-only (pink) susceptibility loci. Feature counts out of total CpG targets are
displayed within each bar. X-axis displayed on log scale. P values were obtained by bootstrapping samples of
CpGs from the full 450k array [*P < 0.01, **P < 10−3]
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gene regions harboring susceptibility loci for at least one trait, and provide mechanistic
interpretations by integrating pairs of publicly available complex-trait GWAS summary
statistics with eQTL association summary statistics obtained from trait-relevant tissue
types in the GTEx project.
We applied Primo to height [37] and body mass index (BMI) [38] GWAS summary

statistics from the GIANT consortium (sample size > 250, 000) with eQTL summary
statistics in subcutaneous adipose (n = 581) and skeletal muscle (n = 706) tissues from
GTEx for all SNPs in the genome. There are 697 height-associated SNPs reported by
Wood et al. [37] and 97 BMI-associated SNPs reported by Locke et al. [38]. Out of those
SNPs reaching genome-wide significance

(
5 × 10−8) for either trait, 683 were present in

both sets of GWAS summary statistics and could be mapped to GTEx SNPs in cis with at
least one gene measured in both tissue types. Of the 683 SNPs, 612 reached genome-wide
significance for height and 78 reached genome-wide significance for BMI, with 7 reaching
genome-wide significance for both. Those 683 GWAS SNPs are the SNPs of interest in
our analysis of pleiotropy, while again we estimated key parameters used in Primo using
genome-wide summary statistics. At the 80% probability cutoff and after conditional asso-
ciation analysis accounting for LD, 32 SNPs out of 683 were detected by Primo as being
associated with both complex traits (estimated FDR of 17.5%). Of these, 17 were asso-
ciated with expression of at least one gene in at least 1 tissue (estimated FDR of 21.8%)
and 12 were associated with expression of at least one gene in both tissues (estimated
FDR of 18.4%). Furthermore, 12 of the SNPs were associated with the expression of mul-
tiple genes, highlighting the possibility that pleiotropic SNPs may affect multiple complex
traits through their co-regulation of multiple genes.
To validate the 32 identified pleiotropic SNPs being associated with both height and

BMI regardless of association status to cis-gene expression levels, we used GWAS sum-
mary statistics from the UK Biobank [39] (> 336k samples have both height and BMI
measured) as a replication study. At P < 0.0008 (the Bonferroni threshold is calculated as
0.05/(32×2), since there are two traits), 27 out of the 32 SNPs were associated with both
traits in the UK Biobank, including 16 of the 17 SNPs that were also associated with gene
expression. Plots of −log10(P) values for associations with height, BMI, and expression in
each tissue are presented in Additional file 1: Fig. S2 for the genomic regions containing
the 27 replicated SNPs.
In Additional file 1, we also presented another set of analysis integrating GWAS sum-

mary statistics of Crohn’s disease and ulcerative colitis [36] with eQTL summary statistics
from sigmoid colon (n = 318) and transverse colon (n = 368) tissues from GTEx.
Both analyses showed that Primo can be used to detect SNPs with pleiotropic effects on
(potentially more than two) complex traits while simultaneously providing mechanistic
interpretations by examining their effects on cis-gene expression levels in trait-relevant
tissue types. A majority of our detected and replicated pleiotropic SNPs do not have
associations reaching genome-wide thresholds for both traits. Our analyses and results
underscored the value of integrating GWAS summary statistics of multiple traits with
eQTLs in relevant tissue types.

Discussion
We proposed a general integrative genomics association approach—Primo—for assess-
ing the joint associations across studies and data types, allowing for unknown study
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heterogeneity and sample correlation and taking only summary statistics as input. In the
current work, we made a tailored development of Primo to comprehensively elucidate the
molecular mechanisms of known complex trait-associated SNPs, where we assessed the
omics or other trait associations of known complex trait-associated SNPs by conducting
conditional association analysis in gene regions harboring known trait-associated SNPs
to account for LD with other SNPs in the region. Note that in our analyses, we focused on
known trait-associated SNPs reported in GWAS.
With the rapidly increasing availability of GWAS and omics QTL association sum-

mary statistics from different studies, populations, and cellular contexts, it is commonly
observed that there could be multiple causal SNPs for different complex and omics traits
in the same gene regions. Conducting integrative analysis of GWAS summary statistics
and a limited number of sets of omics QTL statistics may provide only a partial view of
the genomic activities in a region; meanwhile, if multiple omics QTL statistics are jointly
analyzed, one also needs to consider the associations identified by chance and perform
multiple testing adjustment. The advantage of Primo is that it can integrate a moderate
to large number of sets of summary statistics from different data sources as input to pro-
vide amore comprehensive evaluation while also consideringmultiple testing adjustment.
Additionally, Primo enjoys other unique advantages and shows great flexibility in integra-
tive analysis. It allows the input summary statistics to be from independent or partially
overlapped studies with unknown study correlations. It detects SNPs with coordinated
effects allowing different effect sizes (and different directions of effect sizes) on different
types of traits. It can also integrate one-sided P values if the same direction of effect sizes
is expected and desired. Primo can identify SNPs in different combinations of association
patterns to molecular omics and complex traits. Moreover, with the conditional asso-
ciation analysis of Primo, we can move one step beyond association towards causation
by assessing whether a GWAS SNP is also an omics QTL while adjusting for the effects
of multiple lead SNPs in a gene region. The conditional association analysis can reduce
spurious omics trait associations of GWAS SNPs due to LD with the lead omics SNPs.
We implemented two versions of Primo taking either t-statistics (or effect sizes and

standard error estimates) or P values as input. Primo is computationally very efficient and
can analyze the joint associations of 30million SNPs to five traits in dozens ofminutes.We
applied Primo to examine and interpret the associations to omics traits in tumor/normal
tissues for known breast cancer susceptibility loci. We also applied Primo to integrate
pairs of GWAS summary statistics of complex traits with eQTL summary statistics from
trait-relevant tissue types from GTEx to detect pleiotropic effects and examine their
mechanisms.
There are a few additional points we would like to emphasize. First, we recommend a

stringent specification of the marginal study-specific alternative proportion parameters
(θ1j ’s), especially when there is limited a priori knowledge guiding the parameter speci-
fication. Primo may suffer from slightly inflated FDR when those parameters are highly
over-specified, whereas when those parameters are under-specified to an extent, there
might not be much power loss. Second, the focus of the current work is to comprehen-
sively evaluate the molecular mechanisms of known trait-associated SNPs, rather than
to identify new causal SNPs for complex traits from other regions in the genome. When
applying Primo in other integrative association analyses, the interpretations of results
may be different. Third, there are many existing functional annotations for SNPs that are
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not incorporated in the current version of Primo but have also proved to be useful. We
will explore this direction in future work. Last but not least, when jointly analyzing more
than 15 sets of summary statistics, the computation time of Primo to assess all possi-
ble association patterns can increase substantially. The current work proposed a quick
extension by applying Primo to groups of sets of summary statistics, while in a work-in-
progress, we will develop an integrative analysis method for jointly analyzing dozens of
sets of summary statistics.
Primo is motivated by the analysis of trait-associated SNPs for their molecular trait

associations. It should be noted that Primo can also be broadly applied to many other
settings when data integration is needed. Primo can be used to detect associations repeat-
edly observed in multiple correlated or independent conditions, and those repeatedly
observed associations may enhance the confidence for new discoveries or at least pro-
vide a more comprehensive examination of how those associations may occur in different
conditions.

Methods
Estimating empirical null and alternative marginal density functions for each of the J

studies using the limmamethod

For each of the J studies, we first adopt the limma method [52, 53] to calculate a set of
moderated t-statistics by replacing the error variance estimates in the classical t-statistic
calculation with the posterior variances. Here, for genetic association studies, we cal-
culated the error variance for each SNP based on the t-statistic and the minor allele
frequency (MAF) assuming that covariates are independent from genotypes. That is, the
error variance for SNP i is given by s2ij = se2

(
β̂ij

)
· 2Nj(MAFi)(1 − MAFi), where Nj

is the sample size for study j. Alternatively, one may directly obtain the effect size esti-
mate and its variance estimate as the summary statistics, if the information is available.
The new variance shrinks the observed sample variance towards a prior that is estimated
across all SNPs in the data, and stabilizes the variance estimation across the genome. It
also penalizes the SNPs with large t-statistics but small variances.
Next, for each study j, we estimate the empirical null and alternative marginal den-

sity functions, f̂ 0j (·) and f̂ 1j (·), respectively, based on all the moderated t-statistics in the
genome for the study. Here, one needs to specify a key parameter for each study, the
proportion of study-specific non-null statistics (i.e., with associations), θ1j . Note that we
used θ1j = 10−3 and 10−5 for omics QTL studies and GWAS, respectively, in the two
applications. We then adopt the limma method to estimate f̂ 0j (·) and f̂ 1j (·) (illustrated in
Fig. 1d). Under the null hypothesis, the moderated t-statistic follows a t-distribution with
a mean of zero and moderated degrees of freedom dj in the jth study, allowing for an
empirical null distribution slightly deviating from the parametric t-distribution. Under
the alternative, the moderated t-statistic follows a scaled t-distribution, still with degrees
of freedom dj and a mean of zero allowing for different directions of effects in different
studies, and a SNP-specific scaling factor vij (vij ≥ 1) estimated from the data. The scaling
factor is calculated as vij = (

1 + v0j/wij
)1/2, where v0j is the variance hyperparameter for

the prior placed on non-zero effect size coefficients and wij is a SNP-specific weight for
SNP i. In the presented analyses, we set wij = 1/

(
2Nj · MAFi (1 − MAFi)

)
. The degrees

of freedom dj is estimated from the data as dj = d0j + d1j, where d1j is the (original)
degrees of freedom of the summary statistics in study j and d0j is the degrees of freedom
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hyperparameter for the prior on the unknown variances of effect sizes. Estimation is per-
formed using an empirical Bayes approach as described in Smyth [52] and implemented
in the limma package in R [53]. With the estimated marginal null and alternative density
functions from each study, the joint density functions for all K association patterns can
be calculated as described in the next subsection.

Estimating pattern-specific multivariate density functions when input summary statistics

are calculated from independent or overlapping samples

With J independent studies, the pattern-specific multivariate density function Dk for the
kth association pattern is given by:

Dk(Ti) =
J∏

j=1
f 0j

(
tij

)1−qkj f 1j
(
tij

)qkj . (3)

where qkj is the association status of the kth pattern in study j. For example, given the
association status being qk = (1, 1, 0, 0), the joint density Dk is modeled as the product of
the alternative marginal density functions from the first two studies and the null marginal
density functions from the other two studies, Dk = f 11 · f 12 · f 03 · f 04 .
In estimating a pattern-specific multivariate density functionDk from J correlated stud-

ies, we obtain the empirical null and alternative marginal distributions as non-scaled and
scaled t-distributions, respectively, in each of the J studies. Then, we further approximate
them with normal distributions with zero means and variances being σ 2

ikj = v2×qkj
ij · dj

dj−2 ,
where vij is the scaling factor under the alternative. When the association status indicator
qkj = 0 for the jth study under pattern k, i.e., no association, σ 2

ikj = dj
dj−2 . Since J stud-

ies are correlated due to possible sample overlap with an unknown correlation matrix of
�, similar to Urbut et al. [54], we pool all the statistics likely to be from the null pattern
to estimate their correlation matrix as the estimate for �. Under certain assumptions, the
correlation matrix of test statistics approximates the sample correlation matrix and the
sample correlation under the null represents the correlation due to sample overlap. Here,
we estimate the J × J correlation matrix using SNPs with absolute statistics less than 5
in all J studies. Then, we approximate the pattern-specific multivariate density function
Dk as N

(
0,	1/2

k �	
1/2
k

)
, where 	k is a diagonal matrix with diagonal elements of σ 2

ikj’s.
Note that here, the normal approximations of multivariate density functions enjoy com-
putational efficiency, and moreover, in the next section, they facilitate the estimation of
conditional density functions. Also note that Primo separates sample correlations � from
biological correlations/co-occurrences captured by πk ’s in the subsequent estimation and
inference.

Conditional association analysis accounting for LD

To assess whether the trait association of a SNP i reflects an independent causal variant
or is simply due to being in LD with a nearby lead SNP i′, conditional association analy-
sis is often conducted [55]. It tests the conditional association of SNP i with the trait of
interest adjusting for the genotype of the lead SNP i′ and other covariates. If SNP i is no
longer statistically significant after adjusting for the lead SNP, it is unlikely that the trait
association of SNP i reflects an independent causal effect.
Following this idea, to assess whether a GWAS SNP is associated with omics traits due

to it being in LD with lead omics QTLs, we propose to conduct conditional association
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analysis with summary statistics of the GWAS SNP and lead omics QTLs as input. Here,
we consider a GWAS SNP i of interest and a set of lead omics SNPs I ′ in the gene region,
where I ′ = {

1′, ..., L′} is a set of indices. We can model the joint association statistics
for SNPs i and I ′ in study j, i.e.,

(
tij, t1′j, ..., tL′j

)
, using a multivariate normal distribution,

N
(
0,
j

)
, where
j is the 1+L′ by 1+L′ variance-covariance matrix described as follows.

The diagonal elements of 
j correspond to the study-specific variances of statistics of the
SNPs. Specifically, the (1, 1) entry of 
j is given by σ 2

ij , which is the marginal variance of

the statistic tij for SNP i in study j with σ 2
ij = dj

dj−2 under the null and σ 2
ij = v2ij · dj

dj−2 under
the alternative. For each lead SNP i′ ∈ I ′ with its most plausible association pattern ki′ ,
the variance of the corresponding t-statistic ti′j is given by σ 2

i′ki′ j
= v

2qki′ j
i′j · dj

dj−2 . The off-
diagonal elements of 
j are calculated based on the study-specific variances of the SNPs
and the LD among the SNPs assuming additional covariates are independent of the SNP
genotypes [56]. For instance, the covariance between tij and ti′j is σij ·σi′ki′ j ·ρii′ where ρii′ is
the genotype correlation coefficient of the SNPs i and i′

(∈ I ′
)
. Partitioning the variance-

covariance matrix 
j as follows, 
j =
(


j,11 
j,12

j,21 
j,22

)

with sizes
(
1 × 1 1 × L′

L′ × 1 L′ × L′

)

, we

can obtain the conditional null and alternative distributions for SNP i in study j as:

tij |

⎛

⎜
⎜
⎝

t1′j
...
tL′j

⎞

⎟
⎟
⎠ ∼ N

⎛

⎜
⎜
⎝
j,12


−1
j,22

⎛

⎜
⎜
⎝

t1′j
...
tL′j

⎞

⎟
⎟
⎠ , 
j,11 − 
j,12


−1
j,22
j,21

⎞

⎟
⎟
⎠

where 
−1
j,22 denotes the inverse of the matrix 
j,22. Here, we approximate the conditional

t-distributions with the conditional Gaussian distribution for efficient density estima-
tion since most GWAS and omics QTL studies have sample sizes large enough for good
approximation.
With the conditional null and alternative density functions for SNP i in study j adjusting

for other lead omics SNPs in the region, we can proceed to obtain the pattern-specific J-
variate density functions for all association patterns as outlined in the previous subsection
and re-assess the probabilities of each association pattern in (1). We propose to conduct
gene-level conditional association analysis accounting for LD structures only in selected
gene regions, after the SNP-level association analysis.

Primo for integrating P values frommultiple studies

In addition to integrating t-statistics or effect sizes and variance estimates, Primo can also
jointly analyze J sets of P values, chi-squared statistics, or other second-order associa-
tion statistics. We model the pattern-specific multivariate density functions and still use
Eq. (1) in obtaining the posterior probabilities for each SNP being in each pattern.
In estimating the marginal null and alternative density functions for each study j, f 0j

and f 1j (as illustrated in Fig. 1d), we make the following modification. We first take neg-
ative two times the log of P values as our test statistics, T. Under the null hypothesis,
tij = −2 log

(
pij

)
follows a χ2

2 distribution. Under the alternative, the P value distribu-
tions may vary locus by locus. In the genome, the alternative distribution of −2 log

(
pij

)

(i = 1, . . . ,m) follows a mixture of non-central chi-squared distributions, which can be
approximated by a scaled chi-squared distribution with certain degrees of freedom, Aχ2

d



Gleason et al. Genome Biology          (2020) 21:236 Page 20 of 24

[57, 58]. Note that we do not assume P values under the alternative follow the same dis-
tribution, rather we approximate the mixture of chi-squared distributions using a scaled
chi-squared distribution. To estimate a study-specific scaling factor Aj > 0 and degree
of freedom d′

j that best approximate the tail of the alternative distribution in study j, we
use a numerical optimization algorithm to find values which minimize the differences
between the P values of Tj under a mixture of Ajχ

2
d′
j
and χ2

2 distributions given the mixing

proportion θ1j for the study, and their nominal P values based on their ranks.
More specifically, let tij = −2 log

(
pij

)
for SNP i in study j. Then, the cumulative

distribution function of tij is given by:

F
(
tij;Aj, d′

j , θ
)

=
(
1 − θ1j

)
G

(
tij; 2

) + θ1j G
(

1
Aj

tij; d′
j

)

where G(·; ν) is the cumulative distribution function of a χ2
ν variable. Let rij be the rank

of SNP i in study j when the tij are sorted in descending order. To estimate Aj and d′
j , we

use the optimization algorithms implemented in the R nloptr package to minimize the
following function [59]:

∑

i : rij≤max
{
20,m2 θ1j

}

∣
∣
∣
∣1 − F

(
tij;Aj, d′

j , θ1j
)

− rij − 0.5
m

∣
∣
∣
∣ .

Since associations can be sparse (i.e., θ1j being close to zero) in the genome, it is more
important to well approximate the tail of the alternative distribution than the first two
moments (mean and variance). As such, we sum over the most extreme tail statistics or
at least the 20 most extreme statistics. In Additional file 1: Fig. S1, we have assessed the
performance of the approximation via simulation studies, especially when associations
are sparse. When the J studies are independent, the multivariate density function is mod-
eled as the product of the individual density functions, as in Eq. (3). When the J studies
are correlated, we proceed in a similar manner as when t-statistics are used as input,
except that the multivariate normal distribution is replaced by the multivariate gamma
distribution.

Extensions of Primo when J is large

When jointly analyzing a large number of sets of association summary statistics, the num-
ber of possible joint association patterns K = 2J increases exponentially with the number
of sets of statistics, J. When J = 15, there are 32,768 possible association patterns and
the calculation for all K patterns can be computationally expensive. One may reduce the
number of patterns under consideration to only the major and interpretable patterns [54].
However, the selection of major and interpretable patterns is still a challenge. Additional
work is still needed in future research. When analyzing a large number of sets of asso-
ciation statistics of similar types (for example, integrating multiple sets of eQTLs from
different GTEx tissue types for cross-tissue eQTLs), one possible strategy is to group sets
of statistics into major and independent groups g = 1, . . . ,G, each with Jg < 10 sets of
statistics. Then, one can apply Primo to calculate the posterior probabilities within each
group and take the products of the probabilities between groups to obtain the overall
probabilities for all groups in the association patterns of interest. For example, the pos-
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terior probability of a SNP being associated with at least 1 (omics) trait in G groups of
studies is given by:

P = 1 −
G∏

g=1
Pr(the SNP is not associated with any trait in group g),

where the probability of the SNP being not associated with any trait in group g can be
calculated by separately applying Primo to the low-dimensional Jg set of statistics within
the gth group.
When jointly analyzing unbalanced numbers of summary statistics of different data

types (e.g., 10 sets of eQTL and 1 set of pQTL statistics), caution should be taken as the
joint association results can be dominated by one data type (here, eQTL), which is not
ideal. One may first collapse those J sets of statistics by data types and apply Primo in a
hierarchical fashion to the (converted) summary statistics from multiple data types. This
direction will be explored in future work.

The connection of Primo to “colocalization” andmeta-analysis methods

The Primomethod shares some similarities with colocalization methods, as well as meta-
analysis methods. Similar to colocalization methods [15–18], Primo aims to integrate
GWAS summary statistics with omics QTL statistics to provide molecular mechanistic
interpretations of known trait-associated SNPs. Existing colocalization methods [15–18]
are designed to study GWAS statistics with a limited number of sets of omics QTL statis-
tics at a time, and that limits the potential of the methods given the rich availability of
omics QTL statistics from different cellular contexts and studies. Additionally, the “coloc”
[15] and “moloc” [16] methods assume that there is only up to one true causal variant in a
region. However, the lead SNPs associated with expression levels in a gene can be differ-
ent in different tissue types and cell types [6], and the SNPs for different omics QTLs may
or may not share a same causal variant [21]. Motivated by those facts, Primo integrates
GWAS statistics with omics and multi-omics QTL association statistics and conducts
conditional association analysis in gene regions harboring known trait-associated SNPs
to assess their omics trait associations accounting for LD with other lead SNPs for omics
traits in the same gene regions.
Additionally, Primo enjoys a few advantages that are not shared with existing methods:

Primo can integrate multiple sets of summary statistics, while also allowing some of those
statistics to be from studies with correlated/overlapping samples; Primo requires only
a total of J pre-specified parameters, θ1j ’s (which often can be estimated from the data
or based on a priori knowledge), and the results are not sensitive to under-specification
of those parameters; and Primo estimates the πk ’s based on the data and separates the
biological correlations/co-occurrences from sample correlations, i.e., it allows studies to
be correlated. Additionally, Primo provides FDR estimates to guide the data-dependent
choices of posterior probability cutoffs.
In comparison with meta-analysis, as a general association method, Primo is more

flexible in accounting for study heterogeneity, allowing different GWAS and omics QTL
studies to have different effect sizes even in different directions. Note that if the same
directions of effect sizes are expected for a biological reason, one can also use the one-
sided P values as input in Primo. Primo does not require the samples to be independent
among different studies and can take summary statistics calculated from studies with
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independent, correlated, and/or overlapping samples. More importantly, in addition to
the omnibus test in identifying associations in at least one study, Primo can identify SNPs
in different combinations of association patterns, many of which may have biological
interpretations.
Primo is a flexible integrative association method with only summary statistics used as

input. It makes minimal assumptions about the data structure underlying different sets of
summary statistics and assesses the joint associations across a moderate to large number
of traits/data types/conditions/studies.
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