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Abstract

Background: Deep learning has emerged as a versatile approach for predicting
complex biological phenomena. However, its utility for biological discovery has so far
been limited, given that generic deep neural networks provide little insight into the
biological mechanisms that underlie a successful prediction. Here we demonstrate
deep learning on biological networks, where every node has a molecular equivalent,
such as a protein or gene, and every edge has a mechanistic interpretation, such as
a regulatory interaction along a signaling pathway.

Results: With knowledge-primed neural networks (KPNNs), we exploit the ability of
deep learning algorithms to assign meaningful weights in multi-layered networks,
resulting in a widely applicable approach for interpretable deep learning. We present
a learning method that enhances the interpretability of trained KPNNs by stabilizing
node weights in the presence of redundancy, enhancing the quantitative
interpretability of node weights, and controlling for uneven connectivity in biological
networks. We validate KPNNs on simulated data with known ground truth and
demonstrate their practical use and utility in five biological applications with single-
cell RNA-seq data for cancer and immune cells.

Conclusions: We introduce KPNNs as a method that combines the predictive power
of deep learning with the interpretability of biological networks. While demonstrated
here on single-cell sequencing data, this method is broadly relevant to other
research areas where prior domain knowledge can be represented as networks.

Keywords: Deep learning, Artificial neural networks, Single-cell sequencing, Gene
regulation, Cell signaling networks, Functional genomics, Interpretable machine
learning, Bioinformatic modeling

Introduction
Deep learning using artificial neural networks (ANNs) has reached unprecedented pre-

diction performance for complex tasks in multiple fields, including image recognition

[1–3], speech recognition [4, 5], natural language processing [6–10], board and com-

puter games [11–13], and autonomous driving [14, 15]. There is tremendous potential
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for deep learning in biology and medicine [16–19], as illustrated by initial applications

in medical image classification [20], brain image segmentation [21], epigenome predic-

tion [22], DNA/RNA binding analysis [23], and RNA splicing inference [24, 25]. Re-

cently, deep learning has also shown promising results in the analysis of single-cell

RNA sequencing (RNA-seq) datasets, facilitated by large single-cell datasets [26–30].

For certain specialized tasks with ample training data, ANNs already achieve predic-

tion performance superior to that of human experts. However, the trained ANNs typic-

ally lack interpretability, i.e., the ability to provide human-understandable, high-level

explanations of how they transform inputs (prediction attributes) into outputs (pre-

dicted class values). This lack of interpretability is a major limitation to the wider appli-

cation of deep learning in biology and medicine—not only because it reduces trust and

confidence in using such predictions for high-stakes applications such as clinical diag-

nostics [17, 18], but also because it misses important opportunities for data-driven bio-

logical discovery using deep learning.

Pioneering research aimed at making deep learning models interpretable and inform-

ative for biological applications focused primarily on ex post analysis of trained ANNs,

for example by identifying inputs that result in specific predictions [23, 31, 32] or by

analyzing the compressed layers of autoencoders [33]. A complementary approach is

the ex ante engineering of deep learning architectures for built-in biological interpret-

ability, for example by including domain knowledge from structural biology [34, 35],

biophysical regulation of transcription [36, 37], gene annotations [38], cancer growth

[39], genetic screens [40], or by combining knowledge from different domains [41–43].

Here we demonstrate the feasibility of deep learning on biological networks, includ-

ing signaling pathways and gene-regulatory networks. We introduce knowledge-primed

neural networks (KPNNs) as a broadly applicable framework for interpretable deep

learning and biological discovery. We construct KPNNs from public annotation data

for cellular signaling and transcription regulation, such that each node corresponds to a

protein or a gene, and each edge corresponds to a regulatory relationship that has been

documented in biological databases. We train the KPNNs based on single-cell RNA-seq

data for the cell type or biological model of interest, using an optimized learning

method that enhances the biological interpretability of the trained models.

Conceptually, we conceive cells as living “information processing units” [44, 45] that

perform network-based “biological calculations” to regulate cell state [45–47]. KPNNs

are designed to perform similar calculations in silico, predicting cell state from single-

cell RNA-seq data in deep neural networks that are constructed based on biological

knowledge. Because KPNNs capture key aspects of the cell’s regulatory machinery, we

hypothesize that KPNN learning will give rise to interpretable models. To enable inter-

pretability, we exploit three modifications to generic deep learning that enhance the in-

terpretability of KPNNs: (i) repeated network training with random deletion of hidden

nodes (a technique known as dropout [48]), which yields robust results in the presence

of network redundancy; (ii) dropout on input data in order to enhance quantitative in-

terpretability of node weights; and (iii) training on control inputs to normalize for the

uneven connectivity of biological networks.

We validate KPNNs for interpretable deep learning using simulated data with known

ground truth, we compare them to other machine learning algorithms including the ex

post biological interpretation of feature weights, and we demonstrate the practical use
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of KPNNs in five biological applications with publicly available single-cell RNA-seq

datasets: T cell receptor signaling [49], immune cells in the Human Cell Atlas [50],

clinical subtypes of Langerhans cell histiocytosis [51], cancer cell development in acute

myeloid leukemia [52], and cancer cell subtypes in glioblastoma [53]. Overall, our re-

sults establish KPNNs as a new form of interpretable deep learning that may be broadly

useful for biological discovery based on large-scale datasets.

Results
KPNNs establish deep learning on biological networks

Deep learning using artificial neural networks (ANNs) seeks to “learn” (i.e., approxi-

mate in a generalizable way) the complex relationship between a set of prediction attri-

butes (e.g., single-cell transcriptomes) and the corresponding class values (e.g., cell

states). The learning process typically starts from a generic, fully connected, feed-

forward ANN—which is a directed acyclic graph organized in layers such that each

node receives input from all nodes in the previous layer and sends its output to all

nodes in the next layer. During the learning process, edge weights are randomly initi-

ated and then updated iteratively based on training data, seeking to improve the accur-

acy with which the ANN transforms the inputs into corresponding class values. With

enough training data, large multi-layer ANNs can learn highly complex relationships

between prediction attributes and class values, without requiring any prior domain

knowledge. However, the resulting trained ANNs lack interpretability, given that their

nodes, edges, and weights do not correspond to meaningful domain concepts.

To overcome the lack of interpretability of deep learning on ANNs, we sought to

embed relevant biological domain knowledge directly into the neural networks that are

trained by deep learning (Fig. 1). To that end, we replaced the fully connected ANNs of

generic deep learning with networks derived from prior knowledge of biological net-

works, thereby creating “knowledge-primed neural networks” (KPNNs). In KPNNs,

each node corresponds to a protein or a gene, and each edge corresponds to a potential

regulatory relationship that has previously been observed in any biological context and

annotated in public databases. By integrating a broad range of previously documented

regulatory relationships, we thus assume that most regulatory relationships relevant to

the biological system of interest have already been observed in other contexts, and we

use deep learning on KPNNs to contextualize this prior knowledge with single-cell

RNA-seq training data for the investigated biological system.

We constructed KPNNs to reflect the typical flow of information in cells, where sig-

nals are transduced from receptors via signaling proteins to transcription factors, which

in turn induce changes in gene expression. The expression levels of the regulated genes

were used as input nodes, whose values can be measured by single-cell RNA-seq. Sig-

naling proteins and transcription factors were modeled as hidden nodes, and we infer

the corresponding node weights during the learning process. Finally, receptors consti-

tute the output nodes of the KPNN, capturing phenotypic cell states and the ability of

individual cells to interact with their environment.

KPNNs can be trained in much the same way as ANNs (see the “Methods” section

for details), based on single-cell RNA-seq data for cells in different states (e.g., subtypes

of cancer and immune cells) or under different environmental exposures (e.g.,
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receptor-stimulated vs unstimulated cells). After successful completion of the learning

process, each fitted edge weight is taken as an indicator for the relevance of the corre-

sponding regulatory relationship in the investigated biological system. We then derive

node weights from the edge weights, in order to identify signaling proteins and tran-

scription factors that are likely relevant in this biological system. KPNNs thus exploit

the ability of deep learning algorithms to assign meaningful weights across multiple

hidden layers in KPNNs, thereby identifying and prioritizing relevant regulatory pro-

teins for experimental validation and biological interpretation.

As the first biological test case for interpretable deep learning using KPNNs, we

chose our recent single-cell RNA-seq dataset measuring cellular response to T cell re-

ceptor (TCR) stimulation in a standardized in vitro model [49]. The TCR signaling

pathway, which orchestrates the transcriptional response to antigen detection in T cells,

is well-suited for evaluating our method, given the pathway’s complexity and its well-

characterized nature. To construct a dedicated TCR KPNN (Additional file 1: Fig. S1a),

we connected the TCR (output node) to gene expression (input nodes) via shortest

paths through a network of protein signaling and gene-regulatory interactions (hidden

nodes). The resulting network was then reversed and trained to predict TCR stimula-

tion from single-cell RNA-seq data: Gene expression (input nodes) provides the input

for transcription factors (hidden nodes), whose outputs are used by signaling proteins

(hidden nodes) to predict TCR stimulation (output node).

Deep learning on the TCR KPNN provided high prediction accuracy comparable to

that of deep learning on ANNs (Additional file 1: Fig. S1b-c), despite the KPNN’s much

lower number of edges (Additional file 1: Fig. S1d-f). Specifically, KPNNs predicted

TCR stimulation with a median receiver operating characteristic (ROC) area under

Fig. 1 Interpretable deep learning with knowledge-primed neural networks (KPNNs). Deep learning
provides a powerful method for predicting cell states from gene expression profiles. However, generic
artificial neural networks (ANNs, top row) are “black boxes” that provide little insight into the biology that
underlies a successful prediction – for two reasons: (i) hidden nodes and edges in an ANN have no
biological equivalent, which makes it difficult assign a biological interpretation to the weights of a fitted
ANN model, and (ii) ANNs are inherently instable, and very different networks can achieve similar prediction
performance. Knowledge-primed neural networks (KPNNs, bottom row) enable interpretable deep learning
on biological networks by exploiting structural analogies between biological networks (such as the
signaling pathways and gene-regulatory networks that regulate cell state) and the feed-forward neural
networks used for deep learning. In KPNNs, each network node corresponds to a protein or a gene, and
each edge corresponds to a potential regulatory relationship that has been observed and annotated in
public databases. Weights within the KPNN are obtained by a deep learning method that has been
optimized for interpretability, and the learned weights are interpreted as estimates of the regulatory
importance of the corresponding signaling protein or transcription factor

Fortelny and Bock Genome Biology          (2020) 21:190 Page 4 of 36



curve (AUC) value of 0.984 (interquartile range, 0.979 to 0.987), while ANNs with the

same number of nodes (and many more edges) achieved a median ROC AUC value of

0.948 to 0.985 (interquartile range, 0.936 to 0.988 across all analyses; 0.938 to 0.989 for

the best-performing number of network layers).

In summary, we have demonstrated that deep learning on KPNNs is practically feas-

ible and that it can achieve comparable accuracies to deep learning on ANNs. These re-

sults hold the promise that deep learning on biological networks may yield trained

network models that are both accurate and biologically interpretable.

A biology-based network structure enables KPNN interpretability

To understand how the network structure of KPNNs may contribute to interpretable

deep learning, we performed a systematic network analysis comparing the TCR KPNN

with corresponding ANNs. As expected, the KPNN was much sparser than ANNs with

the same number of nodes. For example, the best-performing ANN had 151-fold more

edges than the KPNN (Additional file 1: Fig. S1d-f). However, the most striking differ-

ences between the KPNN and the corresponding ANNs referred to the structural prop-

erties of these networks.

When we compared the KPNN to fully connected ANNs with the same number of

nodes (fANN) and to sparse ANNs with the same number of edges as the KPNN

(sANN, see the “Methods” section for details), the KPNN contained many deep con-

nections (“shortcuts”), contrasting with the strictly layered network architecture of the

ANNs (Fig. 2a, Additional file 1: Fig. S2a). Because each node in the fully connected

ANNs is connected to all nodes of both the previous and the following layer, the dis-

tance from a given node to any node of the input layer is the same, depending only on

the node’s layer. In contrast, distances in the KPNN differed widely due to the presence

of shortcuts that connect certain parts of the network much more directly with the in-

put layer.

The KPNN was further characterized by unique patterns of network connectedness.

Most notably, the distribution of node outdegrees (the outdegree measures the number

of edges that leave a node) resembled an exponential distribution for the KPNN, while

all nodes in the ANNs were connected to the same (constant) number of other nodes

(Fig. 2b, Additional file 1: Fig. S2b-c). This approximately scale-free nature of the

KPNN derives in part from the presence of highly connected “hubs” in biological net-

works [45], which link many nodes with lower connectivity. As a result of these con-

nectivity patterns, the KPNN showed higher modularity than the ANNs, which is

evident from its higher sensitivity to fragmentation upon edge removal compared to

fully connected ANNs, and even to sparse ANNs (Fig. 2c, Additional file 1: Fig. S2d).

The sparseness and modularity of KPNNs restrict individual hidden nodes in their

access to input data via direct or indirect network connections to the input nodes. To

quantify the amount of information available to each hidden node, we calculated the

network reachability as the number of input nodes that a given hidden node can access

through the network. Strikingly, most hidden nodes in the KPNN were connected only

to a small fraction of input nodes. Such restrictions in the access to input data were

much less pronounced in edge-matched sparse ANNs and absent from fully connected

ANNs (Fig. 2d, Additional file 1: Fig. S2e).
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In summary, the network structure of KPNNs deviates from that of generic ANNs by

incorporating key properties of biological networks, such as a sparse modular architec-

ture and hierarchy-skipping shortcuts. KPNNs have fewer free parameters that are opti-

mized by deep learning. Moreover, every node and every edge within a KPNN has a

corresponding biological interpretation. The characteristic network architecture of

KPNNs is therefore expected to benefit their biological interpretability.

An optimized learning method enhances KPNN interpretability

Complementing the characteristic network structure of KPNNs, we developed an opti-

mized learning method that enhances the interpretability of trained KPNN models. The

learning method for KPNNs resembles those commonly used for deep learning on

ANNs. In a nutshell, edge weights are iteratively updated until they reflect the relation-

ship of input data (i.e., single-cell RNA-seq profiles) to the network output (i.e., class

values representing cell states or environmental exposures) throughout the structure of

hidden nodes. Subsequently, we calculate hidden node weights from the edge weights,

and we interpret these node weights as measures of importance of the corresponding

signaling protein or transcription factor in the investigated biological system.

Fig. 2 Comparative structural network analysis of KPNNs and ANNs. The TCR KPNN is compared to a fully
connected ANN (fANN) with the same number of nodes and the same median depth as the KPNN, and to
sparse ANNs (sANNs) where edges were randomly removed to match the edge number of the KPNN while
retaining an intact network (results are shown for 50 random sANNs). a Average distance to the input
nodes for all hidden nodes in the fANN (top) and KPNN (bottom). b Cumulative distribution of the
outdegree of hidden nodes in the KPNN, the fANN, and averaged across the sANNs. c Assessment of
network sensitivity to fragmentation upon removal of important edges in the KPNN, the fANN, and the
sANNs. Edges were iteratively removed based on importance measured by their network betweenness
value. d Cumulative distribution of reachability, which measures the number of input nodes each hidden
node can connect to, shown separately for the KPNN, the fANN, and averaged across the sANNs
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When we applied generic deep learning (as described in detail in the “Methods” sec-

tion) to KPNNs instead of ANNs, we obtained high prediction accuracies (Additional

file 1: Fig. S1b-c). However, we identified three recurrent challenges to interpreting the

learned models: (i) low reproducibility in the presence of network redundancy, (ii) lack

of quantitative interpretability (i.e., node weights fail to quantitatively reflect the pre-

dictive power of individual nodes), and (iii) uneven connectivity inherent to biological

networks, which affects node weights independent of training data. To address these is-

sues, we conceptualized and validated several modifications of the learning method,

which jointly enhance the interpretability of KPNNs.

First, biological networks are characterized by widespread redundancy, for example

when one protein regulates another protein via two separate signaling pathways. Such

redundancy can result in a lack of reproducibility [33], such that KPNNs with widely

different edge weights may achieve similar prediction performance as the result of cost

functions with multiple local minima. To illustrate this problem and to demonstrate

our solution, we simulated a series of simple gene-regulatory networks with matched

training data (see the “Methods” section for details). We first engineered a network

without any node redundancy, performed model fitting, and then calculated node

weights. In this redundancy-free network, node weights accurately reflected the infor-

mation flow that we embedded into the network (Fig. 3a). However, when we intro-

duced redundancy into the network and repeatedly trained the model, generic deep

learning resulted in node weights that were highly variable, and node weights of redun-

dant nodes were inversely correlated across network replicates (R = − 0.79, Fig. 3b). Re-

peated KPNN training thus yielded inconsistent and uninterpretable results when using

generic deep learning.

To address this issue and to obtain robust, interpretable node weights in the presence

of widespread network redundancy, we incorporated random dropout of hidden nodes

into our learning method. When networks are trained with dropout, a given percentage

of nodes is randomly selected and “dropped” (i.e., set to zero) for each sample and

training step. Deep learning with dropout was originally proposed as a strategy to im-

prove the generalizability of ANNs [48]. We found that random dropout of hidden

nodes dramatically improved consistency of node weights across KPNN replicates,

resulting in an almost perfect correlation of weights for redundant nodes (R = 0.99,

Fig. 3c) and an improved overall correlation of node weights between network repli-

cates (Additional file 1: Fig. S3). These results demonstrate that dropout of hidden

nodes forces deep learning to spread weights across the network instead of depending

on individual nodes, which improves robustness.

Second, we found that node weights obtained using generic deep learning did not ad-

equately reflect quantitative differences in the predictive power of individual nodes. We

illustrate this issue with a simulated network comprising three strongly predictive hid-

den nodes (each of these nodes was connected to several predictive input nodes) and

three weakly predictive hidden nodes (each of these nodes was connected to just one

predictive input node). Using generic deep learning, this difference was not reflected in

the trained node weights (Fig. 3d). We thus introduced dropout of input nodes into the

learning method (in addition to dropout of hidden nodes), thereby forcing the learning

to spread weights across input nodes. As a result, we indeed observed much-improved

and robust quantitative interpretability, with a clear difference in node weights between
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Fig. 3 Optimized learning methodology for KPNNs. a Node weights reflect predictiveness in a simple
network. (Top) Simulated network with one hidden node (node A) that is connected to several predictive
input nodes, each representing one gene. (Bottom) Learned node weights identify node A as predictive. b
High variability of node weights for two redundant nodes based on generic deep learning. (Top) Network
with two hidden nodes (A and B) connected to predictive input nodes. (Bottom) Node weights distinguish
predictive from non-predictive nodes, but there is a negative correlation of node weights for the two
redundant nodes (inset). c Dropout reduces variability and increases robustness of node weights. (Top) The
same network as in panel b, trained with dropout on hidden nodes. Dropout nodes are randomly selected
at each training iteration. (Bottom) Learning with dropout results in robust and highly correlated weights
(inset) for the two redundant nodes. d Node weights of weakly and strongly predictive nodes using generic
deep learning. (Top) Network with three strongly predictive hidden nodes (A–C, connected to multiple
predictive input nodes) and three weakly predictive hidden nodes (D–F, connected to one predictive input
node). (Bottom) Node weights do not separate highly predictive from weakly predictive nodes when using
generic deep learning. e Learning with input node dropout distinguishes between highly predictive and
weakly predictive hidden nodes. (Top) The same network as in panel d, trained with dropout on input
nodes. (Bottom) Node weights separate highly predictive from weakly predictive nodes when training with
input node dropout. f Control inputs quantify the uneven connectivity of biological networks. (Top)
Network with two layers of hidden nodes (A and B; 1 to 10) and input nodes that are all equally predictive
of the output. (Bottom) Node weights trained on control inputs reflect the uneven connectivity of the
simulated network. g Node weights obtained by training on actual data reflect both the data and the
uneven connectivity. (Top) The same network as in panel f, but with only a subset of input nodes being
predictive. (Bottom) Node weights for the network trained on actual data. h Comparison of node weights
for actual data and for control inputs enables normalization for uneven network connectivity. (Top) The
same network as in panel g, with annotation of the effect of input data and network structure on the
importance of nodes A and B. (Bottom) Differential node weights for actual data versus control inputs
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nodes with different predictive power (Fig. 3e). This result was robust toward mistakes

in the network structure (false positives and false negatives), which we confirmed by

shuffling a subset of randomly selected edges (Additional file 1: Fig. S4).

Third, uneven connectivity in biological networks [45, 54] affects node weights in

trained KPNNs independently of the input data, for example resulting in structurally

inflated weights for central, well-connected nodes. To illustrate this effect, we simulated

a network with 12 hidden nodes organized into a top layer (nodes A and B) and a bot-

tom layer (nodes 1 to 10). We constructed this network with uneven connectivity, such

that one of the top-level nodes is connected to a higher number of nodes than the

other (A, 2 nodes; B, 8 nodes). We then trained with control inputs that were equiva-

lent across input nodes, simulated such that all input nodes predicted the output

equally well. Networks trained with these control inputs were biased by the underlying

network structure: The strongly connected node B received a higher node weight than

the weakly connected node A, and the central nodes of the top layer (node A and B) re-

ceived higher node weights than the peripheral nodes of the bottom layer (nodes 1 to

10) (Fig. 3f).

To normalize for uneven connectivity in KPNNs, we compared models that were

trained on the actual simulated data—resulting in node weights that reflect both the

simulated biological signal and the effect of uneven connectivity (Fig. 3g), to models

trained on control inputs—resulting in node weights that solely reflect network con-

nectivity (Fig. 3f). By comparing node weights between these two models, we can quan-

tify the degree to which a given node is more or less important than expected based on

the network structure. The resulting “differential node weights” thus provide a normal-

ized measure of node importance in the training data that is adjusted for the influence

of network structure on trained node weights. Differential node weights clearly distin-

guished the data-driven and the network-driven weights of node A (with two out of

two downstream nodes predictive) and node B (with only one out of five downstream

nodes predictive) in our simulation (Fig. 3h).

In summary, we introduced three methodological advances for interpretable deep

learning on KPNNs: training with hidden node dropout enhances robustness of

node weights in the presence of network redundancy, input node dropout distin-

guishes between strongly predictive and weakly predictive nodes, and the calcula-

tion of node weights based on control inputs allows us to normalize for the effect

of uneven connectivity in biological networks. Together with the sparse structure

of KPNNs and the fact that every node and every edge in the KPNNs has a corre-

sponding biological interpretation, this learning method fosters interpretable deep

learning on biological networks.

KPNNs infer a regulatory model of T cell receptor stimulation

When we trained the TCR KPNN with our optimized learning method, based on

single-cell RNA-seq data for TCR stimulated vs unstimulated Jurkat cells [49], we ob-

tained high prediction accuracies (Fig. 4a), comparable to those obtained by generic

deep learning on KPNNs and on ANNs (Additional file 1: Fig. S1b). Moreover, we in-

deed observed the anticipated boost in biological interpretability of the trained KPNN

model (Fig. 4b-d).
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The introduction of dropout in our optimized learning method improved the reprodu-

cibility across network replicates, giving rise to highly consistent model interpretations

(Additional file 1: Fig. S5). Moreover, we observed broader spreading of high node

weights across the network, as illustrated by an animation of the learning process (Add-

itional file 2: Supplementary Video 1). This gain in robustness was most pronounced

between 0 and 10% dropout, with little impact on prediction performance up to 30%

dropout (Fig. 4a, Additional file 1: Fig. S6). We thus selected a conservative dropout

rate of 10% for further analysis, which resulted in a median node weight correlation of

0.912 (interquartile range 0.814 to 0.961), compared to 0.737 without dropout (inter-

quartile range 0.608 to 0.854). Prediction performance was maintained with a median

ROC AUC value of 0.982 with dropout (interquartile range 0.977 to 0.987), compared

to 0.984 without dropout (interquartile range 0.979 to 0.987).

Node weights were normalized for uneven connectivity in the TCR signaling network

by calculating differential node weights against the TCR KPNN trained on control in-

puts (Fig. 4b, Additional file 3: Table S1). The resulting differential node weights identi-

fied key regulators of TCR signaling such as the NF-κB1:RELA (p65:p50) transcription

Fig. 4 KPNN analysis of T cell receptor (TCR) stimulation. a Receiver operating characteristic (ROC) curves for
the TCR KPNN, predicting TCR stimulation based on single-cell RNA-seq profiles with different levels of
dropout. The inset shows the mean ROC area under curve (AUC) values at different dropout rates
(measuring prediction performance) as well as the mean correlation across replicates (measuring network
robustness). b Differential node weights at a dropout rate of 10%, comparing networks trained on actual
data (x-axis) and on control inputs (y-axis). Nodes with padj below 0.05 are shown. c Trained TCR KPNN with
the subnetwork of significantly differential nodes (padj < 0.05, dropout rate = 10%) highlighted in red. d Log
fold change (LogFC) of gene expression for TCR regulators identified by the KPNN. Commonly used
thresholds for differential expression (fold change = 1.5 and fold change = 0.66) are indicated in purple
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factor complex, its subunits RELA and NF-κB1, and the p38α MAP kinase MAPK14.

Moreover, regulators with high differential node weights were enriched for MAP kinase

pathways (Additional file 1: Fig. S7, Additional file 4: Table S2), which are known to be

involved in TCR signaling and immune response [55].

The regulators of TCR signaling identified by our analysis formed a subnetwork

within the KPNN (Fig. 4c). This subnetwork includes many regulators linked to TCR

signaling, such as the transcription factors CREBBP, CREB1, and ATF [56, 57], as well

as the kinases RPS6KA4 and RPS6KA5, which regulate transcription factors down-

stream of MAPK signaling. It further comprises the well-established T cell regulators

STAT3 [58], STAT4 [59], HDAC1 [60], TCF3 [61], and RUNX1 [62, 63]. The KPNN-

derived subnetwork also includes MYC [64] and the PRC2 subunits EZH2 and SUZ12

[65, 66], which are general regulators of hematopoiesis and T cell development. In con-

trast, ZAP70 and TCR were not part of this subnetwork—given their location at the

apex of the KPNN, these two nodes received the highest possible weights for both the

actual data and the control inputs.

Importantly, our analysis of the TCR dataset reinforced and validated key design deci-

sions of our modified learning method. First, dropout dramatically enhanced the

consistency of the learned node weights (Fig. 4a). Our chosen dropout rate of 10% was

further validated by the fact that it resulted in the strongest enrichment for genes and

proteins with a known role in TCR signaling (Additional file 1: Fig. S7). Second,

normalization for the effect of uneven network connectivity was essential to obtain

meaningful node weights, given that the structure of the TCR signaling network would

otherwise dominate over the relevant biological information contained in the single-cell

sequencing data (Additional file 1: Fig. S8).

To evaluate the effect of the introduced prior knowledge on the trained models, we

compared the original TCR KPNN to a series of control KPNNs with randomized con-

nectivity but retained global network structure, which we generated by random edge

shuffling. The control KPNNs generally showed reduced prediction performance com-

pared to the TCR KPNN (Additional file 1: Fig. S9a). The node weights in the control

networks were equally dissimilar from each other as they were from the TCR KPNN,

although a weak positive correlation remained (Additional file 1: Fig. S9b-c), indicating

that random edge shuffling alone is insufficient to purge all biological network struc-

ture from the control networks. Indeed, when we trained the control networks on the

TCR dataset or on the control inputs without normalization, they showed similar en-

richment for known TCR signaling regulators as the TCR KPNN (Additional file 1: Fig.

S9d-e). However, differential node weights placed the TCR KPNN among the networks

with the strongest enrichment for known TCR signaling regulators (Additional file 1:

Fig. S9f), and those control networks with similar enrichment were notably similar to

the TCR KPNN (Additional file 1: Fig. S9g), suggesting that they retain the enrichment

because of this similarity. Overall, these results reinforce the relevance of biological net-

work structure for interpretable deep learning using KPNNs.

Finally, we benchmarked the KPNN against other machine learning algorithms, both

in terms of prediction performance and biological interpretability. When we trained

elastic nets, random forests, support vector machines, and neural networks on the TCR

dataset, we observed high prediction performance for all methods (Additional file 1:

Fig. S10a). In contrast, we found little overlap between the network-based
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interpretations of the KPNN and the interpretations based on input features weights

that were obtained from the other machine learning algorithms (Additional file 1: Fig.

S10b-c). For example, the NF-κB and MAP kinase regulators identified by the KPNN

were not detected by any of the other algorithms. This observation is expected and re-

assuring given that KPNN interpretability seeks to uncover signaling proteins and tran-

scription factors with cell-state-specific biological activity at the protein level; such

factors are not necessarily differentially expressed at the RNA level (Fig. 4d) and there-

fore not detected by conventional algorithms (Additional file 1: Fig. S10d).

In summary, interpretable deep learning with KPNNs uncovered a subnetwork of

TCR-related regulators relevant to the specific biological system that we investigated

here. We thus exploited single-cell RNA-seq data to contextualize a much broader net-

work of potential regulators that may be linked to TCR signaling based on public data-

bases. We also compared KPNNs with alternative machine learning methods and found

that the latter could not identify signaling proteins and transcription factors that have

important regulatory roles but are not differentially expressed.

KPNNs are broadly useful for interpretable deep learning on single-cell RNA-seq data

Having established and validated KPNNs on simulated data and on the TCR dataset,

we sought to apply our method to a wider spectrum of biological questions. To that

end, we obtained recently published single-cell RNA-seq datasets of cancer and im-

mune cells from the Human Cell Atlas and other sources, and we derived a generalized

KPNN that does not require prior knowledge of the receptors and signaling pathways

relevant to the biological system of interest (this is in contrast to the TCR KPNN,

where T cell receptor activity was designated a priori as the output node). The resulting

“GEN KPNN” integrates signaling pathways and gene-regulatory interactions from pub-

lic databases into a single network that is directly useful for interpretable deep learning

and compatible with a broad range of single-cell RNA-seq datasets.

We constructed the GEN KPNN (Additional file 1: Fig. S11, see the “Methods” sec-

tion for details) by connecting multiple cell surface receptors via shortest paths through

a network of protein signaling and gene-regulatory interactions (hidden nodes) to the

gene expression profiles that are measured by single-cell RNA-seq (input nodes). We

introduced dataset-specific output nodes that represent the sample annotations of

interest for the corresponding dataset (e.g., cell type or disease state), and we connected

each of these output nodes to all cell surface receptors, reflecting the concept that

phenotypic cell states can be captured by the ability of individual cells to interact with

their cellular environment. The resulting GEN KPNN showed very similar network

properties as the TCR KPNN (Additional file 1: Fig. S12), suggesting that it enables in-

terpretable deep learning in the same way as described for the TCR KPNN.

First, we applied the GEN KPNN to a large reference dataset from the Human Cell

Atlas (HCA) comprising 483,084 immune cells [50]. This dataset contains T cells, B

cells, and monocytes, each derived from two sample sources, bone marrow and cord

blood. Given that the differences between immune cell types have already been studied

extensively, we focused instead on differences between cells obtained from bone mar-

row vs cord blood. To that end, we trained the GEN KPNN to predict cell type from

gene expression, separately for single-cell transcriptome profiles of 262,895 immune
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cells from bone marrow and 220,189 immune cells from cord blood. The KPNN

achieved high prediction performance (Additional file 1: Fig. S13a), similar to other ma-

chine learning methods previously used to predict cell types from single-cell RNA-seq

data [67–70], and it enabled us to systematically compare gene-regulatory mechanisms

for bone marrow and cord blood.

Hidden nodes with higher weight for bone marrow-derived cells comprised key regu-

lators of cell fate, including SOX2, KLF5, KLF4, MYC, KRAS, and POU5F1, and they

were enriched for key aspects of development, proliferation, and pluripotency (Fig. 5a,

Additional file 5: Table S3, Additional file 6: Table S4). In contrast, hidden nodes with

higher weight for cord blood-derived cells comprised regulators associated with func-

tions of mature immune cells, including multiple MAP kinases and protein phospha-

tases, and they were enriched for pathways such as T cell receptor signaling, B cell

receptor signaling, B cell activation, and innate immune response. Moreover, we ob-

served a striking difference between STAT2 (more important in bone marrow) and

STAT4 (more important in cord blood). Both proteins are part of the JAK-STAT sig-

naling pathway [71, 72], and STAT2 is well-known for its role in type I interferon sig-

naling [72], while STAT4 is primarily linked to IL-12 signaling and T helper cells [73].

The KPNN thus indicates that STAT2 plays a more prominent role in developing cells

of the bone marrow, while STAT4 is more relevant for mature cord blood-derived

cells.

We observed similar differences between RUNX3 (more important in bone marrow)

and RUNX2 (more important in cord blood), consistent with reports that RUNX3 is

critical for early T cell development [74, 75], while RUNX2 has been implicated in

more mature roles of T cells including thymic development and viral response [76, 77].

Our KPNN analysis thus identified more developmentally immature B cells, T cells,

and monocytes in bone marrow compared to cord blood. Importantly, these observa-

tions were not due to differences among hematopoietic stem cells, which were not in-

cluded in our analysis. Rather, they capture gene-regulatory differences among the bulk

of B cells, T cells, and monocytes between these two immune cell compartments.

Second, we explored the utility of the GEN KPNN for analyzing disease-

associated cell states in Langerhans cell histiocytosis (LCH), a rare developmental

disorder that combines relevant aspects of a cancer and of an autoinflammatory

disease [78]. Based on a recently published single-cell RNA-seq analysis of LCH

[51], we trained the GEN KPNN to distinguish between progenitor-like and mature

LCH cell populations described previously. We obtained separate KPNN models

for (i) bone-derived LCH cells from patients with relatively benign single-system

disease and (ii) skin-derived LCH cells from patients with aggressive multi-system

disease. The KPNN achieved high prediction performance for this dataset (Add-

itional file 1: Fig. S13b), thereby enabling a meaningful comparison of hidden node

weights between the two fitted models (Fig. 5b and Additional file 7: Table S5).

Several of the identified regulators of LCH cells in bone were related to cell

growth and differentiation, including YY1, SUZ12, MYC and MYCN, and GATA1.

In contrast, LCH cells in the skin were characterized by high regulatory import-

ance assigned to signaling proteins, including almost all JAK and STAT proteins

(Fig. 5b). These results identify inflammatory signaling through the JAK/STAT

pathway as a potential contributor to aggressive multi-system LCH in the skin.
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Third, we investigated cellular differentiation hierarchies in a single-cell RNA-seq

dataset of acute myeloid leukemia (AML), a hematopoietic cancer that is characterized

by extensive cellular heterogeneity [52]. We trained the GEN KPNN to distinguish

leukemic cells from healthy controls at four stages of myeloid differentiation:

Hematopoietic stem cells (CD34+EGR1+), progenitor cells (CD34+EGR1−),

granulocyte-macrophage precursors (CD34−CD14−), and monocytes (CD34−CD14+).

The KPNN achieved high prediction performance for distinguishing between leukemic

and non-leukemic cells at all four stages (Additional file 1: Fig. S13c). Comparing the

hidden node weights of the trained KPNNs, we identified an iterative increase in the

number of differentially regulated factors for each stage of the differentiation hierarchy

(Fig. 5c and Additional file 8: Table S6). Moreover, monocytes showed very different

regulatory patterns compared to the three types of progenitor cells. For example, we

Fig. 5 KPNN analysis of cancer and immune cells. a Analysis of a large Human Cell Atlas (HCA) dataset
comprising B cells, T cells, and monocytes obtained from bone marrow and cord blood. (Left) KPNNs were
trained as multi-class predictors separately for immune cells from bone marrow and cord blood; the fitted
models were compared by calculating differential node weights. (Middle) Top 10 hidden nodes with the
most differential weights between bone marrow and cord blood. Gene set enrichments were calculated
against the full list of hidden nodes that carried differential weights. (Right) Differential node weights of
selected proteins are shown for illustration. Error bars indicate standard error of the mean. b Analysis of
Langerhans cell histiocytosis (LCH). (Left) KPNNs were trained separately on single-cell RNA-seq data for LCH
biopsies from bone (single-system LCH) and skin (multi-system LCH), distinguishing between progenitor-like
and mature LCH cells. (Right) Volcano plot comparing differential node weights between KPNNs for bone
vs skin. Significant nodes are highlighted in green, JAK-STAT proteins in purple. c Analysis of acute myeloid
leukemia (AML). (Left) KPNNs were trained to distinguish between leukemic and normal cells at four stages
of hematopoietic development based on single-cell RNA-seq data, and node weights of KPNNs trained on
consecutive states were compared. (Middle) Number of differential nodes comparing consecutive states.
(Right) Weights of selected nodes over the four stages of hematopoietic development. Error bars indicate
standard error of the mean. d Analysis of glioblastoma. (Left) Four glioblastoma subtypes were arranged
into quadrants as in the original publication. KPNNs were trained to distinguish pairs of glioblastoma
subtypes based on single-cell RNA-seq data, and differential node weights were calculated for each
comparison of trained KPNNs. (Right) Scatterplot showing differential node weights between glioblastoma
subtypes. For better visualization, the axes were capped at a −log10(padj) value of 7.5, which affected TP53
and LEF1 (shown at the bottom left). Specific nodes of interest are highlighted in green
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found that the receptor tyrosine kinase FLT3 had a greater role in leukemic progenitors

(but not in leukemic monocytes) compared to their normal counterparts, consistent

with the known oncogenic role of FLT3 and its association with poor disease prognosis

[79]. Similar patterns were observed for the proto-oncogenes KIT and STAT5B, which

are closely linked to AML-specific signaling via FLT3 and the JAK/STAT pathway [80,

81]. In contrast, leukemic monocytes were characterized by increased importance of

the transcription factors MYC, NFKB1, and NPM1, all of which have been implicated

in AML biology [82–84]. These results indicate striking regulatory differences between

progenitor cells and differentiated cells in AML.

Fourth, we focused on glioblastoma, a brain cancer characterized by molecularly de-

fined subtypes that tend to co-exist in the same tumors. Based on recently published

single-cell RNA-seq data of glioblastoma patient samples [53], we trained the GEN

KPNN to differentiate between four cell states: astrocyte-like cells (AC), mesenchymal-

like cells (MES), neural progenitor-like cells (NPC), and oligodendrocyte progenitor-

like cells (OPC). We observed high prediction accuracy for all pairwise comparisons

(Additional file 1: Fig. S13d). The trained KPNN models recapitulated characteristic

molecular differences between glioblastoma cell states (Fig. 5d, Additional file 9: Table

S7, Additional file 1: Fig. S13d), including an association of HIF1A regulatory import-

ance with MES cells [85] and of ERBB2 with NPC cells [86]. We also uncovered novel

associations such as an elevated regulatory importance of NOTCH signaling [87] in

MES and NPC, and of RUNX2 [88–90] in AC and OPC. Furthermore, OPC and NPC

were characterized by high regulatory importance of protein degradation through

CUL4A and its complexes, AC and MES showed a strong role of DLX5 [91] related sig-

naling, and AC was characterized by pronounced regulatory importance of TP53 [92]

and LEF1 [93, 94]. More generally, the trained KPNNs constitute regulatory network

models for all four glioblastoma cell subtypes, which confirmed and extended previous

claims of greater pairwise similarity between AC and MES, and between OPC and

NPC, than for the other combinations of cell states.

In summary, we created a generalized KPNN that incorporates cell surface receptors,

signaling pathways, and gene-regulatory interactions into a single network that is dir-

ectly applicable to a broad range of biological questions, and we demonstrated its utility

on four single-cell RNA-seq datasets. We found that interpretable deep learning with

KPNNs was practical even for large single-cell atlases, achieved high prediction accur-

acies for distinguishing between cell states, and uncovered characteristic regulatory dif-

ferences for a range of applications in immunity and cancer biology. These results

establish KPNNs as a widely useful method for biological discovery, as it combines the

interpretability of biological networks with the power of deep learning.

Discussion
Deep learning has great potential for predictive analysis of biological phenomena, but

its utility for scientific discovery is reduced by the “black box” character of the learned

models. Indeed, even for highly predictive deep learning models, it is often difficult to

derive human-understandable descriptions of the patterns that enabled successful pre-

dictions. To address this shortcoming, interpretable deep learning has emerged as an

active area of machine learning research [95, 96], which has focused primarily on the

ex post interpretation and reverse-engineering of trained models. For example, it is
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possible to visualize what ANNs trained for image recognition “see” when they classify

a picture as a cat or a house [97–99], or to extract DNA sequence motifs that are pre-

dictive of tissue-specific enhancer regions [31, 100]. In the current study, we propose,

implement, and validate a very different approach. We show that deep learning can be

performed on biological networks, where each node corresponds to a protein or a gene,

and each edge corresponds to a regulatory interaction. Our study thus demonstrates

deep learning with ex ante, built-in, molecular interpretability.

Several technologies converged to enable interpretable deep learning on biological

networks with single-cell RNA-seq data as input. First, two decades of research into

systems biology and regulatory networks have established large databases of signaling

pathways and gene-regulatory interactions, built on high-throughput experiments and

on manual curation of many individual mechanistic studies. Second, recent progress in

single-cell sequencing makes it possible to obtain transcriptome profiles for many thou-

sands of single cells, thus providing ample experimental data for “contextualizing” these

biological networks—at a sufficiently large scale for deep learning to play out its

strengths. Third, deep learning has emerged as a method for inferring hidden states in

deep neural networks based on large training datasets, potentially allowing us to infer

unobserved states in complex biological networks. By combining compendia of poten-

tial regulatory interactions from public databases with single-cell RNA-seq data for the

investigated biological system, deep neural networks may indeed be able to unravel

those regulatory mechanisms that are relevant to the biological question of interest.

Our proof-of-concept for interpretable deep learning on biological networks com-

prises two key components: the knowledge-primed neural networks (KPNNs), which

enable interpretability by providing a representation of biological networks that can be

fitted by deep learning; and the optimized learning method, which provides a workflow

for training the KPNNs based on single-cell RNA-seq data in a way that enhances

their interpretability.

We derived and validated an application-specific TCR KPNN for T cell receptor sig-

naling and a generalized GEN KPNN for a broad range of applications. These KPNNs

model the signaling pathways of a cell by connecting cell surface receptors via signaling

pathways and transcription factors (hidden nodes) to their target genes (input nodes

corresponding to gene expression profiles obtained by single-cell RNA-seq). We dem-

onstrated the feasibility of deep learning on these KPNNs and found that the prediction

performance was comparable to that of ANNs and other machine learning methods. A

comparison of network structures showed that KPNNs are structurally distinct from

ANNs (greater sparseness, higher modularity), which likely enhances their interpretabil-

ity by restricting the KPNN training to biologically meaningful models. Indeed, we

found that trained KPNNs showed more relevant enrichments than structurally similar

networks with randomly shuffled edges.

We also optimized the learning method to address three obstacles to interpretable

deep learning on biological networks: (i) Hidden node dropout: Short-term removal of

random hidden nodes during training conferred robustness to the KPNN interpreta-

tions in the context of redundant signaling pathways; (ii) Input dropout: Short-term re-

moval of random parts of the input data enhanced the quantitative interpretability of

node weights; and (iii) Correction for network structure: KPNN training on simulated

control inputs allowed us to adjust for uneven connectivity inherent to biological
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networks. These three methodological optimizations enhanced the biological interpret-

ability of KPNNs both on simulated and on real data. We anticipate that similar opti-

mizations will also be relevant to other studies in the growing field of interpretable

deep learning [36, 39, 40, 42, 101].

As a proof-of-concept for interpretable deep learning on biological networks, we applied

our method to five large single-cell sequencing datasets covering a range of biological ap-

plications. First, we investigated TCR signaling in vitro, and the trained KPNNs indeed re-

capitulated key aspects of what is known about TCR signaling, contextualized to the

concrete biological model (Jurkat cells stimulated by CD3/CD28 antibodies). Second, we

demonstrated the scalability of our method on a large immune dataset from the Human

Cell Atlas (483,084 single-cell transcriptomes), where we discovered unexpected regula-

tory differences between mature immune cells obtained from bone marrow vs cord blood.

Third, we analyzed single-cell RNA-seq profiles from patients with Langerhans cell histio-

cytosis, and we identified JAK/STAT signaling as a potential contributor to an aggressive

disease course. Fourth, we compared leukemic and normal cells at multiple stages of

hematopoietic differentiation, uncovering stage-specific regulators in acute myeloid

leukemia. Fifth, we inferred subtype-specific gene-regulatory networks in tumor samples

from patients with glioblastoma. In all of these cases, the KPNNs discovered both known

and novel regulators based on the single-cell RNA-seq data.

These applications—together with our extensive analyses of simulated data—support

the validity and practical utility of interpretable deep learning using KPNNs. Neverthe-

less, there are potential limitations that should be considered by potential users of our

method. First, KPNNs currently require directed acyclic graphs, in order to be compat-

ible with deep learning algorithms. We have developed a procedure that derives high-

confidence acyclic KPNNs from biological networks with cycles, but explicit modeling

of cycles within KPNNs could be advantageous. Second, our current KPNNs are re-

stricted to discovering and contextualizing regulatory mechanisms that have previously

been annotated in public databases, while entirely novel and unexpected interactions

may be missed. Third, KPNNs may suffer from false positives and false negatives in the

annotation data, although we found that the results were robust toward shuffling a lim-

ited number of edges in simulated networks. Fourth, the specificity of the KPNNs (i.e.,

ability to confidently exclude regulatory mechanisms that are not relevant in the inves-

tigated biological system) depends on the quality of the single-cell RNA-seq training

data, and noisy or biased experimental data may affect the performance of our method.

Fortunately, KPNNs appear to cope well with the inherently low coverage and frequent

experimental dropouts in single-cell RNA-seq data, and we obtained comparably robust

results on in vitro as well as ex vivo profiles of human cells.

Beyond these practical considerations, our study raises conceptual and methodological

challenges and opportunities. Most notably, it poses the question how interpretability

should be defined more formally in the context of interpretable deep learning on domain

knowledge networks. Here we explored the hypothesis that the structural analogy between

KPNNs and biological networks, together with our optimized training method, will result

in trained KPNN models that capture key aspects of the regulatory mechanisms at work

in the biological system of interest. We empirically tested this hypothesis based on simu-

lated data and in multiple biological applications of KPNNs, and our results support the

practical utility of our method. The ability to infer molecular mechanisms distinguishes
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KPNNs from most methods for single-cell RNA-seq data analysis [102, 103]. More gener-

ally, KPNNs provide a deep learning-based framework that complements existing bio-

informatic methods for identifying key transcription factors [104–106] and other

regulatory proteins [107–109] from single-cell gene expression data [110, 111]. KPNNs

are also complementary to well-established paradigms for mathematical modeling and

computational simulation of signaling pathways and gene regulatory networks [46, 47,

112].

It will be interesting to explore in more detail how KPNNs compare to and poten-

tially complement other machine learning methods. Based on our observations, KPNN

interpretability—with its focus on inferring the regulatory importance of signaling pro-

teins and transcription factors—is conceptually and empirically distinct from existing

methods for ex post interpretability based on feature weights for (observed) gene ex-

pression levels. Important signaling proteins and transcription factors identified by

KPNNs were rarely differentially expressed at the RNA level, and many of them are

therefore undetectable by alternative methods. As illustrated on simulated data with

known ground truth, the node weights in the KPNNs capture regulatory importance at

the protein level, suggesting that KPNNs may help derive mechanistic hypotheses about

the role of signaling proteins and transcription factors from single-cell RNA-seq data-

sets. In the future, it will be interesting to compare regulatory mechanisms inferred by

KPNNs to those established using high-throughput experimental approaches such as

CRISPR screening or phosphoproteomics and to validate the most interesting regula-

tory mechanisms identified by KPNNs with detailed mechanistic studies.

Finally, KPNNs are loosely related to graph neural networks (GNNs). GNNs use do-

main knowledge to connect input nodes in networks, and input node values are itera-

tively updated by sharing information between neighboring nodes prior to prediction

[113, 114]. In genome biology, GNNs have been used to predict clinical attributes from

gene expression [115]. While GNNs and KPNNs both build on networks that capture

prior domain knowledge, GNNs use network knowledge to share information between

input nodes (within the input layer) in order to improve prediction performance. Inter-

pretability of GNNs is thus restricted to the updated inputs. In contrast, KPNNs use

network knowledge to connect hidden nodes (between layers) in order to achieve deep,

multi-layer interpretability of the trained model. Toward this end, KPNNs exploit the

analogy between biological regulation (signals are transduced from receptors via signal-

ing proteins to transcription factors, which control gene expression) and feed-forward

neural networks (output nodes, hidden nodes, input nodes), thus providing a new way

of performing deep learning using domain-specific graphs/networks.

Conclusions
This study provides a general framework and initial proof-of-concept for interpretable

deep learning on biological networks. We demonstrated the utility of knowledge-

primed neural networks (KPNNs) for the molecular interpretation of single-cell RNA-

seq data, which is an exciting and highly active research area. Moreover, given the

broad interest in networks for describing biological mechanisms, we expect that our

use of deep learning on biological networks will also be relevant in other areas of biol-

ogy and medicine, for example analyzing metabolome/proteome data, biochemical re-

action networks, cellular differentiation, or even brain circuits.
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Methods
Construction of a general regulatory network for human cells

Knowledge-primed neural networks (KPNNs) integrate multiple signaling pathways

and gene-regulatory interactions into a single network that can be fitted by deep learn-

ing. As the biological basis of these KPNNs, we integrated large-scale, genome-wide

datasets of transcription factor target genes and protein signaling interactions from sev-

eral public databases into a broad network model of the potential regulatory space in

human cells. This general regulatory network model is represented as a directed graph.

Transcription factors

Genes constitute the input nodes of the KPNNs, and their expression levels are mea-

sured by single-cell RNA-seq. Transcription factors constitute part of the KPNNs’ hid-

den nodes, and their regulatory importance is inferred by deep learning. To connect

the genes to the transcription factors that may regulate their expression, we obtained

transcription factor/target gene pairs from the Harmonizome [116] database (as of 3

July 2017), including the following data sources: ENCODE, CHEA, ESCAPE, MotifMap,

and TRANSFAC (including both manually curated and predicted binding sites). Further

transcription factor/target gene pairs were obtained from the TTRUST [117] database

(as of 3 July 2017), which we mapped to gene names using an NCBI resource (ftp://ftp.

ncbi.nlm.nih.gov/gene/DATA/gene_info.gz, as of 10 October 2016). Different datasets

were combined by counting the number of datasets that support a connection for each

transcription factor/target gene pair. To prioritize experimental over computational evi-

dence, weights of 1.0 and 0.3 were used for experimental and computational support,

respectively. For each gene, the transcription factors with the largest weighted number

of datasets supporting the connection to the gene were retained. As a result of this pro-

cedure, 745 genes were targeted by more than 25 transcription factors; these genes

were removed from the analysis to avoid biasing the network by including promiscuous

or false-positive regulatory interactions.

Signaling pathways

Signaling proteins also constitute part of the KPNNs’ hidden nodes. To connect signal-

ing proteins to their target proteins (transcription factors or other signaling proteins),

we obtained a comprehensive dataset of protein signaling interactions, protein com-

plexes, and protein family information from the SIGNOR [118] database (as of 3 July

2017), which is a large, manually curated database of directed signaling interactions. To

focus this network on signaling pathways that connect proteins, we removed interac-

tions of transcriptional regulation, guanine nucleotide exchange factor, transcriptional

activation, post-transcriptional regulation, and transcriptional repression, and we re-

moved all nodes that were not proteins, complexes, or protein families, as well as nodes

from databases other than UniProt [119] and SIGNOR. All retained interactions were

aggregated into a directed graph of potential regulatory interactions. To capture inter-

actions between complex members and annotations of protein families, we further

linked family members to nodes representing protein families, and protein complex

members to nodes representing complexes. This was done using edges in both
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directions, thus enabling protein complex members to regulate their target complexes

and vice versa.

Construction of application-specific KPNNs for deep learning

From the general regulatory network described in the previous section, application-

specific KPNNs are derived as follows: (i) define the cell surface receptor(s) expected to

be most relevant for the biological phenomenon of interest, (ii) extract a directed acyc-

lic graph that connects the selected receptor(s) to all reachable transcription factors,

and (iii) connect transcription factors to their target genes. The resulting graphs are

used for interpretable deep learning by reversing the cascade: Measured gene expres-

sion values (input nodes) predict the regulatory importance of connected transcription

factors (hidden nodes), which predict the regulatory importance of their connected sig-

naling proteins (hidden nodes), which then predict the regulatory importance and acti-

vation states of surface receptors, which finally predict the output (phenotype) of the

specific dataset. In this study, two KPNNs were constructed: (i) a KPNN specific to

TCR signaling (TCR KPNN), which seeks to predict TCR stimulation from gene ex-

pression, and (ii) a generalized KPNN (GEN KPNN) that can be used to predict cell

states from single-cell RNA-seq datasets independent of specific receptors.

TCR KPNN

To construct the KPNN for TCR signaling, we selected the TCR node (SIGNOR-C153)

as the output node of the network and calculated shortest paths to all reachable tran-

scription factors in the general regulatory network using the function all_shortest_paths

from the igraph package (version 1.1.2) in R (version 3.2.3). These paths were then

combined, resulting in a directed acyclic graph. Finally, transcription factor/target gene

pairs were used to connect each transcription factor to its target genes (input nodes).

GEN KPNN

To construct a generalized KPNN that does not require prior knowledge of the

most relevant receptors and signaling pathways for a given application, we intro-

duced output nodes that represent sample annotations of interest in a given dataset

(e.g., cell type or disease state). Output nodes were adapted to the specific bio-

logical question and dataset: In the HCA dataset, three output nodes were used to

represent B cells, T cells, and monocytes. In the other three systems, one output

node was used for the binary classification of (i) progenitor vs mature cells in the

LCH dataset, (ii) leukemic vs normal cells in the AML dataset, and (iii) disease

subtype in the glioblastoma dataset, i.e., pairwise comparisons between astrocyte-

like cells (AC), mesenchymal-like cells (MES), oligodendrocyte progenitor-like cells

(OPC), and neural progenitor-like cells (NPC). These output nodes were connected

to all cell surface receptors, based on the pathway annotations in the SIGNOR

database obtained with SIGNOR’s REST API. We then calculated shortest paths

from the output nodes via the cell surface receptor nodes to all reachable tran-

scription factors in the generic regulatory network using the function all_shortest_

paths from the igraph package. These paths were combined, resulting in a directed

acyclic graph. Transcription factor/target gene pairs were used to connect each of
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the transcription factors to their target genes (input nodes). This initial graph was

then extended to ensure inclusion of all relevant cell surface receptors. To that

end, shortest paths from individual receptors to all transcription factors were added

under the condition that they do not introduce cycles. This was ensured by the

following procedure: First, shortest paths from all receptors to all transcription fac-

tors were identified in the general regulatory network and transformed to an edge

list. Second, edges from this list were added to the graph if the edge’s parent depth

was smaller than the child depth, or if the child was not yet included in the net-

work. Node depth was defined as the distance of a node from the output nodes. In

addition, to rule out feedback loops from transcription factors to upstream protein

signaling pathways, the depth of transcription factors (and their downstream nodes)

was artificially set to be greater than the depth of all non-transcription factors. Fi-

nally, the two steps were repeated iteratively until no more edges could be added.

This procedure thus enabled us to extend our graph by adding relevant connec-

tions, while ensuring that no cycles were introduced into the graph.

Single-cell transcriptome datasets used for KPNN training

While the KPNNs represent the wider regulatory space potentially relevant for the ap-

plication of interest, it is the deep learning on KPNNs using single-cell transcriptome

data that confers specificity and identifies those parts of the KPNNs that are indeed

relevant and predictive for the investigated biological system. We developed and evalu-

ated interpretable deep learning on KPNNs using simulated transcriptome profiles with

known ground truth, we validated and benchmarked our method on a biological data-

set of TCR stimulation, and we demonstrated its broad applicability and utility on four

additional real-world datasets.

TCR dataset

The TCR dataset was downloaded from GEO (GSE137554). It was generated with the

CROP-seq assay [49] and single-cell RNA-seq on the 10x Genomics platform. Only un-

perturbed cells (i.e., those that expressed non-targeting guide RNAs) were included in

the analysis. To identify the CRISPR guide RNAs in each cell, a reference genome was

created by extending the human GRCh38 genome assembly with sequences of all used

guide RNAs with Cell Ranger mkref. Sequencing data were aligned to this reference

genome with Cell Ranger count and merged with Cell Ranger aggr. Barcodes with less

than 500 unique molecular identifiers (UMIs), less than 200 identified genes, or more

than 15% mitochondrial reads were considered low-quality and removed from the ana-

lysis. Cells expressing only non-targeting guide RNAs were selected for further analysis.

Class values for TCR stimulation were assigned based on whether a cell was part of the

TCR stimulated or unstimulated sample.

Simulated data

Data with a defined ground truth were simulated based on the TCR dataset. We

averaged expression counts for the unstimulated state for each gene to generate a

baseline expression profile. Next, a positive or negative twofold change was intro-

duced in selected genes (predictive/informative genes whose expression was linearly
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correlated with each cell’s class value), resulting in a second (differential) gene ex-

pression profile. Finally, single-cell RNA-seq profiles of individual cells were simu-

lated by subsampling reads from these average profiles using rbinom in R as

described previously [120]. Two thousand single-cell RNA-seq profiles were gener-

ated, 50% of which were derived from the baseline profile and 50% from the differ-

ential profile.

HCA dataset

The HCA dataset [50] was downloaded from the “Census of Immune Cells” that is part

of the Human Cell Atlas (https://preview.data.humancellatlas.org/), as of 31 July 2018.

Low-quality cells with less than 500 unique molecular identifiers (UMIs), less than 200

identified genes, or more than 15% mitochondrial reads were removed from the ana-

lysis, and expression levels were transformed to log (TPM + 1) values. Cell types (class

values) were assigned based on the expression levels of cell-type-specific marker genes.

Marker gene expression for CD79A and CD19 was used to identify B cells; CD3D,

CD3G, and IL32 to identify T cells; and CD14 and CST3 to identify monocytes. Cells

with log (TPM + 1) values above 4 for any of the listed marker genes were assigned to

the respective cell types. Cells assigned to none of the cell types (which comprises all

other cell types) or to multiple cell types (including cell duplicates) were removed from

the analysis. Using this procedure, 483,084 from a total of 628,630 cells were uniquely

assigned to one of the three cell types.

LCH dataset

The LCH dataset [51] was downloaded from GEO (GSE133704). Single-cell annotations

were downloaded from http://www.medical-epigenomics.org/papers/LCH_hierarchy/

data/lch_10x_meta.csv.gz as of 1 October 2019. Cells in subsets 1, 2, and 3 were labeled

as progenitors, and cells in subsets 11, 13, and 14 were labeled as mature LCH cells.

Bone and skin were annotated based on the biopsy source.

AML dataset

The AML dataset [52] and its single-cell annotations were downloaded from GEO

(GSE116256). Cells were labeled as leukemic (cancer) or normal (healthy) cells based

on the predictions of malignancy (refined predictions), which were extracted from the

single-cell annotations downloaded from GEO. In addition, cells were labeled according

to cell type based on single-cell annotations: hematopoietic stem cells (HSC:

CD34+EGR1−), progenitor cells (Prog: CD34+EGR1+), granulocyte-macrophage pre-

cursors (GMP: CD34−CD14−), and monocytes (Mono: CD34−CD14+). Promonocytes

(Promono) were also included in the initial analysis but were discarded given the low

prediction performance observed for distinguishing between cancer and healthy cells.

Glioblastoma dataset

The glioblastoma dataset [53] was downloaded from GEO (GSE131928). Single-cell an-

notations were downloaded from the Broad Institute’s Single Cell Portal (http://single-

cell.broadinstitute.org, dataset SCP393) as of 31 October 2019 and used to assign cells

to the four subgroups identified in the original publication: astrocyte-like cells (AC),
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mesenchymal-like cells (MES), neural progenitor-like cells (NPC), and oligodendrocyte

progenitor-like cells (OPC). A cutoff of absolute “Relative meta-module scores” smaller

than 0.5 was used to remove cells that were not clearly assigned to one class.

Generic deep learning methodology and implementation

Deep learning was performed on the application-specific KPNNs with the single-cell

transcriptome profiles as training data, using a three-step workflow: (i) processing of in-

put data, (ii) training of the KPNN or ANN as a deep neural network, and (iii) evalu-

ation of prediction performance on unseen test data. This workflow was implemented

in a custom Python (version 2.7.6) program, using the Python libraries tensorflow [121]

(version 1.3.1), pandas (version 0.19.2), scipy (version 0.14.0), and numpy (1.13.2). The

software implementation has also been tested successfully in a more recent version of

Python (version 3.7.3). It requires three inputs: (i) a neural network graph (KPNN or

ANN) in the form of an edge list, (ii) a file containing class values for each single cell,

and (iii) a file containing transcriptome profiles for each single cell. The methods out-

lined below were applied for both KPNNs and ANNs, and they constitute the generic

deep learning workflow that was used in this study.

Processing of input data

Input data were split into training set (60% of samples), validation set (20%), and test

set (20%) using numpy random.choice. Gene expression data were converted to log

(TPM + 1) values and normalized for each gene to a maximum value of one and a mini-

mum value of zero. Normalization factors were calculated based on the training data

and then applied to the validation and test data. For the HCA dataset, minibatches were

obtained using numpy random.shuffle.

Network training

Training of the neural networks (KPNNs or ANNs) is configured by a method to

initialize edge weights, an activation function for hidden and output nodes, a loss func-

tion, an algorithm to minimize the loss function, and criteria to terminate training. Net-

work training was implemented in TensorFlow, with the following setup. Edge weights

were randomly initialized using TensorFlow global_variables_initializer. A sigmoid ac-

tivation function was used for all hidden and output nodes using TensorFlow nn.sig-

moid. The sigmoid function was chosen because of its similarity to “on” and “off” states

in biological systems. The loss function to minimize was chosen as a weighed cross-

entropy with L2 regularization. To calculate the loss function, cross-entropy was first

calculated using TensorFlow nn.sigmoid_cross_entropy_with_logits. Then, to improve

training in the presence of class imbalance, the cross-entropy of each sample was

weighted by the number of samples of each class. The weight for each class was calcu-

lated as (1/Nclasses)/(Nx/Nsamples), where Nclasses is the number of classes, Nx is the num-

ber of samples of class x, and Nsamples is the total number of samples. Finally, L2

regularization was calculated using TensorFlow nn.l2_loss and added to the weighted

cross-entropy. For this loss function, the ADAM algorithm was used to minimize the

regularized, weighted cross-entropy using TensorFlow train.AdamOptimizer. To track

the learning progress, training and validation error were calculated by subtracting
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predicted class probabilities from true labels. Training was terminated with early stop-

ping, which was triggered by a specific number (“patience”) of epochs without consider-

able learning processes (“failed epochs”). Epochs were considered as “failed epochs” if

either (i) training loss plateaued (indicative of arrival at a minimum) or (ii) validation

set error increased (indicative of overfitting). To be able to recover the most promising

model, new models were saved during training (using TensorFlow train.Saver) if they

achieved considerable learning progress (decreased validation set error by a given per-

centage) compared to the previously saved model. When a model was saved, the coun-

ter of failed epochs (“patience”) was set to zero. After learning was terminated, the

most recently saved model was loaded and used to calculate test set performance.

Performance evaluation

Using the most recently saved model, the error on the (previously unseen) test set was

assessed and receiver-operator characteristic curves were derived as the final perform-

ance metric.

Hyperparameters

Training hyperparameters were chosen for each dataset by inspecting the learning pro-

gress using TensorFlow’s TensorBoard, which enables live tracking of training loss, val-

idation error, validation loss, and edge weights. The two parameters used for early

stopping (minimum percent improvement on the validation set error required to save a

model; number of allowed failed learning epochs) were chosen to minimize the number

of iterations run in the plateau of the learning curve. The learning rate (alpha) was se-

lected to the highest value that ensured smoothness of learning curves. The L2-loss

regularization parameter (lambda) was chosen at the largest value that did not result in

weights shrinking to zero.

Optimized learning method to enhance KPNN interpretability

On top of the generic deep learning methodology (as described in the previous section),

three modifications were implemented to enhance biological interpretability of the

trained KPNNs: (i) dropout on hidden nodes to improve robustness, (ii) dropout on in-

put nodes to increase quantitative interpretability, and (iii) training on simulated con-

trol inputs to normalize for uneven connectivity in biological networks. KPNNs were

trained repeatedly using this optimized learning methodology, prior to extracting node

weights for interpretability.

Dropout on hidden nodes and on input nodes

Dropout constitutes a modification of the learning algorithm where a given percentage

of nodes is randomly set to zero in each training iteration and for each sample, tempor-

arily removing the contribution of the affected nodes. Dropout was originally developed

as a regularization technique to reduce overfitting [48]. Applied to KPNNs, dropout en-

courages the learning algorithm to spread weights across all relevant nodes, which re-

duces variability of node weights across network replicates (leading to improved

robustness) and balances weights across input nodes (leading to node weights that

more quantitatively reflect node importance). Dropout was implemented in our
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network training program using TensorFlow nn.dropout, which was applied separately

to hidden nodes and to input nodes.

Normalizing for the uneven connectivity of biological networks

To normalize for the biological network structure and connectivity patterns of KPNNs,

we trained the KPNNs not only on the actual single-cell transcriptome data, but also

on artificial control inputs where all input nodes were set to values that are equally pre-

dictive of the class values. All input nodes carry equal importance in this scenario,

hence the resulting node weights reflect only the inherent network structure of the

KPNN. Control inputs thus quantify the effect of uneven connectivity on node weights

and allow us to normalize for it. Control inputs were generated in the same way as the

simulated single-cell transcriptome datasets used to develop our methodology (as de-

scribed above), with one difference: while only a subset of inputs were selected as pre-

dictive in the simulated dataset, the control inputs were simulated such that all inputs

were equally predictive. To that end, raw read counts were summed up across all cells

corresponding to one class value (e.g., unstimulated cells in the TCR data) to generate

an average transcriptome profile. A positive or negative (randomly selected with numpy

random.choice) twofold change was added to all input genes to generate a second aver-

age transcriptome profile. Reads were then drawn from the two average transcriptome

profiles using numpy random.binomial [120]. The number of reads drawn was based

on the number of reads in each cell in the original data. For the TCR data and simu-

lated data, the same number of cells as in the original dataset was simulated with con-

trol inputs.

Training the KPNNs on the single-cell RNA-seq datasets

Using the optimized KPNN learning method described in the previous section, we

trained and evaluated KPNNs to predict class values from single-cell RNA data in three

scenarios: (i) methods development and evaluation on simulated data, (ii) validation

and benchmarking on a biological dataset of TCR stimulation, and (iii) application to

four additional real-world datasets addressing different biological questions. The

trained KPNN models were analyzed to obtain the biological interpretations. This sec-

tion describes the parameters chosen to train KPNNs for each dataset.

TCR dataset

Raw read counts of all 1735 cells, class values (stimulated or unstimulated), and an edge

list encoding the TCR KPNN structure were provided as input to the learning program,

where they were normalized and processed as described above. Hyperparameters

(alpha, 0.01; lambda, 0.1) were chosen based on the inspection of learning curves using

TensorBoard. Learning was stopped after 20 failed epochs. During learning, new

models were saved if they reduced the validation set error of the latest stored (i.e., so

far best-performing) model by at least 20%. Dropout rates from 0 to 50% were evalu-

ated in steps of 10 percentage points. In addition, dropout was adjusted for each node

based on the number of parent nodes to account for the very sparse structure of the

TCR KPNN, where networks failed to converge otherwise. Specifically, nodes with only

one parent were never dropped, and dropout was limited to 10% for nodes with two
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parents and to 30% for nodes with three parents. Network training was repeated 90

times for each level of dropout.

Simulated dataset

Simulated raw read counts, class values (0 and 1), and the edge lists for the simulated

networks were provided as input to the learning program. Hyperparameters were set as

follows: alpha of 0.001 and lambda of 0.2 in networks with one predictive node; alpha

of 0.05 and lambda of 0.1 in networks with two predictive nodes; alpha of 0.05 and

lambda of 0.2 in networks with three weakly and three strongly predictive nodes; alpha

of 0.05 and lambda of 0.2 in the edge shuffling experiments; and alpha of 0.05 and

lambda of 0.2 for comparing networks with and without control inputs. The dropout

rate was set to 30% in all analyses where dropout was used. Learning was stopped after

20 failed epochs, and new models were saved if they reduced the validation set error of

the most recently saved model by at least 20%. Network training was repeated 90 times

for each level of dropout.

HCA dataset

Raw reads of all 483,084 cells, class values (B cells, T cells, and monocytes), and an

edge list encoding the GEN KPNN were provided as input to the learning program.

KPNNs for bone marrow and cord blood were trained separately. Marker genes used

for cell type assignment were removed prior to training. Hyperparameters (alpha: 0.05;

lambda: 0.1) were chosen based on the inspection of learning curves using Tensor-

Board. Learning was stopped after 10 failed epochs. During learning, new models were

saved if they reduced the validation set error of the most recently saved model by at

least 30%. Dropout rates from 0 to 40% were evaluated in steps of 20 percentage points.

Learning was performed in minibatches of 1000 single cells, which were sequentially

provided to the training algorithm. Differences in the parameters used to train KPNNs

on the HCA and TCR data were due to the large difference in sample size (greater than

two orders of magnitude), which resulted in an improved learning progress per epoch

but a much longer duration of each epoch for the HCA data. Network training was re-

peated 90 times for each level of dropout and each tissue.

LCH dataset

Raw reads of 6244 cells, class values (progenitor/mature), and an edge list encoding the

GEN KPNN were provided as input to the learning program. KPNNs for bone and skin

were trained separately. Hyperparameters were optimized by performing a grid search on

the training data (learning rate alpha: 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, or 1;

L2 norm lambda: 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, or 1). Dropout of 10% was

used in all analysis. Learning was stopped after 10 failed epochs. During learning, new

models were saved if they reduced the validation set error of the most recently saved model

by at least 30%. Network training was repeated 100 times for each of the two biopsy sources.

AML dataset

Raw reads of 21,445 cells, class values (cancer/healthy), and an edge list encoding the

GEN KPNN were provided as input to the learning program. KPNNs were trained
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separately for each cell type (HSC, Prog, GMP, Promono, Mono). Hyperparameters

were optimized by performing a grid search on the training data (learning rate alpha:

0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, or 1; L2 norm lambda: 0.001, 0.002,

0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, or 1). Dropout of 10% was used in all analysis.

Learning was stopped after 10 failed epochs. During learning, new models were saved if

they reduced the validation set error of the most recently saved model by at least 30%.

Network training was repeated 100 times for each cell type. Promonocytes achieved

limited prediction accuracy and were thus not considered for the downstream inter-

pretation of node weights.

Glioblastoma dataset

TPM-normalized read counts (obtained from GEO) of 20,589 cells, class values (pairs

of glioblastoma subtypes), and an edge list encoding the GEN KPNN were provided as

input to the learning program. KPNNs comparing each pair of glioblastoma subtypes

were trained separately. Hyperparameters were optimized by performing a grid search

on the training data (learning rate alpha: 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1,

0.5, or 1; L2 norm lambda: 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, or 1). Drop-

out of 10% was used in all analyses. Learning was stopped after 10 failed epochs. Dur-

ing learning, new models were saved if they reduced the validation set error of the

most recently saved model by at least 30%. Network training was repeated 100 times

for each comparison of subtypes.

Calculation of node weights as a measure of node importance

Trained KPNNs models were analyzed by calculating node weights as a reflection of

node importance for the KPNN-based predictions. Edge weights are readily obtainable

from the network model, but they only indicate the (local) relationship of a given node

to its parent node and do not capture the (global) importance of each node for the full

network. To obtain informative node weights, we applied small perturbations to each

hidden node separately and measured changes in network output, thus quantifying the

importance of each node to the output of the network. Finally, because the sign of the

resulting node weights is largely arbitrary, we take the absolute value of the node

weights as a measure of the importance of each node in the trained KPNNs.

Calculation of node weights using induced perturbations

To obtain informative node weights, we applied a procedure analogous to numerical

gradient estimation [122], which is commonly used to evaluate the effect of small nu-

merical perturbations of edge weights on the network predictions (outputs) in order to

test the calculation of backpropagation gradients. Here, instead of perturbing edge

weights, we applied perturbations to nodes, thus estimating the effect that small pertur-

bations of node outputs (activations) have on the network predictions. For each node

ni, network predictions (class probabilities) were calculated after perturbing ni twice,

once by adding and once by subtracting a small factor (epsilon, which was set to 0.001

for all datasets) from the output (activation) of ni. The mean difference of class prob-

abilities after additive and subtractive perturbation was then further divided by 2*epsi-

lon to derive a normalized measure of node weight. As a result, nodes with large node
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weights had a greater effect on network predictions than nodes with smaller node

weights, thus quantifying the global importance of each hidden node to the network.

Rationale for calculating absolute values of the node weights

Node outputs can impact network predictions positively or negatively, depending on

the sign of their associated edge weights. In the case of input nodes, the sign of node

weights can be interpreted directly with respect to network predictions (for example,

“high expression of gene X predicts TCR stimulation, whereas low expression predicts

no stimulation”). For hidden nodes, however, this relationship is absent because hidden

nodes can assign negative or positive weights to the associated input nodes with equal

outcome. For example, a negative edge weight associated with a negative node output

will result in a positive number as much as a positive edge weight associated with a

positive node output. The sign of node weights will thus randomly differ between repli-

cate networks (i.e., the same network trained separately on the same input data). In

contrast, the absolute magnitude of node weights reflects the importance of each node

for prediction, independent of its sign. For this reason, we calculated absolute node

weights, which robustly quantify the contribution of each node to the predictions.

Statistical analysis of node weights

After the completion of training for a given KPNN, node weights were calculated as de-

scribed in the previous section and exported for downstream analysis. Each KPNN was

trained in multiple replicates to capture variability that results from random initiation.

Node weights of the resulting trained KPNN models were then extracted to perform

statistical comparisons between either (i) input data and simulated control inputs (TCR

KPNN) or (ii) pairs of KPNNs (GEN KPNN). We performed statistical differential ana-

lysis on node weights of replicate networks in much the same way as it is commonly

done for gene expression data. To this end, node weights were imported into R (version

3.2.3), where they were analyzed and plotted using the packages data.table (version

1.11.4), limma (version 3.26.9), ggplot2 (version 2.2.1), and pheatmap (version 1.0.10).

Pearson correlations of node weights were calculated using the function cor in R.

Analysis of node weights for the TCR dataset

Differential node weights were calculated by comparing node weights obtained for ac-

tual data vs node weights obtained for control inputs, and evaluated using gene set en-

richment analysis. For these analyses, only highly predictive networks with test set

error lower than 0.2 were retained. Networks with dropout greater than 30% were ex-

cluded due to reduced prediction performance. To avoid biases arising from sample

size differences, the number of replicate networks in each group was downsampled to

that of the smallest group (n = 42). Node weights of all networks were normalized using

limma normalizeQuantiles. Significance of differential node weights was tested for each

hidden node using the t.test function. P values were corrected for multiple testing using

the function p.adjust with parameter “BH”. Nodes with adjusted P values below 0.05

were selected as significant. Gene set enrichment analysis (GSEA) for significant pro-

teins was performed using the function fgsea of the fgsea package (version 1.2.1) in a

different R version (4.3.0) as required by the package. GSEA was based on the following
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databases: KEGG_2016, NCI-Nature_2016, WikiPathways_2016, Panther_2016, Bio-

Carta_2016, and Jensen_TISSUES, all obtained from Enrichr [123]. In addition, to

quantify the enrichment of annotated TCR signaling proteins, we used Enrichr to

download all genes annotated with “TCR Signaling Pathway_Homo sapiens_WP69”

from WikiPathways_2016 as well as genes annotated with “TCR signaling in naive

CD8+ T cells_Homo sapiens” from NCI-Nature_2016 (as of December 15, 2017).

Analysis of node weights for the simulated dataset

Highly predictive networks with test set error below 0.1 were used to obtain node

weights, which were scaled to a minimum of 0 and maximum of 1 prior to plotting.

Analysis of node weights for the HCA dataset

Differential node weights were calculated by comparing node weights between KPNNs

trained on cells derived from bone marrow vs cells derived from cord blood. Only

highly predictive networks with precision greater than 0.9 for all three cell types were

used. Similar to the TCR analysis, the number of replicate networks in each group was

subsampled to that of the smallest group (n = 48) to avoid biases arising from sample

size differences. Node weights were quantile normalized using limma normalizeQuan-

tiles. Differential analysis was performed with a linear model using the function lm,

with coefficients fitted for cell type and source. P values were corrected for multiple

testing using the function p.adjust with parameter “BH”. Nodes with adjusted P value

below 0.05 were selected as significant. Enrichment analyses of significant nodes were

performed using Enrichr [123] with the databases WikiPathways_2016, Reactome_2016,

Jensen_TISSUES, KEGG_2016, NCI-Nature_2016, Panther_2016, and BioCarta_2016.

Analysis of node weights for the LCH dataset

Differential node weights were calculated by comparing node weights between KPNNs

trained on bone versus skin. Networks with test error smaller than 0.3 were used, node

weights were normalized to quantiles, and differential node weights were calculated

using limma lmFit. Nodes with adjusted P value below 0.05 were selected as significant.

Analysis of node weights for the AML dataset

Differential node weights were calculated by comparing node weights of pairs of

KPNNs trained on consecutive steps of the hematopoietic tree (HSC vs Prog; Prog vs

GMP; GMP vs Mono). Node weights were normalized to quantiles, and differential

node weights were calculated using limma lmFit. Nodes with adjusted P value below

0.05 were selected as significant. Promonocytes were excluded from this analysis due to

low prediction performance distinguishing between cancer and healthy cells.

Analysis of node weights for the glioblastoma dataset

Differential node weights were calculated for two comparisons: (i) comparing the

trained KPNN distinguishing OPC and NPC to the trained KPNN distinguishing AC

and MES and (ii) comparing the trained KPNN distinguishing AC and OPC to the

trained KPNN distinguishing NPC and MES. Node weights were normalized to
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quantiles, and differential node weights were calculated using limma lmFit. Nodes with

adjusted P value below 0.05 were selected as significant.

Construction of generic ANNs and structural network comparison

To empirically define the characteristics of KPNNs, we compared and benchmarked them

against generic artificial neural networks (ANNs). These ANNs were constructed such that

they match the corresponding KPNNs in terms of the number of input nodes, hidden

nodes, and output node(s). In contrast, the distribution of edges was notably different, and

the number of hidden layers was handled as a free parameter ranging from 1 to the max-

imum depth of the corresponding KPNN, thus resulting in multiple ANNs for each KPNN.

Construction of ANNs

Fully connected ANNs (fANNs) were constructed by distributing the hidden nodes

equally across all layers and adding edges to fully connect adjacent layers. Moreover, all

nodes of the first hidden layer were connected to all input nodes, and all nodes of the

last hidden layer were connected to the output node(s). Given that these fANNs have

many more edges than their corresponding KPNNs, we also generated a separate set of

sparse ANNs (sANNs). These sANNs were derived from the fANNs in a way that

established the same number of edges and nodes as in the corresponding KPNN. This

was done in three steps that guarantee end-to-end connectivity of the resulting sANNs:

First, all edges were removed from a given fANN. Second, we generated a minimal net-

work that spans all nodes. To that end, edges were added for each pair of consecutive

layers such that every node in the lower layer was connected to exactly one (randomly

selected) node in the upper layer (this step also ensured that each node in the upper

layer is connected to at least one node in the lower layer, since higher layers were al-

ways smaller or equal in size compared to the lower layers). Third, edges were added

back randomly until the network had the same number of edges as the corresponding

KPNN. The third step was carried out separately for the input layer and for the hidden

layers of the network. Consequently, the resulting sANN was equivalent to the KPNN

in the number of edges connecting input nodes to hidden nodes, and also in the num-

ber of edges connecting hidden nodes with each other.

Analysis of network structure

Structural network analysis comparing KPNNs and ANNs was performed using the

igraph package in R. Outdegree was measured with the igraph function degree. Distance

to input nodes was measured with the igraph function distances. The resulting distance

values were used to calculate reachability, counting the number of input nodes with fi-

nite distance. To compare modularity, the network was transformed into an undirected

graph using the igraph function as.undirected, edges to be removed were identified

using the igraph function edge.betweenness.community, and the number of clusters was

determined with the igraph function clusters.

Validation of the TCR KPNN against randomly shuffled control KPNNs

To assess the effect of the prior biological knowledge that is encoded in the TCR

KPNN on the trained models, we generated a series of randomly shuffled control
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KPNNs that resemble the overall network structure of the TCR KPNN. The control

KPNNs were established by iteratively swapping edges of the TCR KPNN (“network

shuffling”) while maintaining the network topology including the in-degree and out-

degree of each node. We then trained and interpreted the control networks in the same

way as the original KPNN, and we compared the trained KPNN models to measure the

effect of network shuffling on the network interpretations.

Construction of control KPNNs

The TCR KPNN was randomized to generate randomly shuffled control networks using

the following multi-step strategy [124], which ensures that no circles are generated:

First, nodes are grouped into layers by iteratively removing leaf nodes (i.e., nodes with

an outdegree of zero), such that the first nodes to remove (leaf nodes of the original

network) are assigned to the lowest layer. Second, a unique index is randomly assigned

to each node under the constraint that nodes in lower layers have smaller indices than

nodes in the higher layers. Third, pairs of edges are swapped under the following condi-

tions: (i) parent node index is greater than child node index in both newly added edges

and (ii) the newly added edges exist neither in the original network nor in the current

shuffled network. Swapping is performed once for each edge.

Training and interpretation of shuffled KPNNs

Control networks were trained using the same parameters and cutoffs as the original

TCR KPNNs, thus ensuring comparability. Networks were trained both on real data

(n = 90) and on control inputs (n = 60). For interpretation, node weights of the best per-

forming networks were selected such that the number of trained KPNNs for each con-

trol network corresponds to the number used for the analysis of the original TCR

KPNN (n = 42). Differential node weights (comparing KPNNs trained on real data and

control inputs) were calculated as for the TCR KPNN: First, quantile normalization was

performed using quantiles from the TCR KPNN analysis. Second, significantly different

nodes were selected based on a P value cutoff that corresponds to the adjusted P value

cutoff of 0.05 in the TCR KPNN analysis. Third, the enrichment of known TCR regula-

tor proteins among differential nodes was calculated for each control network.

Benchmarking of the TCR KPNN against other machine learning methods

To benchmark and compare the prediction performance and biological interpretability

of KPNNs to that of established machine learning methods, we trained elastic nets, ran-

dom forests, support vector machines, and neural networks to predict TCR activation

on the TCR dataset. We then evaluated their prediction performance using the ROC

AUC metric and extracted input feature weights as potential biological interpretations.

Training and interpretation of neural networks

Neural networks were trained using the keras package (2.0.6) in Python. Data were split

into 80% training set and 20% test set. Activation functions used were ReLU between

layers and sigmoid for the final output. Cross-entropy loss was calculated based on the

output layer and optimized using the AdaGrad algorithm. Hyperparameters were tuned

on training data using fivefold cross-validation with the function GridSearchCV of the
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sklearn package (0.18.1), searching a grid of learning rate (values: 10−3, 10−2, 10−1, and

100) and L2 norm (values: 0, 10−2, 10−1, to 100). Optimal hyperparameters after 100

epochs were selected to train the final model. Training of the selected model was

stopped (early stopping) once learning failed to improve the cross-entropy loss on val-

idation data (20% of training data) by 0.01 for 10 epochs. Performance was evaluated

on unseen test data. For interpretation, features in the test data were individually shuf-

fled and changes in prediction performance were recorded to obtain estimates of fea-

ture importance.

Training and interpretation of other machine learning methods

Additional algorithms were trained using the caret package (6.0.78) in R. Data were

split into 80% training set and 20% test set. The following algorithms were included: lo-

gistic regression with elastic net penalty (glmnet package, version 2.0.13); SVMs with

linear, polynomial, or radial basis function kernel (kernlab package, version 0.9.25); and

random forest (randomForest package, version 4.6.12). Hyperparameters were tuned on

training data using tenfold cross-validation using the caret function train. Feature im-

portance of trained models was evaluated using the varImp function.

Enrichment of transcription factor target genes

To assess our ability to identify TCR signaling proteins from the feature weights of

these machine learning methods, we performed enrichment analysis on the 100, 200,

and 500 top-ranked features of each model against the target genes of each transcrip-

tion factor. This analysis was performed using the function fisher.test in R, and the P

values were corrected for multiple testing using p.adjust with parameter “BH”.
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